999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一種求解時間分?jǐn)?shù)階非線性拋物型方程的等階混合有限元

2024-08-23 00:00:00唐瑜嶺胡朝浪楊榮奎馮民富
關(guān)鍵詞:有限元

摘 要: 為數(shù)值求解時間分?jǐn)?shù)階非線性拋物型方程,本文提出了一種k 次等階混合有限元.為獲得有限元的完全離散格式,本文在時間方向上考慮經(jīng)典L1 格式、在空間方向上使用基于局部投影的穩(wěn)定混合有限元. 本文定義了混合投影并得到了有限元的誤差估計. 數(shù)值算例驗(yàn)證了理論結(jié)果.

關(guān)鍵詞: 混合有限元; 時間分?jǐn)?shù)階非線性拋物型方程; 逼近

中圖分類號: O241. 82 文獻(xiàn)標(biāo)志碼: DOI: 10. 19907/j. 0490-6756. 2024. 041004

Abstract: In this paper, we propose a k-th equal-order mixed finite element for the numerical solutions of thetime fractional nonlinear parabolic equations. To obtain the fully discrete scheme of finite element, the classicalL1 scheme is used in the time direction and the stabilized mixed finite element method based on local projectionis used in the spatial direction. We define the mixed projection and give the error estimate for the finiteelement. Numerical examples verify the theoretical results.

Keywords: Mixed finite element; Time fractional nonlinear parabolic equation; Approximation

1 Introduction

Parabolic equations are extensively employedto describe the unsteady physical phenomena suchas the diffusion of molecules in porous medium(air, water, etc). Many problems in science and engineeringcan be described by linear or nonlinearparabolic equations. In particular, time fractionalparabolic equations arise in the cases where thereare spatial or temporal constraints[1]. Unfortunately,only very special cases of these equations can besolved analytically. Therefore, the stable numericalschemes for these equations have long been a hot researchtopic[2-5], in which the mixed finite element isone of the promising methods.

Generally, a mixed finite element method hastwo variational forms, one is the dual mixed finiteelement method, the other is the primal mixedvariational form, which is based on the function spaces H (div;Ω)×L2 ( Ω) and (L2 ( Ω))2 ×H 1 ( Ω),respectively. Note that the velocity element neednot be imposed such high regularity and only needto be square integrable. Based on the primal mixedvariational form, Chen et al. [2] developed a P 20 ?P1mixed finite element method to solve some ellipticproblems. Weng et al. [3] considered the Crank-Nicolson P 20 ?P1 mixed finite element approximationsfor the linear parabolic problems. Shi et al.[4,5]applied a P 20 ?P1 mixed finite element method tosolve the nonlinear parabolic equations and nonlinearSchr?dinger equations. However, the abovementionedfinite element function spaces are so specialthat the inf-sup condition must be strictly satisfied.In this sense, some known and widely used finiteelement spaces are thereby excluded. Meanwhile,it is not easy to construct such mixed finiteelement function spaces in high-dimensional problems.

To overcome these difficulties, some stabilizationmethods have been proposed. The classical stabilizationmethods are Petrov-Galerkin type[6], somesymmetric stabilization methods are proposed[7,8].Subsequently, due to the computationally convenientof equal orders, especially the lowest equal orderpair in parallel processing and multigrid context,a stabilized finite element method based on local projectionis proposed for the Navier-Stokes equations[9]. However, most of these stabilization methodscan be applied only to steady or integral differentialequations rather than fractional differential equations.

Nowadays, many numerical methods havebeen proposed for time fractional equations. In Ref.[10], Gao and Sun constructed a compact differencemethod to solve the fractional sub-diffusionproblems. In this method the L1 scheme is appliedfor the time-fractional derivative and the fourthorderaccuracy compact approximation for the spatialdirection, then the stability and convergence ofthe finite difference scheme in maximum norm areobtained by using the energy method. Jin et al. [11]proposed a finite element method to solve the time fractional diffusion equation with non-smooth initialdata and established optimal with respect to theregularity of the solution error estimates. In Ref.[12], the semi-linear time fractional reaction diffusionequation was considered by using the mixed finiteelement method.

