999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

人工智能大模型表征方式的一致性及其哲學(xué)啟示

2024-08-29 00:00:00涂良川
人民論壇·學(xué)術(shù)前沿 2024年14期

【摘要】以大數(shù)據(jù)、強(qiáng)算力、多模態(tài)和高維度等訓(xùn)練出來的人工智能大模型愈發(fā)智能,體現(xiàn)出類人的“聰明”。基于系統(tǒng)穩(wěn)定性、功能有效性和優(yōu)化可能性要求,大模型將注意力機(jī)制嵌入系統(tǒng)之中,使基于不同數(shù)據(jù)訓(xùn)練出來的不同大模型在處理數(shù)據(jù)時(shí)體現(xiàn)出表征收斂的趨向。大模型的表征收斂,一方面,顯示出基于神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)具有實(shí)現(xiàn)通用人工智能的技術(shù)潛質(zhì);另一方面,也印證了大數(shù)據(jù)挖掘、大模型超越、強(qiáng)算力迭代和高維度透視所形成的智能具有類人性。因此,雖然人工智能大模型的表征收斂是人工智能智能性的技術(shù)體現(xiàn),本質(zhì)上卻是以人類本質(zhì)力量對(duì)象化的方式考問智能本質(zhì)的哲學(xué)追問。與其說是大模型試圖表示現(xiàn)實(shí)模型的穩(wěn)定性推動(dòng)了系統(tǒng)的表征收斂,倒不如說是大模型以“挖掘即認(rèn)知”“學(xué)習(xí)獲智能”“高維達(dá)簡潔”對(duì)觀測的經(jīng)驗(yàn)升華構(gòu)成了表征收斂的智能動(dòng)因。

【關(guān)鍵詞】表征收斂 哲學(xué)敘事 大模型 人工智能

【中圖分類號(hào)】TP18 【文獻(xiàn)標(biāo)識(shí)碼】A

【DOI】10.16619/j.cnki.rmltxsqy.2024.14.005

由大語言模型所支持的Sora獲得了巨大成功,說明今天的人工智能大模型具有了超越內(nèi)容的跨越性。近期,麻省理工學(xué)院研究團(tuán)隊(duì)發(fā)表了名為《柏拉圖式的表征假說》的研究論文,更提出“人工智能模型,特別是深度網(wǎng)絡(luò)中的表征正在收斂”[1]。雖然,工程學(xué)的成功和理論研究成果都難以證明基于人工神經(jīng)網(wǎng)絡(luò)的、不可解釋的大模型已經(jīng)實(shí)現(xiàn)了通用人工智能,并有觸發(fā)人工智能奇點(diǎn)的可能性。[2]但具有表征收斂“能力”的人工智能不僅能夠通過“圖靈測試”,而且表明基于大模型的人工智能“正確地生成知識(shí)并作出預(yù)測是可能的”[3]。也就是說,人工智能的表征收斂,不僅意味著不同的人工智能模型(比如語言模型和視覺模型)挖掘數(shù)據(jù)的結(jié)果具有一致性,從而證明數(shù)據(jù)描述對(duì)象的客觀性與穩(wěn)定性,而且充分表明大模型正在獲得超數(shù)據(jù)、跨模型的表征能力,強(qiáng)算力、多參數(shù)、高維度和難解釋的大模型“正在生成一個(gè)類似于柏拉圖理念論的現(xiàn)實(shí)統(tǒng)計(jì)模型”[4],呈現(xiàn)大模型表征方式的一致性,以及能夠在數(shù)據(jù)挖掘中獲得認(rèn)知的能力。由此,人工智能大模型表征收斂的意義,顯然超越了人工智能技術(shù)要求的運(yùn)行邏輯一致性、功能實(shí)現(xiàn)穩(wěn)定性和系統(tǒng)優(yōu)化連續(xù)性,深入到了人工智能之智能本質(zhì)之中。因?yàn)榇竽P偷谋碚魇諗坎皇俏锢硎澜绲聂敯粜栽谟?jì)算邏輯中的表達(dá),而是由大模型處理數(shù)據(jù)的機(jī)制、學(xué)習(xí)定義的規(guī)則和校驗(yàn)形成的改進(jìn)而得以保障。大模型的“人工神經(jīng)網(wǎng)絡(luò)模仿的是大腦神經(jīng)回路的機(jī)制,并被成功地應(yīng)用于機(jī)器學(xué)習(xí)”[5],其表征收斂,不僅是對(duì)這一模仿行為有效性的證明,也是對(duì)人類智能之智能特性的表達(dá)。因此,大模型所構(gòu)建的挖掘機(jī)制、實(shí)現(xiàn)的跨越能力和達(dá)到的高維透視,雖然依然是“大數(shù)據(jù)小任務(wù)”和“大數(shù)據(jù)大任務(wù)”,離人類經(jīng)驗(yàn)觀察獲得智能“小數(shù)據(jù)大任務(wù)”的機(jī)制還有一定差距,但卻肯定了機(jī)器智能表達(dá)是挖掘數(shù)據(jù)的學(xué)習(xí)、窮盡可能的通用和跨越領(lǐng)域的統(tǒng)一,并正在以“越來越相似的方式測量數(shù)據(jù)單元之間的距離”,“表征數(shù)據(jù)的方式也在變得越發(fā)一致”。[6]顯然,大模型表征收斂的意義,不僅在于其以機(jī)器智能的方式再一次肯認(rèn)了經(jīng)驗(yàn)世界穩(wěn)定性這一唯物主義原則,而且更以人類本質(zhì)力量對(duì)象化的方式證明了人“自己思維的真理性”,即自己思維的“現(xiàn)實(shí)性和力量”[7]。

數(shù)據(jù)表存在與挖掘即認(rèn)知

大模型的表征收斂在技術(shù)邏輯中體現(xiàn)為模型邏輯應(yīng)對(duì)任務(wù)的靈活性,使其超越了“經(jīng)典符號(hào)人工智能或GOFAI開創(chuàng)”的“問題的計(jì)算機(jī)表示”的“部分搜索”,[8]在建構(gòu)問題的新表示中,既能夠搜索不同空間,又能夠形成應(yīng)對(duì)問題的有效策略。一方面,這意味著達(dá)到表征收斂的大模型已然能夠通過“圖靈測試”并具有了智能,[9]另一方面,也表明人工智能挖掘數(shù)據(jù)能夠獲得對(duì)數(shù)據(jù)對(duì)象穩(wěn)定的認(rèn)知。因此,大模型的表征收斂不僅為人工智能技術(shù)發(fā)展提供了新的便利,還表明認(rèn)知本身具有相對(duì)穩(wěn)定的一般結(jié)構(gòu)。大模型基于大數(shù)據(jù)訓(xùn)練而成是不爭的事實(shí),然而,大數(shù)據(jù)之“大”并非復(fù)刻整全存在的任意大,這既緣于技術(shù)本身的限制,也是大數(shù)據(jù)客觀存在的特質(zhì)。因此,經(jīng)由數(shù)據(jù)挖掘而獲得的收斂性并非是數(shù)據(jù)自身具有的客觀結(jié)構(gòu),而是大模型形成的內(nèi)部表征。大模型以此為邏輯的表征收斂,使基于數(shù)據(jù)的知識(shí)描述物理實(shí)體具有穩(wěn)定性、客觀性和可行性。雖然這不是傳統(tǒng)邏輯的一致性、不矛盾性和齊一性,但是其行為主義的有效性卻充分證明了挖掘即認(rèn)知的重要觀念。

