999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

課堂留白:發(fā)展學生數(shù)學學科核心素養(yǎng)的有效方式

2024-11-02 00:00:00梁竹黎福慶
廣西教育·B版 2024年9期

摘 要:高中數(shù)學教學留白包括敘述性留白、發(fā)掘性留白、推理式留白、方法式留白、提問式留白和超越式留白等六種方式,其核心是教師為學生提供充足的時間與空間,引導學生深度思考數(shù)學問題,從而達到發(fā)展學生數(shù)學學科核心素養(yǎng)的目的。

關鍵詞:留白式教學;高中數(shù)學;核心素養(yǎng)

中圖分類號:G63 文獻標識碼:A 文章編號:0450-9889(2024)26-0088-06

數(shù)學教學在培養(yǎng)學生的抽象思維、邏輯思維、直觀想象等方面發(fā)揮了獨特的功能。因此,打造適合學情的數(shù)學學習環(huán)境,為學生提供自主學習的機會,培養(yǎng)學生的創(chuàng)新意識與自主發(fā)展能力,探索個性化、多樣化的新型課堂教學模式,成為教師必須面對的挑戰(zhàn)。筆者所在團隊根據(jù)教學實際探索出了適合高中數(shù)學教學的留白式教學。

一、留白的內(nèi)涵

“留白”是國畫和戲劇的一種表現(xiàn)手法,它蘊含著東方智慧與中國傳統(tǒng)文化之美[1]。“留白”在藝術創(chuàng)作中賦予人們想象的空間,構(gòu)建出獨特的氛圍;而在舞臺劇中,它給予觀眾深度理解角色或劇情的機會,營造出神秘感。在教學中,“留白”是指以學生的需求為主導,基于人才培養(yǎng)目標,為學生提供充足的思考時間和探索空間,促使他們在已有知識的基礎上,積極思考、解決難題、創(chuàng)新發(fā)現(xiàn),進而提升思維品質(zhì)。

在數(shù)學教學過程中,教師需要提供充足的時間讓學生去思考與實踐,這就要求教師在教學中留白。然而,這并不意味著教師什么也不做,而應在設定教學目標的前提下,根據(jù)學生的實際情況,精確策劃一系列具有深度的數(shù)學任務,如疑問、活動、實驗等,打造適合學生的學習環(huán)境,進而實現(xiàn)教學目標。學生在完成這些任務的過程中,有序地感悟知識發(fā)生、發(fā)展的過程,甚至對已學的內(nèi)容進行再創(chuàng)造。在不斷地留白與補白過程中,學生親歷了問題解決的過程,同時通過師生交流、生生交流進一步將數(shù)學經(jīng)驗升華為數(shù)學思維,最終發(fā)展數(shù)學學科核心素養(yǎng)。

二、高中數(shù)學教學留白的方式

高中數(shù)學教學留白方式有敘述性留白、發(fā)掘性留白、推理式留白、方法式留白、提問式留白和超越式留白等。

敘述性留白指教師在授課過程中,創(chuàng)造機會讓學生闡述他們對數(shù)學概念、命題和公式的理解。比如在學習集合概念之前,教師可以讓學生談談對“集合”這個詞的理解。不少學生會認為“集合就是把一堆東西聚集在一起”,如一名學生舉例說道:“比如體育老師上課時會喊‘集合啦’,大家就會從四面八方跑來,聚集到一起?!睂W生的補白表明,他們對集合有了初步的感知,認為“集合就是把東西匯聚在一起”。

發(fā)掘性留白指為學生提供尋找并揭示新知識的機會。普通的教育者往往向?qū)W生灌輸數(shù)學知識,但卓越的教師則是引導學生積極地去探尋知識的本質(zhì)。在實施發(fā)掘性留白的過程中,教師需要營造環(huán)境或設定課題來激發(fā)學生思考的熱情,為學生提供有利于找到新知的便利條件。如在教學兩角差的余弦公式時,教師可以先帶領學生復習誘導公式[cosπ2+α]=[-sinα],緊接著拋出一個問題:假如把[π2]改成[π3],該式子如何化簡呢?這里,教師提出的“如何化簡[cosπ3+α]”這一問題便是發(fā)掘性留白。學生將利用單位圓,結(jié)合三角函數(shù)的定義,通過觀察圖形進行補白。又如在教學等差數(shù)列時,教師給出幾個數(shù)列,留白讓學生尋找這幾個數(shù)列的規(guī)律,學生通過觀察、歸納、猜想,完成補白。