In this paper, we propose a k-th equal-ordermixed finite element for the following time fractionalnonlinear parabolic equation (0 lt; γ lt; 1):

c0 D γt u - Δu + f (u) = g, in Ω × (0,T ]

with the boundary condition u ( x,t ) = 0,on ?Ω ×(0,T ] and initial value u ( x,0) = u0 ( x) in Ω ×{ 0 },where g is a given function, c0 D γt u is the Caputo derivativein time,say,

and Γ ( ? ) is the gamma function. Assume that Ω is abounded domain in R2 with boundary ?Ω. For the reactionterm f (u), we assume that there exists a constantL gt; 0 such that | f '(u) |≤ L,u'≤ L. We proposea (P disk - 1 ) 2 ?P ck mixed finite element approximationand a new (P ck ) 2 ?P ck stabilized mixed finiteelementmethod to solve the equation. We introducea mixed projection and give the error estimates.Moreover, we give some numerical examples toverify the theoretical results.

The rest of this paper is organized as follows.Noting that the velocity p = ?u only needs to besquare integrable, we give a primal mixed formulationin Section 2. In Section 3, we address thestable conforming finite element approximation forthe (P disk - 1 ) 2 ?P ck pair and we give a stabilized finite elementapproximation for the (P ck ) 2 ?P ck pairs, thenwe analyze the error results. In Section 4, numericalexamples are given. In Section 5 we symmarize theobtained results.

2 Stable conforming finite elementfor the ( P disk - 1 ) 2 ?P ck pair

Let Q = (L2 ( Ω) )2 and V = H 10 ( Ω). Settingp = ?u, we get the following primal mixed formula?tion of( 1). It aims to find ( p,u) ∈ Q× V such that

In this paper, a new mixed finite elementmethod is proposed for the time fractional nonlinearparabolic equations, and the existence and uniquenessare obtained. We hav addressed the correspond?ing finite element for the (P disk - 1 ) 2 ?P ck and (P ck ) 2 ?P ck finiteelement pairs and given some numerical examplefor the (P disk - 1 ) 2 ?P ck, (P ck ) 2 ?P ck pairs (k = 1,2)pairs to verify the theoretical results. Obviously,this method can be expanded to the three dimensioncase easily.

References:

[1] Havlin S, Selinger R B, Schwartz M, et al. Randommultiplicative processes and transport in structureswith correlated spatial disorder [J]. Phys Rev Lett,1988, 61: 1438.

[2] Chen S C, Chen H R. New mixed element schemesfor second order elliptic problem [J]. Math NumerSin, 2010, 32: 213.

[3] Weng Z, Feng X, Huang P. A new mixed finite elementmethod based on the Crank-Nicolson schemefor the parabolic problems [J]. Appl Math Model,2012, 36: 5068.

[4] Shi D Y, Yan F N, Wang J J. Unconditional superconvergenceanalysis of a new mixed finite elementmethod for nonlinear Sobolev equation [J]. ApplMath Comput, 2016, 274: 182.

[5] Shi D Y, Yang H J. Unconditionally optimal error estimatesof a new mixed FEM for nonlinearSchr?dinger equations [J]. Adv Comput Math,2019, 45: 3173.

[6] Johnson C, Navert U, Pitkaranta J. Finite elementmethods for linear hyperbolic problems [J]. ComputMeth Appl M, 1984, 45: 285.

[7] Burman E, Hansbo P. Edge stabilization for Galerkinapproximations of convection-diffusion-reaction problems[ J]. Comput Meth Appl M, 2004, 193: 1437.

[8] Codina R. Stabilization of incompressibility and convectionthrough orthogonal sub-scales in finite elementmethods [J]. Comput Meth Appl M, 2000,190: 1579.

[9] Jian L, He Y, Chen Z. A new stabilized finite elementmethod for the transient Navier – Stokes equations[ J]. Comput Meth Appl M, 2007, 197: 22.

[10] Gao G H, Sun Z Z. A compact finite differencescheme for the fractional sub-diffusion equations [J].J Comput Phys, 2011, 230: 586.

[11] Jin B, Lazarov R, Zhou Z. Error estimates for asemi-discrete finite element method for fractional orderparabolic equations [J]. SIAM J Numer Anal,2013, 51: 445.

[12] Li Q, Chen Y, Huang Y, et al. Two-grid methodsfor semi-linear time fractional reaction diffusion equationsby expanded mixed finite element method [J].Appl Numer Math, 2020, 157: 38.

[13] Shi F, Yu J, Li K. A new stabilized mixed finiteelementmethod for Poisson equation based on two localGauss integrations for linear element pair [J]. IntJ Comput Math, 2011, 88: 2293.

