摘 要: 脂肪組織是機體的重要組成部分,不僅具有儲存能量、保護組織和調節體溫等作用,還能通過分泌細胞因子參與代謝調節,在肥胖及相關并發癥的發病過程中發揮著重要作用。大量研究已證實,腸道微生物與宿主脂肪代謝及其相關疾病之間具有緊密聯系。本文綜述了腸道微生物影響脂肪沉積的主要因素,包括脂肪細胞、脂肪酸組成和脂肪相關血液指標。探討腸道微生物如何通過一系列途徑參與調節脂肪吸收、生成和分解過程,同時詳細闡述了腸道微生物與脂肪代謝紊亂引起的疾病之間的關聯。本文旨在完善和加深對腸道微生物調控脂肪沉積及其相關代謝疾病的了解,為下一步的研究和臨床實踐提供理論基礎和借鑒。
關鍵詞: 腸道微生物;脂肪;肥胖;糖尿病;MAFLD
中圖分類號:Q493.5
文獻標志碼:A
文章編號:0366-6964(2024)10-4263-15
收稿日期:2024-02-18
基金項目:重慶市自然科學基金(cstc2019jcyjmsxm2342)
作者簡介:徐蘭夢(2002-),女,安徽安慶人,碩士生,主要從事畜禽腸道微生物研究,E-mail:2131126509@qq.com
*通信作者:章 杰,主要從事畜禽腸道微生物研究,E-mail:zhangjie813@163.com;李常營,主要從事動物健康養殖研究,E-mail:licy1983@163.com
Research Progress of Gut Microbiota Regulating Fat Deposition and Metabolic Related
Diseases
XU" Lanmeng, HUANG" Yuzhi, HAN" Yuzhu, LI" Changying*, ZHANG" Jie*
(College of Animal Science and Technology, Southwest University, Chongqing 402460, China)
Abstract:" Adipose tissue is an important component of the body, which not only stores energy, protects tissues, and regulates body temperature, but also participates in metabolic regulation by secreting cytokines, playing an important role in the pathogenesis of obesity and related complications. Numerous studies have confirmed that, there exists a close relationship between gut microbiota and host fat metabolism and related diseases. This article reviews the main factors that gut microbiota affects fat deposition, including adipocytes, fatty acid composition, and fat related blood indicators. Exploring how gut microbiota participates in regulating fat absorption, generation, and decomposition processes through a series of pathways, and elaborating in detail the association