推理式留白指論證數(shù)學命題、公式和結(jié)論。數(shù)學家通過觀察、猜想,發(fā)現(xiàn)一個新的命題后,需要對其進行嚴格的推理證明。類似地,學生學習數(shù)學定理、公式或者其他數(shù)學結(jié)論后,教師還需繼續(xù)留白,讓學生對公式、命題、結(jié)論等加以證明。比如教學余弦定理時,有了正弦定理的鋪墊,教師可以設置小組活動,放手讓學生推導余弦定理。學生采用不同的推導方法:有些學生運用向量的三角形法則去推導公式,有些學生運用坐標法證明公式,還有有些學生則運用面積法推導公式。補白過程可謂百花齊放,令人耳目一新。

方法式留白與一題多解類似。不同的學生對同一個問題往往會有不同的解法,給學生充足的時間和空間去展示這些不同的解法,有利于激發(fā)學生的探索精神和創(chuàng)新精神?;蛘邔τ谀骋粏栴},教師先講解一種解法,然后放手讓學生去探究更多的解法,這是另一種形式的留白。比如在教學三角恒等變換時,求解“[α],[β]是鈍角,[sinα=55],[sinα-β]=[1010],則[α+β]等于多少?”,有些學生會先求[α+β]的余弦值,進而確定[α]+[β];有些學生會先求[α+β]的正弦值或者正切值,再進一步求出[α]+[β]。

提問式留白指教師從數(shù)學內(nèi)容、思想、方法等角度出發(fā),讓學生自己提出新的數(shù)學問題。愛因斯坦認為,提出問題往往比解決問題更重要。通過運用數(shù)學計算和實驗技巧來解答某個問題或許是必要的,然而,若想發(fā)現(xiàn)全新的疑惑并從中探索出新的可能性,則必須具備創(chuàng)新能力。這種能力能使人們從全新角度審視已知問題,從而推動科學發(fā)展。然而在傳統(tǒng)課堂中,教師更樂于提出各種問題啟發(fā)學生思考,很少或者幾乎沒有給學生提出問題的機會,這不利于學生創(chuàng)新能力的發(fā)展。因此在教學過程中,教師有必要在提出問題方面留白。比如在教學函數(shù)單調(diào)性時,教師可以提問:“你可以構(gòu)造出一些新的復合函數(shù),并求出其單調(diào)區(qū)間嗎?”或者在教學對數(shù)時,給學生提供一份關于對數(shù)發(fā)展史的閱讀材料,然后布置學習任務:閱讀時嘗試從不同角度思考,提出自己的問題,并將其寫下來,與同學們交流。

超越式留白指超越知識本身,指向思想與精神目標的留白方式。在數(shù)學課堂上引導學生補好超越之白并非易事,這需要教師對所授課的知識有深刻的理解,對數(shù)學課程的育人價值有深刻的認知,同時,對學生也要進行長期的熏陶。比如,在教學余弦定理公式的推導后,教師可以讓學生進一步思考:在推導公式的過程中運用了哪些數(shù)學思想?在學生運用不同的方法求解數(shù)學題目后,教師引導學生思考:從不同的方法中你得到了什么啟示或者收獲?

這六種留白方式各有特色,而且呈現(xiàn)出一定的層次性。敘述性留白、發(fā)掘性留白詮釋“是什么”,推理式留白、方法式留白指向“為什么”,提問式留白、超越式留白解釋“還有什么”。一節(jié)課中,以上留白方式不一定全部要出現(xiàn),教師應結(jié)合具體的教學內(nèi)容選擇恰當?shù)牧舭追绞健=處熆梢园凑找韵滤膫€步驟開展留白活動:首先,教師設計現(xiàn)實情境或數(shù)學情境引出探究任務;其次,教師鼓勵學生猜想、分析、推理與試驗,并經(jīng)過討論獲得初步結(jié)果;再次,教師協(xié)助學生進行討論,借由辨析、論證等過程獲得結(jié)果,在此過程中,學生表達自己的看法,回應他人的意見,教師適時引導或者幫助學生總結(jié)出結(jié)論;最后,教師評價學生的發(fā)現(xiàn),在舊問題基礎上提出新問題,或者對主題加以升華。在以上四個步驟中,設置情境是關鍵,也是基礎。教師選擇的情境要能夠激發(fā)學生對學習內(nèi)容產(chǎn)生興趣,激發(fā)學生內(nèi)在的學習動機。在留白活動的探究環(huán)節(jié),則需要注意循序漸進,在符合學生認知基礎的條件下,構(gòu)建知識創(chuàng)設平臺,讓學生體會從不同視角找到問題解決的方案,在不同情境中提出新的數(shù)學問題,進而發(fā)展學生的數(shù)學素養(yǎng),提升綜合能力。

