999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

紅花桑寄生中的化學成分

2017-02-16 12:39:30劉全裕馮珊張永紅倪峰
中國中藥雜志 2016年21期
關鍵詞:化學成分

劉全裕+馮珊+張永紅+倪峰

[摘要]從紅花桑寄生莖葉中分離得到1個新的化合物為7β-羥基-何帕-22(29)-烯-3β-棕櫚酸酯(1),以及9個已知化合物,分別鑒定為熊果醇(2)、3-表烏蘇酸(3)、3β-羥基-何帕-22(29)-烯(4)、3β, 15α-二羥基-羽扇-20(29)-烯(5)、羽扇-20(29)-烯-3-O-α-D-葡萄糖苷(6)、豆甾醇-3-O-β-D-葡萄糖苷(7)、夾竹桃苷元-3-O-α-D-葡萄糖苷(8)、二十二烷酸(9)、二十八烷醇(10)?;衔锝Y構利用核磁共振譜、高分辨質譜等現代波普技術進行鑒定?;衔?為新化合物,化合物2~10首次從紅花桑寄生中分離得到。

[關鍵詞]紅花桑寄生; 化學成分; 三萜酯

[Abstract]A new triterpenoid ester, 7β-hydroxyl-hop-22(29)-en-3β-O-palmitate (1), was isolated from the stems and leaves ofScurrula parasitica parasitic onNerium indicum, along with nine known compounds, uvaol (2), 3-epi-ursolic acid (3), 3β-hydroxyl-hop-22(29)-ene (4), 3β, 15α-dihydroxyl-lup-20(29)-ene (5), lup-20(29)-en-3-O-α-D-glucoside (6), stigmasterol-3-O-β-D-glucoside (7), digitoxin-3-O-α-D-glucoside (8), behenic acid (9), octacosyl alcohol (10). Their structures were elucidated using a combination of 1D and 2D NMR techniques (COSY, HMQC, and HMBC) and HR-ESI-MS analyses. Compounds 2-10 were isolated from this plant for the first time.

[Key words]Scurrula parasitica; chemical constituents; triterpenoid ester

doi:10.4268/cjcmm20162112

Scurrula parasitica L. (Loranthaceae) is widely distributed in Southern China, its leaves and stems have been used as cardiotonic, antioxidant, and antineoplastic agents[1]. These activities varied with the host trees and seasons[2]. In previous reports, some triterpenoids and flavonoids have been isolated from this source[3]. In the cause of our search for biologically active substances from this plant, a new triterpenoid ester, 7β-hydroxyl-hop-22(29)-en-3β-O-palmitate (1) (Fig.1), was isolated from the methanol extract, together with five known triterpenoids uvaol (2), 3-epi-ursolic acid (3), 3β-hydroxyl-hop-22(29)-ene (4), 3β, 15α-dihydroxyl-lup-20(29)-ene (5), lup-20(29)-en-3-O-α-D-glucoside (6), one steroid glycoside stigmasterol-3-O-β-D-glucoside (7), one cardiac glycoside digitoxin-3-O-α-D-glucose (8), two fatty acids behenic acid (9),and octacosyl alcohol (10). In this paper, we reported the isolation and structural elucidation of these compounds.

1 Material

1.1 Apparatus and reagents Melting points were determined on a WRS-1B digital melting point apparatus and are uncorrected. Optical rotations were measured on a JASCO-20 polarimeter. The IR spectra were obtained on a Nicolet 170SX FT-IR spectrometer and UV spectra were obtained on an UV-210A spectrometer. 1H-, 13C- and 2D-NMR spectra were recorded using a Bruker AM-400 NMR spectrometer at 400 and 100 MHz, respectively, with TMS as the internal standard. HR-ESI-MS was obtained on a Bruker APEXⅡFT-MS spectrometer. FAB-MS was measured on a VG-ZAB-HS mass spectrometer and EI-MS was obtained on a HP-5988 mass spectrometer. Silica gel (200-300 and 300-400 mesh) and Sephadex LH-20 were used for CC and silica gel GF254 for TLC. Spots were detected on TLC plate under an UV light or by heating after spraying the TLC plate with 5% H2SO4 in C2H5OH.