between gut microbiota and diseases caused by lipid metabolism disorders. This article aims to improve and deepen the understanding of the regulation of fat deposition and related metabolic diseases by gut microbiota, providing a theoretical basis and reference for further research and clinical practice.
Key words: gut microbiota; fat; obesity; diabetes; MAFLD
*Corresponding authors:" ZHANG Jie, E-mail:zhangjie813@163.com; LI Changying, E-mail:licy1983@163.com
脂肪是人類和動物體的重要組成成分,具有貯存能量和調節免疫等作用,比如其所含的n-3多不飽和脂肪酸可轉化為類花生酸刺激細胞在免疫應答期間發出信號[1]。同時,脂肪組織的含量也是畜禽動物重要的經濟性狀,直接決定了生長性能的高低,并與肉的風味、多汁性、嫩度和色澤等多個肉品質指標密切相關[2]。在過去的幾十年里,肥胖和相關代謝性疾病的發生呈現快速增長的趨勢。除了不良的飲食、生活方式和遺傳等已知因素外,腸道微生物對脂肪沉積的調控成為新的研究方向被廣泛關注。腸道微生物發酵食物后產生的大量代謝物,如短鏈脂肪酸(short chain fatty acids, SCFAs)、膽汁酸(bile acids, BAs)和氧化三甲胺(trimethylamine oxide, TMAO),以及革蘭陰性菌細胞壁組成成分脂多糖(lipopolysaccharide, LPS)等,具有調節宿主生理功能和健康的作用[3]。2004年,Bckhed等[4]首次證實腸道微生物是調節能量穩態和脂肪沉積的關鍵環境因素。隨著測序技術和生物信息學的發展,大量研究也表明,腸道微生物與脂肪代謝相關疾病密切關聯,如肥胖、糖尿病和代謝相關脂肪性肝病(metabolic-related fatty liver disease, MAFLD)[5-7]。反過來說,對失調的腸道微生物進行適當干預改善后,可有效逆轉宿主脂肪沉積狀況及代謝相關疾病[8]。因此,本文就腸道微生物如何調控宿主脂肪沉積、代謝及相關代謝疾病過程,以及脂肪飲食對腸道微生物組成的影響展開論述。
1 腸道微生物調控脂肪沉積
1.1 脂肪細胞體積與轉化
肥胖的典型特征是脂肪量增多,即脂肪細胞增大或增殖[9]。脂肪組織分為白色脂肪組織(white adipose tissue, WAT)、棕色脂肪組織(brown adipose tissue, BAT)和米色脂肪組織(beige adipose tissue, Beige),BAT通過表達解偶聯蛋白1(uncoupling protein 1, UCP1)消除線粒體內膜兩側跨膜質子濃度差異,阻斷ATP合成,使能量以熱量形式耗散,WAT的功能則主要是儲存能量[10]。因此,促進BAT活化和WAT褐變有助于降低體重[11]。研究表明,腸道微生物能通過調控脂肪的積累來影響脂肪細胞的大小,比如植物乳桿菌ATG-K2通過下調脂肪生成相關基因和蛋白表達水平來抑制3T3-L1細胞脂肪的積累,在高脂飲食(high fat diet, HFD)誘導的肥胖小鼠模型中能夠降低體重增加量和WAT重量并阻礙脂肪細胞增大[12]。外源物質的添加改變了腸道微生物的組成,其引起的脂肪細胞的變化進一步說明了腸道微生物與脂肪沉積密切相關。