三、高中數(shù)學留白教學實例

現(xiàn)以一節(jié)探究課“牛頓法——用導數(shù)方法求方程的近似解”為例,具體論述留白教學在高中數(shù)學教學中的應用。

牛頓法的中心思想就是以切線的零點近似代替曲線的零點。運用圖形來表現(xiàn)這個中心思想,可以更好地幫助學生理解其內(nèi)涵。探究的另外一個要點是,了解牛頓法的計算方法,熟悉牛頓法的操作過程,從中提取出它的算法。這節(jié)探究課,主要通過觀察、聯(lián)想、類比、對比、化歸等方式進行分析,能有效發(fā)展學生直觀想象、數(shù)學運算和邏輯推理等三個方面的數(shù)學學科核心素養(yǎng)。

(一)留白任務激發(fā)興趣,體現(xiàn)發(fā)掘性留白

問題1:人類很早以前就開始探索高次方程的數(shù)值問題。在羅馬帝國時期,人們常在公共場所舉辦解方程比賽,萬人空巷?,F(xiàn)在請同學們挑戰(zhàn)一下解方程比賽中出現(xiàn)的問題(改編),“計算方程x3+2x2+10x-20=0在區(qū)間(1,2)的近似解,保留小數(shù)點后兩位”。

師生活動:教師在課前安排學生解答問題1。有一小部分學生嘗試運用配方、拆項等方法去求解方程,發(fā)現(xiàn)不好處理后,改會用必修1學習過的二分法去求方程的近似解。此時,教師請學生演示如何運用二分法求解x3+2x2+10x-20=0在區(qū)間(1,2)的近似解,并讓學生說一說用二分法求解該方程的步驟。這個過程學生可以借助計算工具(如表1所示)輔助計算。

【設計意圖】選取人類探索高次方程解歷史進程中的一道題向?qū)W生發(fā)出挑戰(zhàn),一方面激發(fā)學生學習的積極性和解題的勝負欲,另一方面借助該題讓學生重溫二分法,為后面用牛頓法求方程的近似解做鋪墊,建立新舊知識之間的聯(lián)系。該環(huán)節(jié)運用了發(fā)掘性留白。

過渡語:“除用二分法求方程的近似解外,我們能不能運用上節(jié)課所學的導數(shù)的幾何意義以及函數(shù)圖象的相關知識去解決該問題?”這就是本節(jié)課要研究的內(nèi)容——用導數(shù)方法求方程的近似解。

(二)問題導引驅(qū)動思維,體現(xiàn)方法式留白

問題2:畫出函數(shù)y=2x-3的圖象,觀察圖象并回答,當x為何值時2x-3=0。

師生活動:學生通過觀察發(fā)現(xiàn),方程的解是相應函數(shù)圖象與x軸交點的橫坐標。函數(shù)圖象是一條直線,能夠很容易計算出它與x軸的交點的橫坐標。教師引出新問題“如果函數(shù)圖象是一條曲線,我們?nèi)绾未_定它與x軸交點的橫坐標呢?”,下面以x3+2x2+10x-20為例,請同學們借助GeoGebra軟件畫出函數(shù)的圖象(如圖1所示),觀察圖象,回答以下問題。

問題3:在區(qū)間(1.359,1.401)的圖象呈現(xiàn)怎樣的形態(tài)?

師生活動:通過觀察,學生發(fā)現(xiàn)這個區(qū)間內(nèi)的曲線幾乎是一條直線。

問題4:這條接近直線的曲線可用曲線的什么近似情況代替[2]?