1.2 Plant material The stems and leaves ofS. parasitica were collected at Fuzhou, Fujian province of China, in July, 2014. The plant material was authenticated by Prof. Yong-hong Zhang, Department of Pharmacy, Fujian Medical University. A voucher specimen (201406) was deposited in the Herbarium of Pharmacy Department, Fujian Health College, Fuzhou, China.

2 Extraction and isolation

Dried and powdered stems and leaves ofS.parasitica (6.5 kg) were extracted three times with MeOH. After evaporation of the solvent under reduced pressure, the residue was suspended in water and extracted with petroleum ether, EtOAc, andn-BuOH, successively. The residue of the petroleum ether layer (178 g) was fractionated by silica gel column chromato graphy (CC) using a stepwise gradient of petroleum ether-EtOAc (10∶1-0∶1) to yield twelve fractions (Fr. 1-12). Fr. 6 was chromatographed on Sephadex LH-20 eluted with CHCl3-MeOH (1∶1) and followed by repeated column chromatography over silica gel eluted with petroleum ether-EtOAc (10∶1-1∶1) to obtain compounds 1 (22 mg), 9 (28 mg), 10 (14 mg). Fr. 10 was purified by chromatography on Sephadex LH-20 to give compound 2 (19 mg), 3 (11 mg). The residue of the EtOAc layer (136 g) was fractionated by silica gel CC using a stepwise gradient of petroleum ether-EtOAc (10∶1-0∶1) to yield ten fractions (Fr. 1-10). Fr. 5 was subjected to repeated column chromatography over silica gel and Sephadex LH-20 and further purification by HPLC (H2O-MeOH 40∶60, 3 mL·min-1) to afford compounds 4 (15 mg), 5(7 mg).The residue of then-BuOH lager (203 mg) was fractionated by silica gel CC using a step-wise gradient of CHCl3-MeOH (10∶1-0∶1) to yield fourteen fractions (Fr. 1-14). Fr. 9 was chromatographed on silica gel and Sephadex LH-20 to obtain compound 6 (13 mg), 7 (12 mg). Fr. 12 was chromatographed on silica gel and Sephadex LH-20 to obtain compound 8 (16 mg).

3 Results and discussion

Compound 1 was obtained as a white amorphous powder. mp 96-97 ℃, [α]+ 46.0 (c 0.50, CHCl3), showed positive Liebermann-Burchard reaction. High-resolution ESI-MS showed the molecular ion atm/z 703.601 1 in agreement with the molecular formula C46H80O3Na+ (Calc. 703.601 1). The IR spectrum of 1 exhibited (-COO-) (1 723 cm-1), (H2C=C<) (1 644 cm-1), (-OH-) (3 140 cm-1), and [-(CH2)n-] (717 cm-1) absorptions, together with 1H-NMR and 13C-NMR spectral data of 1 indicated it to be a triterpenoid ester (Table 1). The presence of a palmitoyloxy group in 1 was supported by the 1H-NMR values atδ 0.88 (3H, t,J=7.0 Hz, H-16′), 1.26 (24H, br s, H-4′ to H-15′), 1.74 (2H, H-3′) and 2.26 (2H, t,J=6.0 Hz, H-2′) and the EI-MS fragment atm/z 409, 396. The 1H-NMR spectrum of 1 showed the presence of seven methyl singlets atδ 0.72, 0.83, 0.85, 0.89, 0.95, 0.99, and 1.76, two oxymethines atδ 4.46 (1H, dd,J=4.8, 11.2 Hz, H-3 ),δ 3.81 (1H, dd,J=10.8, 4.8 Hz, H-7) and an isopropenyl group inferred by the presence of a methyl singlet atδ 1.76 and a broad singlet at δ 4.58 (1H, dd,J=4.4, 8.2 Hz, H-29a), 4.68 (1H, dd,J=4.8, 10.0 Hz, H-29b), together with typical 13C-NMR resonances atδ 80.1(C-3) and 75.3 (C-7) suggested there are two hydroxyl-bearing methines in the nucleus. The 1H-NMR spectra, and especially the presence of an isopropenyl group, suggested that compound 1 is a pentacyclic triterpene of the lup-20(29)-en-3β-ol or hop-22(29)-en-3β-ol type. The basic skeleton of a lup-20(29)-en-3β-ol triterpenoid could be ruled out for compound 1 on the basis of the differences in the 13C-NMR values of 1 with lupeol derivatives[4]. A close comparison of the 1H-NMR and 13C-NMR values of 1 with those of 4 and 5 isolated fromS.parasitica, suggested that compound 1 is a hydroxyl-hop-22(29)-ene terpenoid having a palmitoyloxy group at the C-3 position. The HMBC spectra of 1, which showed the correlations H-3/C-2, C-4, C-23, C-24, C-1′ ; H-7/C-6, C-8, C-9, C-26; H-9/C-8, C-10, C-11, C-12, C-26; H-13/C-12, C-14, C-18, C-27; H-21/C-17, C-20, C-22, C-29, C-30 (Fig.2), supported the basic skeleton of a hopenyl derivative further, respectively, identical to 1. In the NOESY spectrum, H-OH-7 showed NOE correlations with H-24, H-25 and H-26, but has no NOE correlations with H-23 or H-27, H-3 showed NOE correlations with H-23, but has no NOE correlations with H-24 or H-25, H-5 showed NOE correlations with H-9 and H-23, H-13 showed NOE correlations with H-17, H-29 showed NOE correlations with H-27, H-28, and H-30. It was reported that when the allyl was linked to C-21 inα-orientation, H-29 was a single signal[5]. So C-24, C-25, and C-26 were determined to be inβ-oriented while C-23, C-27, C-28, C-29, and C-30 were determined to be inα-oriented. Therefore, the OH-7 was determined to be inβ-oriented. On alkaline hydrolysis, compound 1 yielded 3β, 7β-dihydroxyl-hop-22(29)-ene[6-7] and palmitic acid[8] (m/z 256), confirming the structure completely. Thus, compound 1 was established as 7β-hydroxyl-hop-22(29)-en-3β-O-palmitate.