表征收斂是大模型表達(dá)數(shù)據(jù)特性的功能特性。當(dāng)然,大模型的表征收斂不是直接把數(shù)據(jù)具有的收斂性復(fù)制進(jìn)系統(tǒng),而是進(jìn)入數(shù)據(jù)生成的結(jié)果之中才獲得對(duì)數(shù)據(jù)存在邏輯的認(rèn)知。我們知道,“在解釋裝置如何工作時(shí)并不需要表征概念;只有在解釋裝置怎樣完成設(shè)計(jì)者預(yù)定的功能時(shí)才需要表征概念”[10]。表征收斂表面上看是系統(tǒng)的功能性特質(zhì),但是卻從根本上體現(xiàn)出大模型挖掘大數(shù)據(jù)的初衷和基本假設(shè)。大模型參考柏拉圖的“洞穴隱喻”,認(rèn)為表征收斂的終點(diǎn)與核心原則是“不同的模型都只是從不同維度對(duì)現(xiàn)實(shí)的一種描述”[11]。當(dāng)然,大模型的描述本身就是一種判斷,不同大模型基于不同維度處理了大數(shù)據(jù)本身。然而,“所有數(shù)據(jù)都是由人類生成的”,“數(shù)據(jù)是由社會(huì)構(gòu)建的”。[12]無論是數(shù)據(jù)表達(dá),還是從數(shù)據(jù)中獲得的規(guī)律,都不再是被“洞穴”之外的普照光投射到影壁上的描述。人類生成數(shù)據(jù)、社會(huì)建構(gòu)數(shù)據(jù)“并不是隨心所欲地創(chuàng)造,并不是在他們自己選定的條件下創(chuàng)造,而是在直接碰到的、既定的、從過去承繼下來的條件下創(chuàng)造”[13]出來的數(shù)據(jù)。因此,數(shù)據(jù)作為抽象的對(duì)象,并不能構(gòu)成大模型的因果性輸入,而只能是被重新還原的“洞穴上的陰影”[14]。雖然大模型在數(shù)據(jù)訓(xùn)練的直接性上面對(duì)的是封閉系統(tǒng)內(nèi)的特質(zhì)問題,但是卻不必依賴于布倫塔諾的“心理現(xiàn)象不是由物理規(guī)律而是由心理規(guī)律本身決定”[15]的假設(shè),就可以在模型表征中對(duì)齊數(shù)據(jù)并獲得有效預(yù)測。究其原因,無論是歷史唯物主義所保障的人類社會(huì)行為的穩(wěn)定性中內(nèi)蘊(yùn)的數(shù)據(jù)收斂性,還是普特南“收斂現(xiàn)實(shí)主義”的哲學(xué)確認(rèn),都指向數(shù)據(jù)存在的對(duì)齊本性。當(dāng)然,大模型并沒有把數(shù)據(jù)作為物理主義的假設(shè),而是“使用編程語言描述的數(shù)學(xué)定義以及關(guān)于其數(shù)據(jù)結(jié)構(gòu)的公理”[16]來證明數(shù)據(jù)刻畫事實(shí)的有效性,也就必然會(huì)表達(dá)為表征的收斂性。

大模型的表征收斂不僅事實(shí)性地證明了數(shù)據(jù)表征存在的穩(wěn)定性與客觀性,而且表明大模型挖掘的認(rèn)識(shí)活動(dòng)具有收斂性。大模型挖掘即認(rèn)知的“創(chuàng)構(gòu)認(rèn)識(shí)論”[17]范式成功搭建了“‘安娜·卡列尼亞’場景”[18]。一方面,不同結(jié)構(gòu)良好的大模型并不會(huì)影響數(shù)據(jù)表達(dá)的存在,因?yàn)椴煌竽P投际且酝瑯拥臋C(jī)制表達(dá)著世界的可能性。今天的大模型不僅都是以具有反向傳遞性的神經(jīng)網(wǎng)絡(luò)作為物理結(jié)構(gòu),而且都是以深度學(xué)習(xí)作為認(rèn)知邏輯。因此,大模型的不同模型不過是“條條大路通羅馬”的“條條大路”,都只是把“內(nèi)部結(jié)構(gòu)插入其中”而已。[19]另一方面,大模型之大本身就蘊(yùn)涵著“越多越好”[20]的原則,越多的數(shù)據(jù)、參數(shù)和訓(xùn)練交織形成復(fù)雜性越能保證表征的收斂性。雖然量大首先是基于技術(shù)設(shè)計(jì)的考量和表征逼近的方便,但其本身既意味著數(shù)據(jù)刻畫對(duì)象維度的復(fù)雜和視角的全面,又說明了動(dòng)態(tài)修正和不斷優(yōu)化才是保證對(duì)齊和收斂的根本方式。由此看來,大模型的表征收斂堅(jiān)持了唯物主義對(duì)象穩(wěn)定性的原則,卻又不是從規(guī)定原則來分析對(duì)象的客觀性。因此,一方面,數(shù)據(jù)這種基于信息的存在,作為大模型挖掘的對(duì)象向大模型本身敞開其內(nèi)在的結(jié)構(gòu),另一方面,大模型也建構(gòu)了大數(shù)據(jù)表達(dá)自身的結(jié)構(gòu)。由此可見,大模型的表征收斂是大數(shù)據(jù)與大模型雙向奔赴的結(jié)果。大模型的大參數(shù)和大訓(xùn)練顯然不是對(duì)大數(shù)據(jù)同一維度的重復(fù)加總,也并非是在追求絕對(duì)全面中呈現(xiàn)大數(shù)據(jù)刻畫對(duì)象不可見的一面,而是堅(jiān)持特征向量具有的魯棒性。或者說,大參數(shù)和大訓(xùn)練本身接受了康托集和哥德爾不完全定理的哲學(xué)訓(xùn)誡,以挖掘認(rèn)知的穩(wěn)定性而不是“實(shí)在的自洽觀念”[21]來保障表征的收斂性。由此帶來的深層哲學(xué)意涵則是,“大”所支撐的表征收斂本身體現(xiàn)了創(chuàng)構(gòu)數(shù)據(jù)的人類實(shí)踐的穩(wěn)定性,大參數(shù)與大訓(xùn)練則構(gòu)成了穩(wěn)定性的另一重隱喻。即在認(rèn)知中,客觀實(shí)在、對(duì)象的自洽等并非是認(rèn)知成果一致性的必要條件,經(jīng)由人創(chuàng)構(gòu)的機(jī)制本身也可以保住表征的收斂性,并“標(biāo)志著我們已然觸到了實(shí)在界/真實(shí)(the real)”[22]。