綠原酸通過抑制脫硫菌科、瘤胃球菌科、拉氏螺旋科和丹毒科細菌,增強擬桿菌科和乳酸桿菌科等微生物的生長來調控腸道微生物群落組成,引起脂肪生成和分解相關基因表達的改變,進而減少小鼠脂肪細胞數量,減小脂肪細胞體積,并改善了由HFD引起的肝脂肪變性和肝脂滴大量堆積的病理現象[13]。腸道微生物的代謝產物同樣對脂肪細胞有一定的影響,如乙酸能夠誘導肥胖小鼠沉積更多的WAT,增加脂肪液泡并促進脂肪間充質干細胞的分化,且隨著乙酸濃度的升高,脂肪間充質干細胞體積增大,細胞內脂滴隨之增大并聚集[14]。
此外,腸道微生物還能影響脂肪組織的褐變過程。Beige起源于WAT[15],與WAT表型相似,當受到刺激時其表型類似BAT,導致產熱增加的現象即褐變[16]。Surez-Zamorano等[17]研究指出,抗生素清掃和無菌(germ free, GF)鼠與常規飼養(specific pathogen free, SPF)小鼠相比,腹股溝皮下和性腺周圍內臟脂肪組織UCP1陽性細胞數量增加,同時GF小鼠血清3,5,3′-三碘甲狀腺原氨酸水平升高,表明腸道微生物的耗竭加劇了皮下和內臟WAT的褐變。HFD誘導的小鼠飼喂三七皂苷后,其腸道嗜黏蛋白阿克曼菌和狄氏副擬桿菌豐度升高,而瘤胃球菌豐度降低,引起瘦素-腺苷酸活化蛋白激酶(adenosine 5’-monophosphate-activated protein kinase, AMPK)/轉錄激活因子5(轉錄激活因子-5(signal transducer and activator of transcription-5, STAT-5)信號通路的激活,進而促進BAT的產熱和WAT褐變,研究進一步將三七皂苷誘導后的小鼠腸道微生物移植給飲食中未添加三七皂苷的HFD小鼠,發現促進了HFD小鼠WAT的褐變[18]。柚皮素能改善HFD誘導小鼠腸道微生物失調,降低厚壁菌門/擬桿菌門(Firmicutes/Bacteroidetes, F/B)比值,以及疣菌屬、阿克曼菌科、阿克曼菌和嗜黏蛋白阿克曼菌等微生物的豐度,引起宿主盲腸和血清SCFA,尤其是乙酸水平的升高,從而激活腹股溝Beige細胞產熱發生褐變[19]。一些物理刺激也能改變腸道微生物組成。腸道微生物在機體受到冷刺激時會引起F/B比值的增加,若將“冷微生物群”移植給GF小鼠將促進其WAT褐變,產熱增強[20]。總之,腸道微生物是介導宿主脂肪組織形態轉變及行使其正常功能的重要參與者。
1.2 脂肪酸組成
脂肪酸(fatty acids, FAs)是油脂中三酰基甘油的主要成分,其組成與脂肪沉積息息相關,比如n-3和n-6多不飽和脂肪酸通過參與脂肪生成、脂肪組織褐變、脂肪穩態、腦-腸-脂肪組織軸和炎癥反應等途徑增加體脂[21]。飽和脂肪酸則通過激活Toll樣受體4(Toll-like receptor 4, TLR4)信號通路來誘導炎癥,導致機體肥胖[22]。研究表明,腸道微生物在影響小鼠FA組成上具有重要作用,它能將膳食亞油酸代謝為10-羥基-順式-12-十八碳烯酸,避免小鼠因HFD導致的肥胖[23]。腸道微生物的存在增加了小鼠肝中硬脂酰輔酶 A 去飽和酶1對棕櫚酸的去飽和度并促進長鏈脂肪酸延伸酶5對γ-亞油酸向二聚-γ-亞麻酸的延伸,從而顯著改變甘油磷脂酰基鏈譜[24]。Furuse等[25]對GF鵪鶉和產蛋鵪鶉的肝和蛋黃脂肪中FA組成比較研究后發現,腸道微生物降低了肝脂肪中油酸比例,提高了硬脂酸和亞油酸比例,同時降低了蛋黃脂肪中肉豆蔻酸和棕櫚油酸比例,并提高了其硬脂酸比例。某些具體的腸道微生物已被證實與FA組成具有直接聯系,不同的腸道微生物組成可能引起特定FA含量的顯著變化。