The known compounds 2-10 were identified by comparison with the literature data.

4 Identification

Compound 1 White amorphous powder. mp 96-97 ℃; [α]+ 46.0 (c 0.50, CHCl3); IR (KBr) νmax 3 140, 1 723, 1 644, 1 266, 1 221, 1 197, 717 cm-1; EI-MSm/z 681 [M + H]+. HR-ESI-MSm/z 703.601 1 [M + Na]+(Calc. 703.601 1); 1H- and 13 C-NMR(Table 1).

Compound 2 White needles. mp 222-224 ℃; EI-MSm/z 442 (M)+·, 411, 234, 203, 175, 149, 119, 69, 43; 1H-NMR (CD3OD, 400 MHz)δ: 1.18 (3H, s), 1.12 (3H, s), 1.03 (3H, s), 0.97 (3H, s), 0.88 (3H, d), 0.83 (3H, s), 0.78 (3H, s), 3.14 (1H, dd,J=4.8, 11.2 Hz,H-3), 5.40 (1H, t,J=4.0 Hz, H-12), 3.54 (1H, d,J=10.4 Hz, H-28a), 3.04 (1H, d,J=10.4 Hz H-28b). The physical and spectral data were in accordance with those reported in the literature[9], and 2 was identified as uvaol.

Compound 3 Amorphous powder. mp 250-252 ℃; EI-MSm/z 456 (M)+·; 1H-NMR (CD3OD, 400 MHz)δ: 1.09 (3H, s), 0.91 (3H, s), 0.89 (3H, s), 0.86 (3H, s), 0.81(3H, d), 0.74 (3H, s), 0.67 (3H, s), 11.95 (1H, s, COOH), 3.01 (1H, m, H-3), 5.12 (1H, br s, H-12). The physical and spectral data were in accordance with those reported in the literature[10], and 3 was identified as 3-epi-ursolic acid.