因此,雖然訓(xùn)練數(shù)據(jù)在表征收斂中具有基礎(chǔ)性意義,但卻并非是數(shù)據(jù)本體結(jié)構(gòu)向大模型認(rèn)知結(jié)構(gòu)的直觀遷移,而是以數(shù)據(jù)表存在的認(rèn)知通過建構(gòu)和挖掘獲得認(rèn)知穩(wěn)定性的新驗(yàn)證。大模型依賴訓(xùn)練數(shù)據(jù)生成系統(tǒng)能力意味著大模型生成的對(duì)象、預(yù)測的結(jié)論和產(chǎn)生的規(guī)范,都是由模型的結(jié)構(gòu)和數(shù)據(jù)的特性雙重規(guī)定的。一方面,雖然大模型對(duì)數(shù)據(jù)的挖掘既能夠呈現(xiàn)數(shù)據(jù)既有的內(nèi)在基本結(jié)構(gòu),又能夠擴(kuò)展其可能的相互聯(lián)結(jié),但是數(shù)據(jù)既有的約束性是大模型運(yùn)行的規(guī)定性卻是不爭事實(shí)。另一方面,數(shù)據(jù)本身又是一個(gè)開放性的結(jié)構(gòu),這既是由數(shù)據(jù)產(chǎn)生的邏輯決定的,又是由大模型挖掘數(shù)據(jù)本身所推動(dòng)的。因此,當(dāng)數(shù)據(jù)描述事實(shí)、再構(gòu)事實(shí)和檢視事實(shí)的時(shí)候,就既不是前定邏輯的再現(xiàn),也不是任意組合的混亂,更不是神創(chuàng)論的無中生有。大模型要實(shí)現(xiàn)功能有效性,必須在其挖掘數(shù)據(jù)來實(shí)現(xiàn)“抽象-具象”生成[23]、功能有效預(yù)測時(shí)遵循某種基本規(guī)則。而且事實(shí)證明,大模型特別是視覺大模型“與人類在一系列識(shí)別任務(wù)中的表現(xiàn)是相匹配的”[24]。也就是說,雖然大模型挖掘數(shù)據(jù)的過程具有弱可解釋性甚至黑箱屬性,但是其遵從數(shù)據(jù)的客觀性使其表征收斂獲得了“本體論承諾”,而大模型基于不同觀念、功能和算法的挖掘獲得了處理能力,既在描述客體、預(yù)測結(jié)果和處理任務(wù)等方面表現(xiàn)出趨同性,又在處理數(shù)據(jù)的表征能力上呈現(xiàn)收斂性。顯然,經(jīng)由大模型挖掘的數(shù)據(jù),一是進(jìn)一步呈現(xiàn)了其中隱藏的可能性;二是形成了對(duì)大模型表征能力的限制;三是超越了數(shù)據(jù)本身,呈現(xiàn)了新的理想性。如此看來,當(dāng)大模型立足于數(shù)據(jù)在生成系統(tǒng)的處理能力時(shí),一方面,在唯物主義層面上貫徹了“萬物源于比特”[25]的存在論原則,以表征的收斂性回避了“中文屋”的詰難,使“計(jì)算機(jī)可以通過操縱字符串做到即使并不理解問題含義,也能給出似乎理解了的答案”[26]。另一方面,大模型的表征收斂本身意味著,基于數(shù)據(jù)挖掘所形成的認(rèn)知事實(shí)上是一種“參與型”的認(rèn)知,[27]這既以高階自動(dòng)化的技術(shù)邏輯肯定了“我們是通過觀察和研究行為來理解世界”[28]的事實(shí),又意味著以思維建構(gòu)的大模型在大數(shù)據(jù)的訓(xùn)練中,能夠獲得穩(wěn)定的理解世界的方式,這已被諸如AlphaFold等科研助手的強(qiáng)大功能所證明。

如此看來,大模型的表征收斂具有超越人工智能系統(tǒng)完備性和功能性的人類學(xué)意義。大模型不是將數(shù)據(jù)作為物理系統(tǒng)和社會(huì)歷史映射對(duì)象的產(chǎn)物,從而在數(shù)據(jù)的趨同性中獲得表征的收斂性。大模型的表征收斂顯然不僅是海量參數(shù)、巨量數(shù)據(jù)和強(qiáng)大算力帶來的技術(shù)穩(wěn)定性與功能一致性,更是對(duì)智能認(rèn)知內(nèi)涵與邏輯的時(shí)代性拓展與歷史性創(chuàng)新:其一,人類認(rèn)知成果的內(nèi)容和結(jié)構(gòu)由人類自身參與建構(gòu);其二,人類創(chuàng)建的高階自動(dòng)化體系獲得了認(rèn)知能力;其三,智能的認(rèn)知既是還原與解釋對(duì)象的自洽邏輯,更是生成全新內(nèi)容的建構(gòu)邏輯。因此,與其說大模型肯定了數(shù)據(jù)之后的數(shù)據(jù)挖掘結(jié)果具有重要意義,是人類既有知識(shí)的豐富與擴(kuò)展,倒不如說大模型以獨(dú)特的運(yùn)行機(jī)制提出了人類智能自我理解和發(fā)展的道路問題。

“大力出奇跡”與學(xué)習(xí)獲智能

一方面,大模型以超強(qiáng)算力將人類智能費(fèi)時(shí)費(fèi)力也難以發(fā)現(xiàn)的事實(shí)揭示出來,超越了生物智能的有限性,使其表征收斂的結(jié)論不僅構(gòu)成了知識(shí)的全新內(nèi)容,而且深化了自近代以來注意經(jīng)驗(yàn)形而上學(xué)的認(rèn)知觀念,并以反向傳遞內(nèi)化經(jīng)驗(yàn)為先驗(yàn)方式揭示了人類實(shí)踐改變認(rèn)識(shí)方式的具體過程。另一方面,大模型以超強(qiáng)算力體現(xiàn)出的表征收斂獲得了生成式能力,確證了深度學(xué)習(xí)獲得智能的事實(shí)。大模型的表征收斂使“我們有了一種新型的知識(shí),它讓我們無須借助數(shù)學(xué)分析進(jìn)行理解,便可以作出預(yù)測”[29]、生成對(duì)象和驗(yàn)證結(jié)論。顯然,如此的成績緣于大模型不斷以強(qiáng)大的算力從數(shù)據(jù)中進(jìn)行學(xué)習(xí)。雖然大模型的底層學(xué)習(xí)邏輯是對(duì)控制輸入與輸出的參數(shù)進(jìn)行修正,但這一學(xué)習(xí)過程使大模型刻畫的既有對(duì)象更加完美,通過“模型縫合”[30]形成了參數(shù)之間的交叉影響與相互制約,從而管理和更新“在不同模型中擁有相同概念的神經(jīng)元”[31]。