短雙歧桿菌可提高小鼠和豬肝組織的順式-9, 反式-11共軛亞油酸含量,以及脂肪組織二十碳五烯酸(eicosapentaenoic acid, EPA)和二十二碳六烯酸(docosahexaenoic acid, DHA)含量,減少促炎細胞因子腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)和γ-干擾素表達,進而緩解機體炎癥[26]。植物乳桿菌PL62在小鼠體內可將亞油酸轉化為反式-10, 順式-12-共軛亞油酸,具有治療肥胖癥的功能[27]。理研菌科與豬背膘硬脂酸含量和肌肉油酸含量呈負相關,與肌肉棕櫚酸含量呈正相關[28]。此外,腸道微生物代謝產物SCFA穿過腸道屏障參與代謝同樣能影響宿主組織的FA譜。SCFA可作為長鏈脂肪酸生物合成的底物,如乙酸是肝合成C16和C18脂肪酸及其相關甘油磷脂的前體[24]。
1.3 脂肪相關血液指標
高血脂是指血液中脂肪水平過高,特征是總膽固醇(total cholesterol, TC)、低密度脂蛋白膽固醇(low density lipoprotein cholesterol, LDL-C)和甘油三酯(triglyceride, TG)水平升高,而高密度脂蛋白膽固醇(high density lipoprotein cholesterol, HDL-C)水平降低[29]。通常來說,血脂異常往往伴隨著腸道微生物結構和功能紊亂,比如高血脂癥和高膽固醇患者的大腸桿菌/志賀菌比例和鏈球菌豐度升高,而梭狀芽孢桿菌和瘤胃球菌科豐度降低[30]。因此,腸道微生物與脂肪相關血液指標必然存在一定的聯系。Han等[31]以抗生素混合物清除了HFD誘導小鼠腸道中的微生物后,其血清葡萄糖、TC、低密度脂蛋白(low density lipoprotein, LDL)、胰島素和瘦素水平得以降低,同時改善了HFD誘導的肝脂肪代謝功能障礙。荷葉醇提取物能顯著增加大鼠腸道有益菌類副桿菌豐度,降低促炎細菌普雷沃氏菌豐度,導致血清TC、TG和LDL水平降低,脂肪沉積減少,緩解脂肪肝等炎癥[32]。口服碲化鎘量子點引起小鼠腸道微生物F/B比值降低,導致血清中LDL、TG和TC水平顯著升高[33]。不僅整體的腸道微生物變化能影響血脂含量,單一的微生物菌株也具有改善宿主血液脂肪相關指標的作用。Zhang等[34]指出,屎腸球菌WEFA23具有活性膽鹽水解酶,可體外清除膽固醇,在雄鼠肥胖模型中能有效降低體重,并顯著降低其體內的血液TC、TG和LDL-C水平。另一項針對高膽固醇小鼠的研究表明,羅伊氏黏液乳桿菌降低血液TG和LDL的水平分別達到38%和40%,同時提高20%的HDL/LDL比值[35]。含有雙歧桿菌的發酵牛奶顯著降低小鼠血清中TG、LDL和TC水平,并降低高膽固醇血癥人類受試者的血清膽固醇水平[36]。Lin等[37]研究指出,保加利亞乳桿菌和嗜酸乳桿菌片劑可顯著降低志愿者的血液膽固醇水平。總之,動物以及人類的研究均強烈表明腸道微生物與脂肪相關的血液指標之間存在聯系,但腸道微生物的種類多樣,究竟是多個核心菌群協調作用還是單一菌群作為優勢菌來調控血脂含量,以及它們的具體調控機理都有待進一步挖掘。
2 腸道微生物調控脂肪代謝
2.1 脂肪攝入和吸收
脂肪沉積過程實質上是FA酯化為TG并沉積為體脂的過程,FA則主要來源于飼糧(外源性FA)和體內物質轉化(內源性FA)[38]。脂肪的攝入和吸收則與腸道微生物具有密切聯系。將常規小鼠腸道微生物移植給GF小鼠后,盡管食物攝入量減少,但GF小鼠的體脂含量和胰島素抵抗(insulin resistance, IR)程度增加了60%[4]。抗生素處理的小鼠腸道微生物組成發生改變,引起肝中攝取游離脂肪酸(free fatty acid, FFA)的脂肪酸轉運酶顯著上調[39]。目前,腸道微生物調控脂肪攝入和吸收的主要途徑總結如下。