Compound 4 Amorphous powder. mp 196-197 ℃; IR (KBr) νmax 3 320, 2 867, 1 715, 1 644, 1 266 cm-1; EI-MSm/z 426 (M)+·;1H-NMR (CDCl3,400 MHz)δ:0.82 (3H, s, H-23), 0.85 (3H, s, H-24), 0.98 (3H, s, H-25), 0.74 (3H, s, H-26), 0.95 (3H, s, H-27), 0.99 (3H, s, H-28), 1.73(3H, s, H-30), 4.50 (1H, s, Ha-29), 4.65 (1H, s, Hb-29), 3.16 (1H, dd,J=8.0, 9.2 Hz, H-3); 13C-NMR (CDCl3, 100 MHz)δ: 38.6 (C-1), 25.4 (C-2), 78.9 (C-3), 38.8 (C-4), 55.2 (C-5), 18.3 (C-6), 34.2 (C-7), 41.8 (C-8), 50.4 (C-9), 37.1 (C-10), 20.9 (C-11), 25.1 (C-12), 48.8 (C-13), 40.8 (C-14), 34.4 (C-15), 22.1 (C-16), 52.9 (C-17), 44.2 (C-18), 41.9 (C-19), 27.9 (C-20), 47.6 (C-21), 148.8 (C-22), 27.9 (C-23), 16.3 (C-24), 16.1 (C-25), 15.9 (C-26), 14.5 (C-27), 18.3 (C-28), 109.3 (C-29), 25.2 (C-30). The physical and spectral data were in accordance with those reported in the literature[11], and 4 was identified as 3β-hydroxyl-hop-22(29)-ene.

Compound 5 Amorphous powder. mp 216-217 ℃; IR (KBr) νmax 3 320, 3 167, 2 947, 1 705, 1 646, 1 254 cm-1; EI-MSm/z 443 [M + H]+; 1H-NMR (CDCl3, 400 MHz)δ:0.83 (3H, s, H-23), 0.84 (3H, s, H-24), 0.86 (3H, s, H-25), 0.87 (3H, s, H-26), 0.98 (3H, s, H-27), 1.08 (3H, s, H-28), 1.68 (3H, s, H-30), 3.78 (1H, dd, J=8.0, 9.2 Hz, H-3), 4.45 (1H, br s, H-15);13C-NMR (CDCl3, 100 MHz)δ: 38.3 (C-1), 23.4 (C-2), 78.9 (C-3), 37.8 (C-4), 52.2 (C-5), 28.0 (C-6), 26.7 (C-7), 44.8 (C-8), 50.1 (C-9), 37.0 (C-10), 20.8 (C-11), 25.1 (C-12), 37.4 (C-13), 47.8 (C-14), 67.9 (C-15), 45.6 (C-16), 42.5 (C-17), 48.2 (C-18), 47.1 (C-19), 150.3 (C-20), 31.6 (C-21), 40.8 (C-22), 27.8 (C-23), 16.3 (C-24), 15.7 (C-25), 10.1 (C-26), 8.3 (C-27), 18.8 (C-28), 109.6 (C-29), 19.3 (C-30). The physical and spectral data were in accordance with those reported in the literature[12], and 5 was identified as 3β, 15α-dihydroxyl-lup-20(29)-ene.

Compound 6 Amorphous powder. ESI-MSm/z 611 [M+Na]+; 1H-NMR (DMSO-d6, 400 MHz)δ: 0.86 (3H, s, H-23), 0.86 (3H, s, H-24), 0.83 (3H, s, H-25), 1.08 (3H, s, H-26), 1.41 (3H, s, H-27), 0.80 (3H, s, H-28), 1.74 (3H, s, H-30), 4.68 (1H, dd,J=10.0, 8.4 Hz, H-3), 5.36 (1H, d,J=8.0 Hz, glc-H-1′), 3.62-3.88(1H, m, glc-H-2′-6′); 13C-NMR (CD3OD, 100 MHz)δ: 39.3 (C-1), 25.9 (C-2), 76.9 (C-3), 39.7 (C-4), 49.6 (C-5), 18.4 (C-6), 36.1 (C-7), 48.7 (C-8), 49.6 (C-9), 36.8 (C-10), 20.6 (C-11), 23.8 (C-12), 49.6 (C-13), 48.7 (C-14), 31.3 (C-15), 27.6 (C-16), 55.4 (C-17), 41.8 (C-18), 39.9 (C-19), 27.6 (C-20), 49.6 (C-21), 146.8 (C-22), 29.2 (C-23), 17.5 (C-24), 23.8 (C-25), 20.6 (C-26), 17.5 (C-27), 15..9 (C-28), 111.6 (C-29), 19.8 (C-30), 100.7 (C-1′), 73.4 (C-2′), 76.4 (C-3′), 73.4 (C-4′), 76.8 (C-5′), 61.0 (C-6′). The physical and spectral data were in accordance with those reported in the literature[13], and 6 was identified as lup-20(29)-en-3-O-α-D-glucoside.