大模型是在強(qiáng)大算力加持下,化經(jīng)驗(yàn)為數(shù)據(jù),以數(shù)據(jù)為基礎(chǔ)進(jìn)行的系統(tǒng)的自我建構(gòu),[32]在迭代中達(dá)到的表征收斂是學(xué)習(xí)成智的機(jī)器表達(dá)。在技術(shù)領(lǐng)域內(nèi)已形成這樣的基本共識(shí),即模型的規(guī)律擴(kuò)大和性能提升推進(jìn)了模型表征數(shù)據(jù)的對(duì)齊能力。[33]支持大模型有如此表現(xiàn)的根本在于大模型處理大數(shù)據(jù)時(shí)的強(qiáng)算力。顯然,強(qiáng)算力以獨(dú)特的方式支持了大模型的表征收斂。從發(fā)生學(xué)的角度看,強(qiáng)算力可以充分挖掘數(shù)據(jù)刻畫對(duì)象的邏輯與方式。一方面,強(qiáng)算力使計(jì)算概率、判斷回歸和校驗(yàn)齊一的計(jì)算行為獲得了類概念的表達(dá)能力,使模型既學(xué)習(xí)到了數(shù)據(jù)刻畫對(duì)象的邏輯,又學(xué)習(xí)到了數(shù)據(jù)中蘊(yùn)涵的邏輯,從對(duì)象存在對(duì)齊的層面和刻畫對(duì)象對(duì)齊的層面保證了表征收斂的可能性。另一方面,強(qiáng)算力的迭代雖然不斷地調(diào)用模型的基本規(guī)則,卻是以經(jīng)驗(yàn)先驗(yàn)化的方式不斷審視大模型表征能力自身。強(qiáng)算力的時(shí)間疊加不僅能夠保障數(shù)據(jù)挖掘的寬度與廣度,而且“具有類似的內(nèi)部活動(dòng)”,并且“隨著模型擴(kuò)展的持續(xù)積累,模型的表征對(duì)齊的能力也會(huì)隨著時(shí)間的推移而增強(qiáng)”。[34]再一方面,大模型的強(qiáng)算力使得多層網(wǎng)絡(luò)在技術(shù)上具有可行性,在深度學(xué)習(xí)上可收斂,其在保障結(jié)果收斂的過程中不再依賴因果邏輯將數(shù)轉(zhuǎn)換成智,而是將“無理變?yōu)榉蔷€性的有理”[35],這在機(jī)器學(xué)習(xí)中體現(xiàn)為“通過可能的隱性或顯性正則化極度降低經(jīng)驗(yàn)風(fēng)險(xiǎn)”[36],而在哲學(xué)上則表達(dá)為大模型獲得了類概念的理解力和處理力。當(dāng)然,這里的理解顯然就是表征收斂的一致性刻畫能力、預(yù)測邏輯和調(diào)適過程。大模型訓(xùn)練之所以極度依賴強(qiáng)算力,一方面是因?yàn)檫_(dá)到表征收斂本身是多層嵌入縫合的結(jié)果,而這本身就是一個(gè)極度消耗算力的過程,另一方面則是因?yàn)楸碚魇諗渴峭ㄟ^整合“簡單的表示來表達(dá)復(fù)雜表示”[37]達(dá)到的,而這意味著多層迭代。因此,強(qiáng)算力賦予大模型提取數(shù)據(jù)信息、形成模式判斷、呈現(xiàn)有效規(guī)劃的表征收斂性,使其具有“從對(duì)象化樣本(比如許多葉子圖像)學(xué)到非對(duì)象化的對(duì)象識(shí)別(比如辨認(rèn)出從未見過的或千變?nèi)f化的葉子)的能力”[38]。這既是滿足大模型技術(shù)初衷的智能學(xué)習(xí),又體現(xiàn)了大算力、高強(qiáng)度和多對(duì)象的學(xué)習(xí)是“累事成識(shí)”“化識(shí)為釋”“升釋獲智”[39]的重要方式。

大模型的表征收斂特別強(qiáng)調(diào)與強(qiáng)算力直接相關(guān)的規(guī)模與性能,原因在于大模型學(xué)習(xí)本身是高度復(fù)雜的數(shù)據(jù)學(xué)習(xí),這也意味著學(xué)習(xí)獲智是一個(gè)長期的、開放的過程。就大模型表征收斂的存在論指向而言,大模型的表征收斂絕不意味著人工智能達(dá)到了全知全能的“奇點(diǎn)”[40]狀態(tài)。大模型的“神經(jīng)網(wǎng)絡(luò)與大腦中的生物表征表現(xiàn)出實(shí)質(zhì)性的一致性”[41],本身就是由積累而生成的開放性,并具有三方面的意義:其一,表征收斂是“大力出奇跡”所呈現(xiàn)的大規(guī)模處理數(shù)據(jù)、形成策略和解決問題的邏輯穩(wěn)定性和功能穩(wěn)定性,而非系統(tǒng)的封閉性。否則,大模型的表征收斂就會(huì)走向其反面:如果大模型的表征收斂運(yùn)作良好,那么大模型的邏輯就會(huì)固化、功能就會(huì)單一,[42]從而與大模型表征收斂通用化的事實(shí)與追求相悖。其二,大模型強(qiáng)算力與大規(guī)模所集成的是人類社會(huì)歷史生成的“一般智力”[43],其加持的物質(zhì)體系獲得表征收斂性并不是物質(zhì)體系自在發(fā)展的成果,而是人類智能激活物性力量的成果。因此,大模型收斂性是“以大力出奇跡”的方式“對(duì)現(xiàn)有文化的大規(guī)模挪用”[44]所獲得的發(fā)展性。這顯然預(yù)示著大模型不僅作為人工智能的物質(zhì)體系具有強(qiáng)大的力量,也必然構(gòu)成當(dāng)今人類智能的組成部分,更表明大模型“大力出奇跡”的學(xué)習(xí)具有活動(dòng)的穩(wěn)定性、知識(shí)邏輯的延續(xù)性和智能內(nèi)容的開放性。大模型“大力出奇跡”本身并非是靠量取勝的機(jī)械積累,而是一個(gè)以深度學(xué)習(xí)表達(dá)獲取智能的過程。[45]其三,大模型的表征收斂是“大力出奇跡”的學(xué)習(xí)所獲得的一種“能力”,是由既定現(xiàn)實(shí)規(guī)定和潛在現(xiàn)實(shí)引領(lǐng)的收斂性。或者說,大模型收斂性并非是由喬姆斯基的“抄襲斷定”[46]所決定的,而是由大規(guī)模本身依據(jù)的學(xué)習(xí)機(jī)制所形成的。一方面,“大力出奇跡”的機(jī)制能夠在大模型的學(xué)習(xí)中直接實(shí)現(xiàn)“吃一塹長一智”的積累機(jī)制,從而使模型在調(diào)節(jié)參數(shù)、形成連接和衍生關(guān)系時(shí)實(shí)現(xiàn)自我學(xué)習(xí)機(jī)制的迭代改進(jìn);另一方面,“大力出奇跡”能夠使系統(tǒng)同時(shí)兼顧輸入系統(tǒng)的“外部經(jīng)驗(yàn)”與系統(tǒng)生成的“內(nèi)部經(jīng)驗(yàn)”,并通過遞歸的、有限的“無上限自舉(bootstrap heaven)”[47]而實(shí)現(xiàn)內(nèi)外的一致性。因此,以大語言模型為代表的大模型不僅具有專業(yè)領(lǐng)域的適配性,而且還具有通用領(lǐng)域的穩(wěn)定性。表面上看,這是因?yàn)榇竽P汀按罅Τ銎孥E”能夠盡可能地實(shí)現(xiàn)分析的邏輯可能性,本質(zhì)上而言卻呈現(xiàn)出大模型學(xué)習(xí)的可行性和習(xí)以獲智的必然性。當(dāng)然,也正是因?yàn)榇竽P捅旧韮?nèi)置了“大力出奇跡”的原則,雖產(chǎn)生了難以闡明的智能過程的黑箱問題,但從根本上肯定了學(xué)習(xí)獲智是智能發(fā)展的基本方式。