2.1.1 影響宿主食欲調節脂肪攝入量
腸道微生物可以通過微生物群-腸道-腦軸影響宿主飽腹感,調節影響食欲的瘦素、胃饑餓素、胰高血糖素樣肽-1(glucagon-like peptide, GLP-1)、肽YY(peptide YY, PYY)和膽囊收縮素(cholecystokinin, CCK)等腸道激素,以及食欲調節相關肽、神經肽Y、前阿黑皮素和可卡因-苯丙胺調節轉錄肽等神經肽[40],如膳食脂肪誘導的腸道微生物變化可引起下丘腦炎癥并抑制細胞因子信號傳導3來參與瘦素抵抗[41]。還可通過介導必需氨基酸的可用性,引起大腦免疫細胞(小膠質細胞)活化、神經炎癥和調節下丘腦神經元這三種途徑影響宿主食欲[42-43]。此外,以F/B比值升高為特征的腸道微生物失調與刺激饑餓的腸道激素血清生長素釋放肽的升高密切相關[44]。腸道微生物產生的代謝產物也能影響宿主食欲。SCFA可通過激活檸檬酸循環來調節下丘腦飽腹感神經肽的表達,從而降低食欲[45]。乙酸可激活腸道短鏈脂肪酸受體,刺激腸道激素PYY和GLP-1的分泌,影響宿主食欲和飽腹感[46]。LPS能激活迷走神經傳入神經元上的TLR4,對瘦素產生抵抗,對CCK無法做出應答,導致食欲亢進[47]。
2.1.2 影響腸道對脂肪的吸收
腸道微生物可通過調控胰腺和腸道基因的表達來影響腸道對脂肪的吸收,如一些嗜酸乳桿菌能促進膽固醇與腸腔結合,減少宿主腸道對其的吸收[48]。與常規小鼠相比,GF小鼠對三油酸甘油酯和膽固醇的吸收顯著降低,誘因則是無菌導致小鼠胰腺CCK信號傳導受阻,空腸CCK和SCT基因及胰腺CCK受體基因表達降低[49]。同時,腸道微生物會引起FA在腸上皮的積累,提升腸細胞對FA的儲存和吸收能力,加快將其轉運到肝的速度,并且能參與腸上皮細胞的消化和吸收過程[50]。將HFD條件的空腸微生物群移植給GF小鼠,即使喂食低脂飲食,也表現出脂質吸收增加,說明小腸菌群可能是小鼠脂肪吸收的重要調節因子[49]。腸道微生物還可通過促進腸道內單糖的吸收,提高肝中乙酰輔酶A羧化酶(acetyl-CoA carboxylase, ACC)和脂肪酸合成酶活性,促進TG合成[4]。
2.1.3 影響膽鹽的產生或組成調節宿主對脂肪的利用度
BA的主要功能是乳化膳食脂肪,促進脂肪的消化吸收以及膽固醇的攝取[51]。Ramasamy等[52]研究指出,乳酸桿菌能在體外對膽鹽進行去綴合及膽固醇去除。腸道微生物通過降低法尼醇-X受體(Farnesoid X Receptor, FXR)的競爭性抑制劑牛磺-β-鼠膽酸的水平和上調回腸中 FXR 及其分子靶標 SHP 和 FGF15 的表達來調控BA的合成,影響宿主對脂肪的消化吸收[53]。大腸桿菌、蠟樣芽孢桿菌、糞鏈球菌和梭狀芽孢桿菌等對BA具有脫羥基作用,乳桿菌屬對BA具有水解作用[54]。
2.1.4 調節腸道載脂蛋白的產生和乳糜微粒的分泌促進脂肪的吸收
Sato等[55]研究指出,抗生素處理降低小鼠腸道微生物豐度,減少TG和磷脂的淋巴轉運,進而降低黏膜載脂蛋白B、A-I和A-IV的水平。
2.1.5 調控脂肪細胞對脂肪的吸收
腸道微生物群可通過抑制空腹誘導脂肪因子(fasting-induced adipose factor, FIAF),提高脂肪細胞脂蛋白脂肪酶(lipoprtein lipase, LPL)活性,促進細胞對FA的攝取和TG在脂肪細胞中的積累[4,56]。
2.2 脂肪生成及相關基因表達