Compound 7 Colorless flaky crystal. ESI-MSm/z575[M + H]+; 1H-NMR (CD3OD, 400 MHz)δ: 0.63-2.1 (21 H, m, Me × 7), 4.63 (1H, dd, J=4.9, 12.6 Hz, H-3), 5.35 (1H, d, J=8.0 Hz, glc-H-1′), 3.60-3.88(1H, m, glc-H-2′-6′); 13C-NMR (CD3OD, 100 MHz)δ: 37.3 (C-1), 31.6 (C-2), 76.7 (C-3), 42.2 (C-4), 140.6 (C-5), 121.4 (C-6), 31.8 (C-7), 31.8 (C-8), 50.3 (C-9), 36.4 (C-10), 21.0 (C-11), 39.6 (C-12), 42.2 (C-13), 56.8 (C-14), 24.3 (C-15), 28.6 (C-16), 55.8 (C-17), 12.1 (C-18), 19.3 (C-19), 40.5 (C-20), 21.0 (C-21), 137.1 (C-22), 130.1 (C-23), 51.9 (C-24), 31.6 (C-25), 20.7 (C-26), 19.2 (C-27), 25.6 (C-28), 12.2 (C-29), 95.7 (C-1′), 73.9 (C-2′), 78.3 (C-3′), 71.1 (C-4′), 78.7 (C-5′), 62.4 (C-6′). The physical and spectral data were in accordance with those reported in the literature[14], and 7 was identified as stigmasterol-3-O-β-D-glucoside.

Compound 8 Amorphous powder. ESI-MSm/z592 [M + Na]+; 1H-NMR (CD3OD, 400 MHz)δ: 5.01 (1H, d,J=8.6 Hz, C-3), 5.48 (1H, d,J=12.4 Hz, C-13), 0.88 (3H, s, C-18), 0.91 (3H, s, C-19), 5.93 (1H, br s, C-22), 5.36 (1H, d, J=8.0 Hz, glc-H-1′), 3.61-3.88(1H, m, glc-H-2′-6′); 13C-NMR (CD3OD, 100 MHz)δ: 33.6 (C-1), 28.1 (C-2), 72.0 (C-3), 31.2 (C-4), 38.5 (C-5), 27.7 (C-6), 22.8 (C-7), 41.8 (C-8), 41.3 (C-9), 37.2 (C-10), 36.1 (C-11), 30.0 (C-12), 40.2 (C-13), 51.2 (C-14), 84.7 (C-15), 41.3 (C-16), 72.8 (C-17), 57.5 (C-18), 16.9 (C-19), 24.0 (C-20), 172.2 (C-21), 77.8 (C-22), 121.7 (C-23), 177.2 (C-24), 103.2 (C-1′), 73.0 (C-2′), 75.0 (C-3′), 71.1 (C-4′), 75.9 (C-5′), 61.5 (C-6′). The physical and spectral data were in accordance with those reported in the literature[15], and 7 was identified as digitoxin-3-O-α-D-glucose.

5 Alkaline hydrolysis of 1

Compound 1 (5.0 mg) was refluxed with 5% KOH-MeOH (5.0 mL ) for 4 h at 75 ℃. The reaction product was diluted with H2O (20.0 mL) and adjusted pH to 7.0 with HCl, then extracted with CHCl3 (20.0 mL×2). The CHCl3 solutions were dried (anhydrous Na2SO4 ), and the residue following solvent removed was subjected to silica gel CC (8.0 g, 1 cm×14 cm) using hexane/EtoAc (8∶3) to afford la (1.3 mg), which was found to be identical with 3β, 7β-dihydroxyl-hop-22(29)-ene by 1H-, 13C-NMR and EI-MS comparisons, and palmitic acid (1b 0.8 mg), which was identified by comparison of its EI-MS with a computer reference database [EI-MSm/z 256 (M)+·, 227, 199, 171, 157, 143, 129].