大模型的表征收斂并非是以高容量模型來窮舉復(fù)雜多樣的內(nèi)容信息形成的有限歸納,而是以大模型本身的“大力”去表達(dá)信息有效的結(jié)構(gòu)。或者說,大模型的表征收斂不是暴力計(jì)算的還原論,不是“通過簡單現(xiàn)象的疊加‘涌現(xiàn)’出來”[48]的一致性和穩(wěn)定性,而是在實(shí)際對(duì)比的學(xué)習(xí)中建構(gòu)起獨(dú)立于時(shí)間和空間的表現(xiàn)形式。大模型的表征收斂有兩個(gè)基本面:一是“信息等同于底層世界的信息”[49]的收斂性,二是轉(zhuǎn)換信息能力的收斂性。顯然,這兩種收斂都不是事先定義好標(biāo)準(zhǔn)和目的的收斂,而是寬容信息的增減,并是利用隨機(jī)機(jī)制基于“經(jīng)驗(yàn)數(shù)據(jù)的方法”[50]達(dá)到的收斂。因此,收斂的大模型和大模型的收斂,本身只是以“大力出奇跡”的方式“找到了一條較好的路徑”[51],但并非是最好或最佳的唯一路徑,這一事實(shí)已被不同公司開發(fā)的大模型表現(xiàn)出同一能力的收斂性所證明。當(dāng)然,無論是體現(xiàn)為結(jié)果的收斂性,還是呈現(xiàn)為挖掘數(shù)據(jù)能力的收斂性,本身都表達(dá)知識(shí)的有效性,能夠有效地解釋更多發(fā)生的現(xiàn)象、深入地挖掘更多的可能、高效地實(shí)現(xiàn)更遠(yuǎn)的目標(biāo),等等。比如,“訓(xùn)練有素的自動(dòng)回歸生成文本的模型還捕獲了許多其他模式的統(tǒng)計(jì)關(guān)系,如符號(hào)推理、視覺生成、蛋白質(zhì)折疊和機(jī)器人學(xué)”[52]。無論這一過程是自上而下還是自下而上,大模型的表征收斂本身就意味著不斷的學(xué)習(xí)本身可以增加系統(tǒng)的智識(shí)穩(wěn)定性,這一方面緣于大模型神經(jīng)網(wǎng)絡(luò)的可塑性,另一方面則與“大力出奇跡”的學(xué)習(xí)相關(guān)。因此,大模型本身就是不斷“改進(jìn)對(duì)經(jīng)驗(yàn)的表征,就是通過已有的內(nèi)在條件對(duì)外部實(shí)在作出適當(dāng)?shù)谋碚鳌盵53],事實(shí)上就是以支持隱喻的方式肯定了“實(shí)踐出真知”這一基本的認(rèn)識(shí)論命題。大模型以“大力出奇跡”的方式不斷地將系統(tǒng)運(yùn)行的結(jié)論(可能是外在干預(yù)的,可能是預(yù)先設(shè)定的,可能是動(dòng)態(tài)判定的)內(nèi)化為系統(tǒng)表征的構(gòu)成要素。

因此看來,大模型的表征收斂雖然是“大力出奇跡”的技術(shù)成功,但本質(zhì)上卻指向了學(xué)習(xí)尤其是充分而有效的學(xué)習(xí)之于智能的意義與價(jià)值。大模型的表征收斂之所以能夠突破傳統(tǒng)人工智能“大數(shù)據(jù)小任務(wù)”的限制,在于其引入了學(xué)習(xí)機(jī)制。不論是向?qū)ο髮W(xué)習(xí)的復(fù)刻式再現(xiàn),還是向自我學(xué)習(xí)的反思式改進(jìn),都是獲取穩(wěn)定知識(shí)的不二途徑。無論是對(duì)人還是對(duì)人工智能,在“智力的獲得是人與外界交流學(xué)習(xí)的結(jié)果”[54]這一點(diǎn)上是相同的。因此,人工智能表征的收斂必然依賴于數(shù)據(jù)的大、算力的強(qiáng)和領(lǐng)域的廣。這意味著人工智能這一“以我們自身的形象創(chuàng)造的、具有智能的人工造物”[55]正在以社會(huì)歷史性的力量拓展我們的認(rèn)知、擴(kuò)展我們的視野、豐富我們的知識(shí)。因此,人工智能大模型的成功,不僅意味著人類獲智的方式得到了拓展,更意味著人類智能必須學(xué)習(xí)新的內(nèi)容,人工智能大模型已然成為人類學(xué)習(xí)必須面對(duì)的客觀對(duì)象。

跨越現(xiàn)統(tǒng)一與高維達(dá)簡潔

大模型的表征收斂意味不同模型通過訓(xùn)練后具有處理數(shù)據(jù)能力的一致性,這對(duì)于當(dāng)今人工智能一直追求的通用化絕對(duì)是一個(gè)利好的進(jìn)展。按照一般的觀點(diǎn)看,這是大模型高度的復(fù)雜性“涌現(xiàn)”出來的智能所致,不過仔細(xì)分析就會(huì)發(fā)現(xiàn),大模型雖然存在黑箱的解釋難題,但卻以強(qiáng)大的算力實(shí)現(xiàn)了數(shù)據(jù)的高維處理。而大模型本身又是以指令、存儲(chǔ)和自動(dòng)運(yùn)行為基本邏輯,這使得大模型可以在高維中以多模型的轉(zhuǎn)譯來再造真實(shí)、以浸入式讀寫來豐富知識(shí)、以通用化生成來生成現(xiàn)實(shí)。[56]因此,大模型表征收斂顯然不是其處理數(shù)據(jù)維度的收斂性,而是高維達(dá)到的降維的簡潔。一方面,“不要從技術(shù)角度想,從哲學(xué)高度想”[57]大模型的表征收斂,才能夠真實(shí)地把握為什么不同模型表示數(shù)據(jù)的方式愈發(fā)一致。另一方面,大模型的表征收斂本身既是技術(shù)標(biāo)準(zhǔn)和目的之事,更是以技術(shù)方式展示的智能之事。