脂肪生成是前體脂肪細胞增殖分化為含脂質的成熟脂肪細胞的復雜過程[57]。研究證實,腸道微生物與脂肪生成密切相關,如脂肪生成與變形桿菌豐度之間呈顯著的正相關關系,而擬桿菌、厚壁菌和放線菌豐度與大多數脂肪生成指標呈顯著的負相關關系[58]。植物乳桿菌ATG-K2和ATG-K6可下調脂肪生成基因SREBP-6c、FAS和C/EBP的表達,降低肝脂肪的積累[59]。腸道微生物的失調擾亂胰島素分泌節律,增加葡萄糖吸收,引起ChREBP、SREBP-1等脂肪合成基因過表達,導致脂肪代謝異常[60]。飼喂合生元和益生元等膳食補充劑調節大鼠腸道微生物后,SREBP-1c和FAS等脂肪生成相關基因表達降低,導致脂蛋白和TGs的合成減少[61-62]。此外,腸道微生物代謝產物SCFA也能夠調控脂肪生成。肝中FASN和GPAM等脂肪生成基因,以及SCD1、ELOV13、和FADS1等FA伸長/去飽和度基因的表達在SCFA濃度升高時表達下降[63]。丙酸濃度升高后通過降低FA合成相關酶基因如ACC、FAS和ME等的表達來降低肝的從頭合成FA[64]。脂肪生成關鍵酶ACC在丙酸的作用下會發生磷酸化而失去活性,進而抑制脂肪生成[65]。
腸道微生物還可促進脂肪生成。腸道微生物主要是通過轉錄因子(如ChREBP)的介導作用刺激肝生成TG,并促進LPL定向地將TG摻入脂肪細胞中[4]。FIAF基因具有抑制脂肪生成的作用,比如飼喂高糖、高脂的膳食不會引起GF小鼠肥胖,但FIAF基因敲除鼠則會發生肥胖。腸道微生物則能抑制腸上皮FIAF基因的表達,從而促進脂肪生成[4,56]。同樣,有些腸道微生物代謝產物的大量分泌也會促進脂肪生成。乙酸通過組蛋白乙酰化等表觀遺傳機制提升脂肪生成基因ACACA和FASN啟動子區域的H3K9、H3K27和H3K56乙酰化水平來激活其表達,進而促進脂肪合成[66]。丁酸能促進FA從頭合成關鍵調節因子SREBP-1c、脂肪細胞分化標志基因PPARγ、C/EBPα 和 C/EBPβ,TG合成關鍵基因GPAT4、DGAT1和DGAT2,以及與脂肪儲存增加相關基因LPL、FATP 和 GLUT4 的表達。同時,丁酸也能通過抑制組蛋白脫乙酰酶(histone deacetylase, HDAC)來增強組蛋白乙酰化水平[67],如豬皮下脂肪CEBPA啟動子的組蛋白乙酰化證實了這一推測[68]。正常情況下,BA通過激活FXR來調節SREBP-1c及其脂肪生成靶基因的表達[69],降低FA的攝取和合成[70]。但腸道微生物可以通過TMAO途徑降低BA合成關鍵酶基因CYP7A1的表達[71],導致BA代謝紊亂,使FXR和TGR5活化不足,能量消耗減少,脂肪生成增加[72]。
2.3 脂肪降解及相關基因表達
脂肪降解實質是脂肪TG在一系列酶類的作用下分解為甘油和FFA,FFA進一步徹底氧化生成CO2和水的過程。大量研究表明,腸道微生物參與了脂肪分解的過程,并在其中起重要作用。Bckhed等[4]研究指出,GF小鼠接受常規小鼠的腸道微生物后,其附睪體脂增加了60%,主要原因是轉移的腸道微生物抑制腸上皮FIAF表達,進而抑制脂肪分解[73-74]。在異常生理狀態下,腸道微生物紊亂引起血漿乳酸水平升高,激活G蛋白偶聯受體(G protein-coupled receptor, GPR)81抑制AC-PKA途徑的脂肪分解[75]。膳食補充合生元能改變腸道微生物,從而調控PPAR-α基因的表達,影響其指示的脂肪β氧化過程[61]。多種腸道微生物已被證實在脂肪分解中具有重要作用,如雙歧桿菌和乳酸桿菌豐度的增加可刺激脂肪分解;副干酪乳桿菌產生L-乳酸鹽抑制腸細胞分泌乳糜微粒,腸細胞則通過吸收L-乳酸鹽并將其轉化為丙二酰輔酶A抑制脂肪β-氧化;大腸桿菌產生乙酸鹽也能抑制腸細胞分泌乳糜微粒,而腸細胞則吸收乙酸鹽并將其代謝為乙酰輔酶A和腺嘌呤核糖核苷酸(adenosine monophosphate, AMP),上調AMPK/PGC-1α/PPAR-α途徑促進脂肪氧化[76]。