師生活動:一些學生回答可以用該曲線在某點處的切線近似代替這條接近的直線。

問題5:該函數(shù)圖象在區(qū)間(1.359,1.401)與x軸交點的橫坐標可以近似看成其在某點處的切線與x軸交點的橫坐標嗎?

師生活動:學生回答可以。

問題6:你能計算出y=x3+2x2+10x-20在點A(x0,y0)處的切線與x軸交點的橫坐標x1嗎?[結(jié)果用f(x0)、f ′(x0)表示]

師生活動:學生運用導數(shù)的幾何意義以及直線方程的知識去解決問題6。待學生計算出橫坐標x1后(解答過程如下頁圖2所示),教師借助GeoGebra軟件向?qū)W生演示過函數(shù)y=x3+2x2+10x-20上的點A(x0,y0)作切線的過程(如下頁圖3所示)。

問題7:是否可以把x1作為函數(shù)y=x3+2x2+10x-20的零點r的近似解?

師生活動:經(jīng)過觀察,學生發(fā)現(xiàn)x1與零點距離尚遠,所以不能把x1看成該函數(shù)零點的近似解。

【設計意圖】教師設計問題串引發(fā)學生思考,運用了方法式留白。比如問題2幫助學生復習方程的根就是函數(shù)圖象與x軸交點的橫坐標,求方程的解的問題可從數(shù)與形兩個角度去探究,一旦函數(shù)圖象為一條直線的形式,我們可以很快地推算出它與x軸交點的橫坐標,這有助于后續(xù)導入以直代曲思想。緊接著,通過問題3引導學生識圖,師生共同操作圖象放大和縮小,感受在很小的區(qū)間范圍內(nèi),曲線形狀接近于直線,再次直觀感知以直代曲思想,為引出切線鋪墊。問題4、5、6、7都是圍繞切線和函數(shù)零點展開,引導學生運用已學知識解決新問題,滲透轉(zhuǎn)化思想,為新知再創(chuàng)造做好準備。

(三)GeoGebra軟件助力探究知識本質(zhì),體現(xiàn)推理式留白與提問式留白

小組活動:各小組成員利用GeoGebra軟件調(diào)整點A(x0,y0)在曲線y=x3+2x2+10x-20上的位置,探究何時可以找到函數(shù)的零點r的近似解(精確度0.01)?在探究過程中完成表2;各小組梳理探究結(jié)果,撰寫探究報告。

師生活動:學生在填寫表格時,可能會填寫具體的數(shù)字,但是隨著迭代次數(shù)的增多,計算量增大,而且都是重復相同的步驟,因此教師可以引導學生用數(shù)學符號去表示求解過程,比如x2可以用f (x1)、f ′(x1)表示,x3可以用f (x2)、f ′(x2)表示,不需要寫出具體的數(shù)值。其次,在探究過程中,不同小組的學生取的初始值不一樣,那么經(jīng)歷的迭代次數(shù)就會不一樣,最好取離零點r附近的點作為初始值。至于什么時候可以找到零點r的近似解,不少學生都可以總結(jié)出當[xn-r]很小很小時,即近似值與準確值之差的絕對值小于0.01時,[xn]可以看成是函數(shù)零點r的近似解。此時,教師可以提問,有時我們并沒有辦法求出方程的準確值,無法知道近似值與準確值相差多少,所以不能算出[xn-r]的值。

問題8:何時終止計算?[xn]滿足哪些條件才可以作為函數(shù)零點的近似解?

師生活動:教師引導學生用[xn-xn-1xn-1]去判斷何時終止計算。隨著[xn-xn-1xn-1]的減小,xn就越逼近r。我們把[z=xn-xn-1xn-1]稱為精確度,當[z≤z0]時,我們就把xn作為方程的近似解。

問題9:初始值不同是否會影響方程的近似解?