大模型拼接不同模型,表面上增加了表征收斂的復(fù)雜度,實(shí)質(zhì)上卻通過增加維度的方式實(shí)現(xiàn)了模型類別的跨越。從當(dāng)前人工智能的發(fā)展路徑看,系統(tǒng)的冗余雖有限度,但卻允許增加維度的模型拼接。顯然,這并非表明一個(gè)經(jīng)過系統(tǒng)訓(xùn)練后的模型就能夠直接運(yùn)用于其他模型之中,而是表明不同種類的組合、處理維度的增加并非把系統(tǒng)的表征能力推向發(fā)散的方向,恰恰相反,其反而加強(qiáng)了系統(tǒng)的收斂性。即是說,拼接之后的高維度系統(tǒng)對(duì)于降維之后的對(duì)象而言更具有簡潔性的表征能力。因此,今天的大模型之所以特別依賴于強(qiáng)算力和大數(shù)據(jù),雖然有通過挖掘數(shù)據(jù)適配更多情形的動(dòng)因,但卻更是為了讓系統(tǒng)能夠獲得高維的處理能力。只有高維度地解析屬性、分析要素和組合特質(zhì),才能超越對(duì)象特殊屬性泛化成一般屬性的同維度歸納,使系統(tǒng)能夠在對(duì)特征的響應(yīng)中更直接地把握整體,從而生成收斂性的表征能力。或者說,拼接的高維度事實(shí)上是大模型實(shí)現(xiàn)整體知覺的有效方式。一方面,如果沒有拼接的高維度,表達(dá)為數(shù)據(jù)的實(shí)體或經(jīng)驗(yàn)不可能構(gòu)成表征收斂的存在規(guī)定性,大模型也不可能具有跨越的靈活性;另一方面,拼接雖然并非直接運(yùn)用格式塔的接近律、相似律和連續(xù)律來實(shí)現(xiàn)模型的跨越,但是卻真正體現(xiàn)了大模型在設(shè)計(jì)中運(yùn)用了人類認(rèn)知的一般結(jié)構(gòu)。正如“人體解剖對(duì)于猴體解剖是一把鑰匙”[58]一樣,如此而來的大模型也就自然獲得了跨越的形而上學(xué)根據(jù);再一方面,大模型正是通過拼接獲得了類整體知覺的表征結(jié)構(gòu)。雖然其有邏輯推理的根據(jù),但卻是由高維度的數(shù)據(jù)挖掘來保障。大模型的拼接事實(shí)上構(gòu)造了一條整合以往經(jīng)驗(yàn)的技術(shù)道路,從而為獲得跨越的簡潔奠定了存在論基礎(chǔ)。可以說,大模型的拼接構(gòu)造了一種結(jié)構(gòu),這種結(jié)構(gòu)既解決了蘊(yùn)涵于數(shù)據(jù)的規(guī)律和特質(zhì)進(jìn)入模型知識(shí)內(nèi)容的道路,使其具有更廣的適應(yīng)性和更好的跨越性,又解決了模型“感知”對(duì)象的廣泛性問題,因?yàn)槠唇拥拇竽P湍軌驑?gòu)成一種高維度的“看”,同時(shí)這一過程充分實(shí)現(xiàn)了大模型輸入與輸出的簡化原則,即“得出一個(gè)最簡單、最有可能的形象去與刺激模式相匹配”[59],Sora所引發(fā)的一系列哲學(xué)議題就是最好的證明。

大模型雖然是由數(shù)據(jù)訓(xùn)練出來的系統(tǒng),但是卻有“可以學(xué)習(xí)感知概念的表征”[60]能力,顯然不是概念基礎(chǔ)的物理再現(xiàn),而是高維計(jì)算收斂的簡潔智能。大模型是由多層神經(jīng)網(wǎng)絡(luò)構(gòu)成的高維計(jì)算體系,但卻能夠跨越視覺和語言模式,并以線性變換來實(shí)現(xiàn)同一表征的不同表達(dá)。大模型已創(chuàng)造出解決“高維并行計(jì)算”的諸多算法,多處理器協(xié)調(diào)、分布式系統(tǒng)和云計(jì)算等為高維度表征提供了可能。雖然引發(fā)了一直為人詬病的黑箱問題,但是卻以“站得高看得遠(yuǎn)”的隱喻預(yù)示了大模型表征收斂的哲學(xué)意象。其一,高維度計(jì)算的并行響應(yīng),事實(shí)上和“大腦以并行的方式對(duì)景物的很多不同‘特征’進(jìn)行響應(yīng),并以以往經(jīng)驗(yàn)為指導(dǎo),把這些特征組合成一個(gè)有意義的整體”[61]在邏輯上是同構(gòu)的。當(dāng)然這并非簡單地因?yàn)楣杌斯ど窠?jīng)網(wǎng)絡(luò)和碳基生物神經(jīng)網(wǎng)絡(luò)在物理結(jié)構(gòu)上的一致性,而是由于前者在面對(duì)任務(wù)、喚回記憶、跨越類別和泛化結(jié)構(gòu)等領(lǐng)域與后者的一致。或者說,雖然表征收斂直接達(dá)成了大模型和人腦認(rèn)識(shí)能力與成效上的對(duì)齊,但實(shí)質(zhì)上卻是人類建構(gòu)高維結(jié)構(gòu)、統(tǒng)觀降維對(duì)象的一致性。這和人類通過復(fù)雜訓(xùn)練來完成簡單任務(wù),通過精深專業(yè)而達(dá)到觸類旁通并無二致。其二,大模型的表征收斂是高維的簡單計(jì)算在復(fù)雜函數(shù)約束化下的收斂性問題,高維為多任務(wù)的縮放、多通道的融合和多層面的交互提供了可能,這就從技術(shù)路徑上回避了哥德爾不完全定律對(duì)系統(tǒng)完備性要求的問題。或者說,高維計(jì)算“通過可能的隱性或顯示正則化降低了經(jīng)驗(yàn)對(duì)系統(tǒng)收斂的影響”[62],使大模型能夠以升維的方式而非構(gòu)造完備系統(tǒng)的方式來解決系統(tǒng)表征原則的收斂性問題。一方面,這符合人類自近代以來注意經(jīng)驗(yàn)形而上學(xué)本質(zhì)的哲學(xué)傳統(tǒng);另一方面,意味著大模型充分考慮了人類實(shí)踐活動(dòng)中打破既定因果邏輯、開創(chuàng)全新聯(lián)結(jié)的客觀事實(shí);再一方面,表明高維雖不能完全保證系統(tǒng)降維之后的完備性問題,但卻具有現(xiàn)實(shí)的實(shí)踐有效性。因此,作為邁向通用智能重要成果的大模型的表征收斂,如果是類人智能的“思維”,那么其“是否具有客觀的真理性,這不是一個(gè)理論的問題,而是一個(gè)實(shí)踐的問題”[63]。這也就是為什么在人工智能通用化的過程中,無論是技術(shù)專家還是哲學(xué)學(xué)者,都特別注重用以訓(xùn)練人工智能大模型的原始數(shù)據(jù)的多與廣、真與大的根本原因之所在。因?yàn)閷?duì)于大模型而言,高維的簡潔雖然表現(xiàn)了表征的穩(wěn)定性,但實(shí)質(zhì)上卻意味著在更高的維度上本身有可能形成簡單的透視和簡潔的規(guī)則。