[14] Lin Y, Xu C. Finite difference/spectral approximationsfor the time-fractional diffusion equation [J]. JComput Phys, 2007, 225: 1533.

[15] Li D, Liao H L, Sun W, et al. Analysis of L1-GalerkinFEMs for time-fractional nonlinear parabolic problems[ J]. Commun Comput Phys, 2018, 24: 86.

[16] He Y, Jian L. A stabilized finite element methodbased on local polynomial pressure projection for thestationary Navier – Stokes equations [J]. Appl NumerMath, 2008, 58: 1503.

[17] Layton W, Tobiska L. A two-level method withbacktracking for the Navier-Stokes equations [J].SIAM J Numer Anal, 1998, 35: 2035.

(責(zé)任編輯: 周興旺)

基金項(xiàng)目: 國家自然科學(xué)基金(11971337)

猜你喜歡
有限元
基于擴(kuò)展有限元的疲勞裂紋擴(kuò)展分析
非線性感應(yīng)加熱問題的全離散有限元方法
TDDH型停車器制動過程有限元分析
新型有機(jī)玻璃在站臺門的應(yīng)用及有限元分析
基于I-DEAS的履帶起重機(jī)主機(jī)有限元計算
基于有限元模型對踝模擬扭傷機(jī)制的探討
10MN快鍛液壓機(jī)有限元分析
磨削淬硬殘余應(yīng)力的有限元分析
基于SolidWorks的吸嘴支撐臂有限元分析
箱形孔軋制的有限元模擬
上海金屬(2013年4期)2013-12-20 07:57:18
主站蜘蛛池模板: 亚洲日韩高清无码| 日韩无码精品人妻| 色妞www精品视频一级下载| 国产无码精品在线播放| 狠狠色综合久久狠狠色综合| 国产美女91视频| 波多野吉衣一区二区三区av| 欧美日韩中文国产| 日韩中文无码av超清| 91美女在线| 欧美成人手机在线观看网址| 激情综合婷婷丁香五月尤物 | 亚洲午夜18| 97av视频在线观看| 在线国产你懂的| 亚洲第一国产综合| 国产一区二区免费播放| 国产黄网永久免费| 久久国产高清视频| 这里只有精品免费视频| 色哟哟国产成人精品| a亚洲天堂| 欧美三级自拍| 国产成人福利在线| 久热99这里只有精品视频6| 九色视频最新网址 | 国产精品久久精品| 国产精品视频系列专区| 亚洲中文字幕在线精品一区| 精品伊人久久大香线蕉网站| 国产永久在线视频| 中文字幕亚洲专区第19页| 美女免费黄网站| 永久免费无码日韩视频| 久久精品嫩草研究院| 日韩精品少妇无码受不了| 国产精品免费电影| 亚洲精品国产自在现线最新| 欧美中文一区| 老司机精品久久| 大陆精大陆国产国语精品1024| 91精品啪在线观看国产| 刘亦菲一区二区在线观看| 国产成人在线无码免费视频| 午夜毛片免费看| 青青草国产免费国产| 精品一区二区三区波多野结衣| 日韩欧美中文在线| 中文国产成人精品久久| 九色91在线视频| 日韩精品一区二区三区swag| a毛片免费观看| 亚洲AV人人澡人人双人| 国产日韩丝袜一二三区| 久久精品女人天堂aaa| 国产毛片基地| 色综合久久久久8天国| 一级毛片在线播放免费观看| 麻豆精品在线视频| 国产黄网永久免费| 一本一道波多野结衣av黑人在线| 亚洲综合精品香蕉久久网| 久久精品91麻豆| 免费国产一级 片内射老| 亚洲中文字幕在线精品一区| 国产成人三级| 91久久偷偷做嫩草影院电| 国产三级国产精品国产普男人| 国产成人一区在线播放| 狠狠亚洲五月天| 亚洲成a人片在线观看88| 在线观看91香蕉国产免费| 亚洲国产综合精品中文第一| 最新国产高清在线| 亚洲精品视频免费观看| 成人国产免费| 国产欧美亚洲精品第3页在线| 亚洲一级无毛片无码在线免费视频 | 色天堂无毒不卡| 99热这里只有精品在线播放| a级毛片一区二区免费视频| 亚洲精品成人片在线观看|