師生活動:教師可以建議學生用9、2、1、-3或者其他數(shù)值來試一試。在此過程中,學生借助GeoGebra軟件探究函數(shù)圖象,多次選取不同的初始值,總結(jié)出一些相關結(jié)論。

【設計意圖】探究導數(shù)法求方程的近似解是本節(jié)課的重點。通過小組活動的方式,在課堂上給學生留出適當?shù)目臻g和時間,給他們自由想象、自由探索的機會,旨在發(fā)展學生的數(shù)學思維。但是單純拋出一個問題就讓學生自主探究,學生的思維會天馬行空,得出各種各樣的結(jié)論,或者得不出結(jié)果。因此,教師在設計小組活動時,一方面借助GeoGebra軟件減輕學生畫圖的負擔,另一方面設計了表格和問題鏈作為腳手架,幫助學生“跳一跳摘到果子”,在這個過程中,學生需要自己組織語言把小組探究的結(jié)果表述出來,這一環(huán)節(jié)的設計運用了敘述性留白。學生在探究過程中,解決數(shù)學問題的同時也會提出新的問題,這一過程實現(xiàn)了提問式留白。

(四)抽象凝練,體現(xiàn)敘述性留白與方法式留白

問題10:你能類比二分法求方程近似解的步驟總結(jié)出牛頓法求方程近似解的步驟嗎?

師生活動:學生自主總結(jié)牛頓法求方程近似解的步驟。

1.給定初始值x0和精確度z0。

2.計算x1=x0-[fx0f ′x0]([f ′x0≠0])。

3.若滿足精確度[z=x1-x0x0≤z0],則x1為所求,否則令x0=x1,回到第2步。

用程序框圖梳理牛頓法求方程近似解的步驟。(如圖4所示)

問題11:對比牛頓法和二分法求方程x3+2x2+10x-20=0的近似解(精確度0.01),完成表3。

師生活動:學生分組討論,總結(jié)牛頓法的優(yōu)點是迭代的次數(shù)少,能找出“不變號零點”,缺點是對初始值要求較高,運算煩瑣;二分法的優(yōu)點是運算簡潔,缺點是需要多次迭代,且僅能找到變量零點。此外,總結(jié)牛頓法和二分法中蘊含的算法思想、逼近思想、以直代曲思想等。

【設計意圖】以表格為依托,引導學生梳理歸納二分法和牛頓法求方程近似解的異同與優(yōu)缺點,揭示其背后的數(shù)學思想,運用了敘述性留白與方法式留白。

(五)應用鞏固,體現(xiàn)方法式留白與推理式留白

例1:用牛頓法求方程[115x3-35x2+2x-125=0]在x=4附近的近似解,精確度為0.01。(計算過程中數(shù)字保留小數(shù)點后3位)

師生活動:學生上臺展示、互評,最后教師小結(jié)。

【設計意圖】這道練習題的目的是強化學生對牛頓法的理解,幫助學生完成對新知識的構(gòu)建,運用了方法式留白與推理式留白。

(六)課堂小結(jié),關注方法和思想,體現(xiàn)超越式留白

教師小結(jié):1.通過這節(jié)課的學習,你有哪些收獲?2.假如你的同學還不太會用牛頓法求方程的近似解,你能教一教他(她)解題步驟嗎?

【設計意圖】利用兩個問題引導學生回顧這堂課的探究過程,總結(jié)其中涉及的思想和方法,運用了超越式留白。

四、高中數(shù)學留白教學實效

筆者在一個班級開展了“用牛頓法求方程近似解”的留白式教學實踐。為了解學生對留白教學的看法以及學生對所學知識的掌握程度,筆者對接受留白教學的52名學生進行了問卷調(diào)查,并進行了課后檢測,同時全年級學生完成“用牛頓法求方程近似解”的學習后也進行了相同的課后檢測。

問卷調(diào)查結(jié)果顯示,學生認為在師生互動、生生互動、方法創(chuàng)新、專注度、信息技術的應用、學習趣味性等方面,留白教學與以往教學均有所不同,其中88.46%的學生認為留白教學使得師生互動變多,46.15%的學生認為留白教學使生生互動變多;76.92%的學生認為留白教學帶來了更多的方法創(chuàng)新;有超過6成學生認為留白教學更充分地發(fā)揮了信息技術的優(yōu)勢,學習趣味性更強;53.84%的學生認為留白教學讓他們能夠更加專注地參與學習??梢?,在教學中采用發(fā)掘性留白、推理式留白、提問式留白等手段,引導學生親歷再創(chuàng)造過程,演繹化曲為直,給學生留下了深刻的印象。師生互動和方法創(chuàng)新較多,課堂趣味性強。在抽象與具象相結(jié)合的過程中,以GeoGebra軟件為工具,學生動手操作,體會了化曲為直、無限逼近的思想,體會數(shù)形結(jié)合的內(nèi)在美,品嘗成功的喜悅。