大模型高維達(dá)簡潔的表征收斂,顯然不是對(duì)人腦智能的復(fù)刻,而是人類理智智能對(duì)象化具有的一種能力。因此,大模型推進(jìn)通用智能實(shí)現(xiàn)本身并不意味著創(chuàng)造與人類等量齊觀的認(rèn)知主體,而是再一次推進(jìn)了人類認(rèn)知追求超越的必要性。本質(zhì)上講,大模型的跨越模型呈現(xiàn)的表征的統(tǒng)一性,是借助于高維達(dá)簡潔的泛化來達(dá)成的一種智能模型的通用性。高維計(jì)算能夠在多模態(tài)認(rèn)知、多任務(wù)處理和多層次生成方面幫助模型在其本身的泛化能力與模型結(jié)構(gòu)之間達(dá)到平衡狀態(tài),否則系統(tǒng)就會(huì)成為停不下來的圖靈機(jī)。一種模態(tài)的數(shù)據(jù)進(jìn)行訓(xùn)練,另一種模態(tài)的數(shù)據(jù)進(jìn)行測試,再一種模態(tài)的數(shù)據(jù)表達(dá)生成,是常用且有效的技術(shù)開發(fā)方法,這種方法不僅是“檢驗(yàn)?zāi)P驮诳缒B(tài)特征學(xué)習(xí)和共享表示學(xué)習(xí)方面的能力”[64]的重要方式,更能夠呈現(xiàn)模型本身跨越能力的關(guān)鍵。因?yàn)椋挥懈呔S計(jì)算才有可能挖掘出跨數(shù)據(jù)、跨模態(tài)和跨模型的邏輯結(jié)構(gòu),才能使大模型形成的判斷知識(shí)體系、生成對(duì)象的邏輯原則和處理對(duì)象的思維鏈條表現(xiàn)收斂性,成為具有公理的表征能力。[65]通觀大模型表征收斂跨越并實(shí)現(xiàn)統(tǒng)一的上述邏輯,可以發(fā)現(xiàn)這樣一個(gè)事實(shí),即人類對(duì)智能本質(zhì)的理解、對(duì)思維邏輯的分析、對(duì)物質(zhì)力量的調(diào)用所構(gòu)成的高階自動(dòng)化體系能夠獲得類人的智能。顯然,這并非物自發(fā)獲得了智能,也不是人類創(chuàng)造出來了跨越物種奇點(diǎn)論的全新主體,更不是“圖靈人”[66]必將成為人類未來宿命的暗示,而是現(xiàn)實(shí)性地說明在人工智能時(shí)代探討智能一直在途中。大模型的表征收斂作為人類自我認(rèn)知旅途中創(chuàng)造出來的映射自我形象的存在,雖然存在著“數(shù)字的普遍理性”鄙夷受生物限定性的人之理智能力的可能,但卻永遠(yuǎn)不可能理解也無法達(dá)到人類從高維降維和從低維升維的心智能力和歷史理性。因?yàn)椋ㄓ腥祟愔悄懿庞斜帧案呔S即智能”的實(shí)踐智慧。

結(jié)論

誠如《三體》中所說,“基礎(chǔ)理論決定一切”[67],“柏拉圖式的表征假設(shè)”[68]決定了大模型表征必然收斂。這與其說是技術(shù)專家在為技術(shù)發(fā)展趨向?qū)で笮味蠈W(xué)的根基,倒不如說需要對(duì)人工智能自身的發(fā)展和特質(zhì)進(jìn)行深入的哲學(xué)探討。雖然人工智能表征收斂體現(xiàn)出強(qiáng)大的功能,不僅使其成為創(chuàng)造知識(shí)的高階自動(dòng)化體系,而且使得人工智能生產(chǎn)知識(shí)的邏輯也成為今天知識(shí)的內(nèi)容。但這顯然不是人工智能這一被人創(chuàng)造出來的系統(tǒng)獲得主體感知力和實(shí)踐創(chuàng)造力所致,而是人類一般知識(shí)對(duì)象化、自動(dòng)化的社會(huì)歷史成就。因此,大模型的表征收斂顯然不是智能機(jī)器獲得獨(dú)立認(rèn)知的成功,而是人認(rèn)知對(duì)象、探尋自我和驅(qū)動(dòng)對(duì)象的巨大成功。人工智能大模型的表征收斂本質(zhì)上是以技術(shù)邏輯表達(dá)哲學(xué)敘事:其一,數(shù)據(jù)記錄了類人實(shí)踐的邏輯,大模型以表征收斂的方式呈現(xiàn)了實(shí)踐的穩(wěn)定性、認(rèn)知的過程性和存在的一致性。因此,大模型雖然對(duì)于人類當(dāng)下的理論而言還是黑箱,但卻是人類認(rèn)知挖掘能力的延伸。這樣的延伸雖然并不直觀,但并沒有超越人對(duì)象化認(rèn)知能力、升華認(rèn)知經(jīng)驗(yàn)和創(chuàng)新認(rèn)知范式的范疇。其二,大模型以人類生產(chǎn)的數(shù)據(jù)和系統(tǒng)生成的數(shù)據(jù)為學(xué)習(xí)對(duì)象,不僅以表征收斂的方式刻畫了數(shù)據(jù)描述對(duì)象的能力,而且還生成了生產(chǎn)數(shù)據(jù)的能力,并且體現(xiàn)出了結(jié)構(gòu)的創(chuàng)新性、預(yù)測的有效性和學(xué)習(xí)的深入性。因此,大模型通過深度學(xué)習(xí)達(dá)致的表征收斂,本身指向的是社會(huì)歷史性和人性的穩(wěn)定性,人類通過大模型不斷擴(kuò)展自我的學(xué)習(xí)能力本身并沒有止境,人總是在奔向真理的途中。其三,大模型不僅能夠跨越數(shù)據(jù),而且能夠跨越模型的收斂性,顯然不是模型必將走向單一所致,也并非是對(duì)通用智能必將取代人類智能的預(yù)言,而是以大模型表征出來的人類智能的靈活性、發(fā)展性和歷史性。因此,大模型以技術(shù)邏輯的哲學(xué)敘事表明,人類智能是在高維抽象和降維具體之間達(dá)到的社會(huì)歷史性平衡。人類今天創(chuàng)造了人工智能大模型,明天也許會(huì)創(chuàng)造其他更為智能的社會(huì)歷史性存在,總是走在愈發(fā)智能的途中。

(本文系國家社會(huì)科學(xué)一般項(xiàng)目“馬克思主義哲學(xué)視域中的人工智能奇點(diǎn)論研究”的階段性成果,項(xiàng)目編號(hào):21BZX002)

注釋

[1][4][6][11][14][30][33][34][36][41][49][52][62][68]H. Minyoung et al., The Platonic Represtation Hypothesis, https://arxiv.org/abs/2405.07987.

[2]涂良川:《人工智能“無生命之生命化”技術(shù)敘事的歷史唯物主義審視——再論人工智能奇點(diǎn)論的哲學(xué)追問》,《學(xué)術(shù)交流》,2023年第12期。

[3][5][16][26][28][29][48][50]約瑟夫·希發(fā)基思:《理解和改變世界》,唐杰、阮南捷譯,北京:中信出版社,2023年,第114、87、85、113、113、117、19、27頁。

[7][13][63]《馬克思恩格斯選集》第1卷,北京:人民出版社,2012年,第134、669、134頁。

[8]瑪格麗特·博登:《AI:人工智能的本質(zhì)與未來》,孫詩惠譯,北京:中國人民大學(xué)出版社,2017年,第829頁。

[9]呂其鎂、涂良川:《“圖靈測試”技術(shù)敘事的哲學(xué)追問》,《哲學(xué)動(dòng)態(tài)》,2023年第3期。

[10][15]派利夏恩:《計(jì)算與認(rèn)知——認(rèn)知科學(xué)的基礎(chǔ)》,任曉明、王左立譯,北京:中國人民大學(xué)出版社,2007年,第28、27頁。

[12]梅瑞狄斯·布魯薩德:《人工不智能:計(jì)算機(jī)如何誤解世界》,陳少蕓譯,北京:中信出版社,2021年,第23頁。

[17]王天恩:《大數(shù)據(jù)和創(chuàng)構(gòu)認(rèn)識(shí)論》,《上海大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》,2021年第1期。

[18][19][20]Y. Bansal, P. Nakkiran, B. Barak, "Revisiting Model Stitching to Compare Neural Representations," Advances in Neural

Information Processing Systems, 2021, pp. 225–236.