Compound 1a Amorphous powder. mp 205-207 ℃; EI-MSm/z 442 (M)+·; 1H-NMR (CDCl3, 400 MHz)δ:0.83 (3H, s, H-23), 0.84 (3H, s, H-24), 0.96 (3H, s, H-25), 0.74 (3H, s, H-26), 0.95 (3H, s, H-27), 0.98 (3H, s, H-28), 1.73 (3H, s, H-30), 4.59 (1H, s, Ha-29), 4.68 (1H, s, Hb-29), 4.45 (1H, br s, H-3), 3.78 (1H, br s, H-7); 13C-NMR (CDCl3, 100 MHz)δ: 38.3 (C-1), 23.7 (C-2), 80.1 (C-3), 37.5 (C-4), 52.2 (C-5), 28.0 (C-6), 72.4 (C-7), 48.8 (C-8), 50.4 (C-9), 37.1 (C-10), 20.8 (C-11), 25.2 (C-12), 48.8 (C-13), 40.8 (C-14), 34.0 (C-15), 21.9 (C-16), 52.8 (C-17), 44.2 (C-18), 41.9 (C-19), 28.0 (C-20), 47.5 (C-21), 148.8 (C-22), 27.9 (C-23), 16.1 (C-24), 16.0 (C-25), 8.3 (C-26), 14.5 (C-27), 18.3 (C-28), 109.3 (C-29), 25.2 (C-30). The physical and spectral data were in accordance with those reported in the literature[6-7], and 1a was identified as 3β,7β-dihydroxyl-hop-22(29)-ene.

[參考文獻]

[1]Xiao Y J, Chen Y Z, Chen B H, et al. Study on cytotoxic activities on human leukemia cell line HL-60 by flavonoids extracts ofScurrula parasitica from four different host trees [J]. Chin Oncol, 2008, 33(4): 427.

[2]Omeje E O, Osadebe P O, Esimone C O, et al. Three hydroxylated lupeol-based triterpenoid esters isolated from the Eastern Nigeria mistletoe parasitic onKola acuminata [J]. Nat Prod Res,2012, 26(19): 1775.

[3]Liu Q Y, Wang F, Zhang L, et al. A hydroxylated lupeol-based triterpenoid ester isolated from theScurrula parasitica Parasitic onNerium indicum[J].Helv Chim Acta, 2015, 98(5): 627.

[4]O′Connell M M, Bentley M D, Campbell C S, et al. Betulin and lupeol in bark from four white-barked birches [J]. Phytochemistry, 1988, 27(7): 2175.

[5]Ageta H, Shiojima K, Suzuki H, et al. NMR spectra of triterpenoids. I. Conformation of the side chain of hopane and isohopane, and their derivatives [J]. Chem Pharm Bull, 1993, 41(11): 1939.

[6]Sousa G F, Duarte L P, Alcantara A F, et al. New triterpenes fromMaytenus robusta: structural elucidation based on NMR experimental data and theoretical calculations [J]. Molecules, 2012, 17(11): 13439.

[7]Fukunaga T, Nishiya K, Kajikawa I, et al. Chemical studies on the constituents ofHyphear tanakae HOSOKAWA from different host trees [J]. Chem Pharm Bull, 1988, 36(3): 1180.

[8]Basu S, Kuhn H M, Neszmelyi A, et al. Chemical characterization of enterobacterial common antigen isolated fromPlesiomonas shigelloides ATCC 14029 [J]. Eur J Biochem, 1987, 162(1): 75.

[9]Mezzetti T, Orzalesi G, Rossi C, et al. A new triterpenoid lactone,α-amyrin and uvaol fromHelichrysum italicum [J]. Planta Med, 1970, 18(4): 326.

[10]Miranda R P, Delgado G, Vivar A R D. New triterpenoids fromSalvia nicolsoniana [J]. J Nat Prod, 1986, 49(2): 225.

[11]Zhang L, Wang F, Jiang Z Y, et al. A new pentacyclic triterpene fromHumata tyermanni Moore with the inhibitory activities against LPS-induced NO production in RAW264.7 macrophages [J]. J Chem, 2013, 2013(2013): 729.

[12]Li S H, Deng Q, Zhu L, et al. Terpenoids and sterols fromRicinus communis and their activities against diabetes [J]. Chin J Chin Mater Med, 2014, 39(3): 448.