“用牛頓法求方程近似解”的課后測試結(jié)果顯示,使用留白教學的班級正確率明顯高于其他班級,說明這種教學方式能幫助學生更主動地理解教學內(nèi)容(測試結(jié)果如表4所示)。

成功的留白課堂,是師生共同學習、共同成長的過程,課堂中的生成包含有教師智慧和學生創(chuàng)新思維的火花。教師嘗試在課堂中為學生留出思考的時間和空間,促使學生深度思考數(shù)學問題,將有效促進學生數(shù)學學科核心素養(yǎng)的發(fā)展。

參考文獻

[1]王華,汪曉勤.中小學數(shù)學“留白創(chuàng)造式”教學:理論、實踐與案例[M].上海:華東師范大學出版社,2023.

[2]姜志強.重視探究與發(fā)現(xiàn)發(fā)展學生的核心素養(yǎng):以“牛頓法—用導數(shù)方法求方程的近似解”為例[J].數(shù)學通訊,2023(14):17-20.

注:本文系南寧市教育科學“十四五”規(guī)劃課題“新高考背景下運用數(shù)學留白式教學構(gòu)建思維型課堂的教學研究”(2023C863)、廣西教育科學“十四五”規(guī)劃課題“基于中學數(shù)學教師核心素養(yǎng)發(fā)展的教師新教材實施的實踐能力培養(yǎng)研究”的研究成果。

(責編 劉小瑗)

主站蜘蛛池模板: 久久精品66| 亚洲精品成人7777在线观看| 国产精品30p| 99精品免费欧美成人小视频| 熟女视频91| 日本国产精品一区久久久| 久久国产热| 欧美成人怡春院在线激情| 欧美中文字幕在线播放| 欧洲欧美人成免费全部视频 | 国产日本视频91| 亚洲欧美日韩中文字幕在线| 国产免费黄| 国产又大又粗又猛又爽的视频| 亚洲成人手机在线| 国产精品手机视频| 色135综合网| 91无码视频在线观看| 欧洲日本亚洲中文字幕| 欧美不卡视频在线观看| 日韩成人免费网站| 99久久精品国产自免费| a网站在线观看| 国产乱肥老妇精品视频| 巨熟乳波霸若妻中文观看免费| 国产一级小视频| 日本免费福利视频| 亚洲Av综合日韩精品久久久| 重口调教一区二区视频| 伊人久久久大香线蕉综合直播| 欧美日韩成人| 国内视频精品| 免费毛片a| 成人在线亚洲| 国产第一页第二页| 免费在线看黄网址| 香蕉久人久人青草青草| 激情爆乳一区二区| 自拍偷拍欧美| 国产毛片片精品天天看视频| AV老司机AV天堂| 亚洲伊人电影| 在线观看网站国产| 日本尹人综合香蕉在线观看| 亚洲av综合网| 国产精品女主播| 欧美成人精品在线| 精品第一国产综合精品Aⅴ| 在线不卡免费视频| 国产成人区在线观看视频| 日韩午夜片| 欧美不卡在线视频| 精品人妻系列无码专区久久| 国产在线自在拍91精品黑人| 亚洲无码精彩视频在线观看 | 黄色不卡视频| 一级香蕉视频在线观看| 久久青草精品一区二区三区| 久久久久亚洲AV成人网站软件| 国产H片无码不卡在线视频| 一边摸一边做爽的视频17国产| 伊人久久影视| 欧美色视频网站| 99re热精品视频中文字幕不卡| 免费精品一区二区h| 青草视频久久| 色综合久久久久8天国| 一区二区三区国产| 亚洲天堂网视频| 亚洲av无码久久无遮挡| 伊人久久精品无码麻豆精品 | 亚洲AⅤ综合在线欧美一区| 亚洲精品动漫| 国产 在线视频无码| 久久国产精品娇妻素人| 精品一区二区三区视频免费观看| 国内自拍久第一页| 精品91视频| 久久黄色影院| 亚洲精品第五页| 亚洲欧美色中文字幕| 国产国产人成免费视频77777|