[21][22][42]斯拉沃熱·齊澤克:《連線大腦里的黑格爾》,朱羽譯,西安:西北大學(xué)出版社,2023年,第9、9、215頁。

[23][56]涂良川:《Sora“抽象—具象”生成邏輯的真理觀敘事》,《思想理論教育》,2024年第5期。

[24]D. L. Yamins et al., "Performance-Optimized Hierarchical Models Predict Neural Responses in Higher Visual Cortex," Proceedings of the National Academy of Sciences, 2014, pp. 8619–8624.

[25][27]大衛(wèi)·查默斯:《現(xiàn)實(shí)+:每個(gè)虛擬世界都是一個(gè)新的現(xiàn)實(shí)》,熊祥譯,北京:中信出版社,2023年,第185頁。

[31]A. Dravid et al., "Rosetta Neurons: Mining the Common Units in a Model Zoo," In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 1934–1943.

[32][54]楊立昆:《科學(xué)之路:人、機(jī)器與未來》,李皓、馬躍譯,北京:中信出版社,2021年。

[35][38]宋冰編著,《智能與智慧:人工智能遇見中國哲學(xué)家》,北京:中信出版社,2020年,第42、43頁。

[37]伊恩·古德費(fèi)洛、約書亞·本吉奧、亞倫·庫維爾:《深度學(xué)習(xí)》,趙申劍等譯,北京:人民郵電出版社,2017年,第3頁。

[39][51]特倫斯·謝諾夫斯基:《深度學(xué)習(xí)》,姜悅兵譯,北京:中信出版社,2019年,第4、114頁。

[40]涂良川:《馬克思?xì)v史唯物主義視閾中的人工智能奇點(diǎn)論》,《東北師大學(xué)報(bào)(哲學(xué)社會(huì)科學(xué)版)》,2020年第1期。

[43]《馬克思恩格斯全集》第31卷,北京:人民出版社,1998年,第102頁。

[44]S. ?i?ek, Artificial Idiocy, Project Syndicate, 23 March 2023, https://www.project-syndicate.org/commentary/ai-chatbots-naive-idiots-no-sense-of-irony-by-slavoj-zizek-2023-03.

[45]涂良川:《深度學(xué)習(xí)追問學(xué)習(xí)本質(zhì)的哲學(xué)敘事》,《學(xué)術(shù)交流》,2022年第11期。

[46]熊明輝:《多維考察ChatGPT》,《中國社會(huì)科學(xué)報(bào)》,2023年3月6日,第5版。

[47]安迪·克拉克:《預(yù)測算法:具身智能如何應(yīng)對(duì)不確定性》,劉林澍譯,北京:機(jī)械工業(yè)出版社,2020年。

[53]高新民、付東鵬:《意向性與人工智能》,北京:中國社會(huì)科學(xué)出版社,2014年,第457頁。

[55]喬治·扎卡達(dá)基斯:《人類的終極命運(yùn)》,陳朝譯,北京:中信出版社,2017年,第288頁。

[57]劉慈欣:《三體III》,重慶出版社,2010年。

[58]uolVAHkVH1lWwWc6cNVYfA==《馬克思恩格斯全集》第30卷,北京:人民出版社,1995年,第47頁。

[59]周昌樂:《將“芯”比心:“機(jī)”智過人了嗎?》,杭州:浙江大學(xué)出版社,2024年,第22頁。

[60]J. Ngo, and Y. Kim, "What Do Language Models Hear? Probing for Auditory Representations in Language Models," arXiv, 2024.

[61]弗朗西斯·克里克:《驚人的假說——靈魂的科學(xué)探索》,汪云九等譯,長沙:湖南科學(xué)技術(shù)出版社,2001年,第36頁。

[64]J. Ngiam et al., "Multimodal Deep Learning," Proceedings of the 28th International Conference on Machine Learning (ICML–11), Stanford University, 2011.

[65]吳靜:《“世界模擬”的擬像迷思——基于通用視覺大模型技術(shù)的哲學(xué)反思》,《南通大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》,2024年第3期。

[66]尼爾·波斯曼:《技術(shù)壟斷:文化向技術(shù)投降》,何道寬譯,北京:中信出版社,2019年,第121頁。

[67]劉慈欣:《三體II》,重慶出版社,2008年。

責(zé) 編∕楊 柳 美 編∕梁麗琛

主站蜘蛛池模板: 特级做a爰片毛片免费69| 国产高颜值露脸在线观看| igao国产精品| 国产香蕉在线视频| 色天堂无毒不卡| 欧美日韩精品一区二区在线线| yjizz视频最新网站在线| 一本大道AV人久久综合| 国产精品美女网站| 欧美一区日韩一区中文字幕页| 亚洲男人的天堂网| 久久天天躁夜夜躁狠狠| 国产极品粉嫩小泬免费看| 国产永久在线观看| 日本国产一区在线观看| 国产真实乱子伦视频播放| 亚洲精品中文字幕无乱码| 国产人人射| 久久综合AV免费观看| 久久香蕉国产线看精品| 国产精品高清国产三级囯产AV| 国产迷奸在线看| 日韩视频免费| 亚洲一欧洲中文字幕在线| 久久综合国产乱子免费| 国产精品女在线观看| 欧美日本在线播放| 亚洲中文精品久久久久久不卡| 91破解版在线亚洲| 欧美精品成人| 久久婷婷国产综合尤物精品| 国产色婷婷| 99re这里只有国产中文精品国产精品| 嫩草影院在线观看精品视频| 欧洲av毛片| 国产白浆在线观看| 国产SUV精品一区二区| 91在线日韩在线播放| 高清国产在线| 精品久久久久久中文字幕女| 狼友视频国产精品首页| 免费在线看黄网址| 久久精品国产在热久久2019| 国产高清国内精品福利| 欧美www在线观看| 欧美日韩理论| 嫩草国产在线| 一本色道久久88亚洲综合| 欧美色图第一页| 国产精品亚欧美一区二区三区| 国产在线观看91精品亚瑟| www.日韩三级| 国产簧片免费在线播放| 夜夜高潮夜夜爽国产伦精品| 国产不卡一级毛片视频| 国产综合精品日本亚洲777| 国产制服丝袜无码视频| 亚洲天堂在线免费| 台湾AV国片精品女同性| 激情视频综合网| 亚洲欧美在线综合图区| 99免费在线观看视频| 久草视频福利在线观看| 成人免费网站久久久| 美女国产在线| 日韩第九页| 波多野结衣无码AV在线| 日韩av手机在线| 国产成年女人特黄特色毛片免| 亚洲中文字幕在线观看| 国产一区二区丝袜高跟鞋| 欧美全免费aaaaaa特黄在线| 无码中文字幕精品推荐| 欧美日韩国产一级| 亚洲精品无码久久毛片波多野吉| 精品一区二区三区水蜜桃| 美女一级毛片无遮挡内谢| 国产精品香蕉| 亚洲国产成人自拍| 亚洲成年网站在线观看| 国产自在线拍| 国产精品人成在线播放|