[13]Kiem P V, Thu V K, Yen P H, et al. New triterpenoid saponins fromGlochidion eriocarpum and their cytotoxic activity [J]. Chem Pharm Bull, 2009, 57(1): 102.

[14]Yang B Y, Li T, Guo R, et al. Chemical constituents from leaves ofDatura metel (Ⅰ) [J]. Chin Tradit Herbal Drugs, 2013, 44(20): 2803.

[15]Wangteeraprasert R, Lipipun V, Gunaratnam M, et al. Bioactive compounds fromCarissa spinarum [J]. Phytother Res, 2012, 26(10):1496.

[責任編輯 丁廣治]

猜你喜歡
化學成分
栽培黃芩與其對照藥材的HPLC指紋圖譜及近紅外圖譜比較研究
不同外形、年份六堡茶品質變化分析
羌活的化學成分及藥理作用研究進展
壯藥積雪草主要化學成分及對神經系統作用的研究進展
山荊子化學成分與藥理作用研究進展
吉林農業(2016年12期)2017-01-06 19:51:03
金線蓮的研究進展
九龍藤乙酸乙酯部位化學成分的分離鑒定
華夏醫學(2016年4期)2016-12-12 00:19:20
雪靈芝的研究進展
科技視界(2016年9期)2016-04-26 12:19:35
雙齒圍沙蠶化學成分及其浸膏抗腫瘤活性的研究
河北漁業(2015年11期)2015-11-18 16:32:21
真海鞘殼化學成分分離及其浸膏抑制人肝癌細胞HepG2活性的研究
河北漁業(2015年7期)2015-07-21 11:04:49
主站蜘蛛池模板: 国产精品性| 午夜一级做a爰片久久毛片| 国产福利2021最新在线观看| 国产在线观看成人91| 自拍偷拍一区| 一级全黄毛片| 成年片色大黄全免费网站久久| 男女猛烈无遮挡午夜视频| 欧美日韩国产系列在线观看| 日韩精品专区免费无码aⅴ| 超清无码一区二区三区| 在线观看无码av五月花| 亚洲成a人片77777在线播放| 亚洲av无码专区久久蜜芽| 国产不卡一级毛片视频| 片在线无码观看| 91福利在线观看视频| 日韩国产无码一区| 欧亚日韩Av| 97国产在线视频| 99国产在线视频| 99热亚洲精品6码| 欧美笫一页| 最新亚洲人成无码网站欣赏网 | 国产亚洲精品精品精品| 国产无遮挡猛进猛出免费软件| 午夜啪啪福利| 99无码中文字幕视频| 亚洲黄色视频在线观看一区| 国产免费精彩视频| 熟女视频91| 亚洲三级a| 中文字幕亚洲第一| 亚洲天堂777| 伊人五月丁香综合AⅤ| 日韩麻豆小视频| 婷婷色一区二区三区| 久久9966精品国产免费| 在线高清亚洲精品二区| 在线观看无码a∨| 看你懂的巨臀中文字幕一区二区| 精品伊人久久久久7777人| 亚洲三级网站| 99这里只有精品6| 8090成人午夜精品| 成人免费视频一区| 99久久亚洲综合精品TS| 国产成人区在线观看视频| 国产成人高清精品免费5388| 91视频国产高清| 黄色网在线| 欧美成人a∨视频免费观看 | 免费毛片网站在线观看| 国产精品99在线观看| 成人亚洲天堂| 另类综合视频| 99热这里只有精品在线播放| 不卡国产视频第一页| 久久精品娱乐亚洲领先| 久久精品亚洲中文字幕乱码| 日韩天堂网| 制服丝袜一区二区三区在线| 中国成人在线视频| 超碰免费91| 伊人丁香五月天久久综合| 青草视频久久| 免费99精品国产自在现线| 久久国产av麻豆| 日韩天堂在线观看| jizz国产在线| 40岁成熟女人牲交片免费| 成人a免费α片在线视频网站| 国产精品污视频| 欧美高清三区| 中文成人无码国产亚洲| 亚洲不卡无码av中文字幕| 99视频在线观看免费| 欧美中文字幕在线视频 | v天堂中文在线| 伊人成人在线视频| 亚洲一区二区视频在线观看| 国产精品妖精视频|