總體來看,腸道微生物影響脂肪分解的機制主要是通過其代謝產物調節脂肪酶相關基因的表達來實現的。一方面腸道微生物可增加HFD小鼠ARβ3和ATGL基因表達和激素敏感性脂肪酶(hormone-sensitive triglyceride lipase, HSL)磷酸化,而90%以上TGs的水解受脂肪甘油三酯脂肪酶(adipose triglyceride lipase, ATGL)和HSL作用,這一過程促進了脂肪分解[77-78],另一方面又可減弱脂肪細胞HSL磷酸化,通過醋酸酯-游離脂肪酸受體偶聯信號通路的介導發揮抗脂解作用[79]。具體來講,SCFA增強GPR41和GPR43基因表達,促進TG水解和FFA氧化[80];乙酸則能增加脂肪分解基因LCACD、3KACT和PPAR的表達[81],上調HSL和LPL基因的表達[82]。乙酸和丙酸還可激活游離脂肪酸受體2來介導Gi/o蛋白抑制腺苷酸,進而抑制蛋白激酶A(protein kinases A, PKA)和HSL[83]。
此外,腸道微生物也能通過調節體內激素來影響脂肪分解。胰島素能夠抑制ATGL和HSL活性和相關基因表達[84]或下調轉錄因子FOXO1來介導PNPLA2基因表達[85],從而抑制脂肪分解。研究表明,腸道微生物可通過c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)途徑改變胰島素的活性[86],比如嗜黏蛋白桿菌能刺激胰腺β細胞分泌胰島素[87]。SCFA中丙酸和丁酸可通過抑制異丙腎上腺素來刺激脂肪分解[65]。同樣,SCFA通過激活cAMP/PKA/CREB途徑抑制垂體前葉細胞生長激素的分泌[88],生長激素與其受體結合后可通過Jauns激酶2使STAT-5磷酸化,直接激活白色和棕色脂肪細胞中PNPLA2的表達[89-90]。腸道微生物代謝產物中丁酸對脂肪分解代謝最為重要。AMPK的磷酸化(p-AMPK)可上調PPAR-α表達[91]。丁酸鹽能促進脂聯素分泌,激活AdipoR1/APPL1介導的AMPK磷酸化,上調PPARγ的表達,進而誘導增強FFAs氧化[82,92],且丁酸鹽處理的脂肪細胞顯示出更高的p-AMPK和p-AMPK/AMPK比值[83]。此外,丁酸還能提高參與線粒體產熱和FA的β氧化關鍵基因UCP2、UCP3、CPT-1b和PGC1α及其蛋白質表達水平[82]。
其他研究還發現腸道微生物與脂質轉化相關,在正常情況下,膽固醇主要轉化為一種不可吸收的前列醇并通過糞便排出體外,而GF大鼠排泄的則是未經修飾的膽固醇[93],表明腸道微生物與腸道內膽固醇的轉化有直接關系[94]。具體來看,大腸桿菌可將膽固醇轉化為4-膽甾烯-3-酮的中間物,然后再將其還原為前列醇[95];乳酸桿菌和雙歧桿菌通過產生的胞外多糖與膽固醇分子結合將膽固醇摻入細胞膜,在膽固醇還原酶的作用下將膽固醇轉化為前列醇[96-97];魯米諾球菌UCG.014和拉赫諾梭菌的豐度則與前列醇和膽固醇水平呈正相關[98]。除上述生理作用外,腸道微生物還可通過影響膽鹽激活胰脂肪酶來降低脂滴表面張力,將較大的脂滴分解成較小的脂滴,然后協助脂肪酶/共脂肪酶復合物附著在脂滴表面以促進脂肪分解[99]。
3 脂肪攝入影響腸道微生物組成
腸道微生物與宿主脂肪代謝之間是相互關聯及作用的,因此,脂肪攝入的質和量也能誘導腸道微生物的改變。大量研究表明HFD在誘發機體肥胖的同時,對腸道微生物及其代謝物組成產生較大的影響。HFD可通過刺激促炎信號級聯反應提高腸道通透性,或通過增加屏障破壞細胞因子白細胞介素(interleukin, IL)-1β、 IL-6、TNF-α和γ-干擾素并減少屏障形成細胞因子IL-10、IL-17和IL-22間接提高腸道通透性,從而影響腸道微生物[100]。Kong等[101]研究指出,HFD降低小鼠腸道微生物多樣性、丁酸產生菌以及其他有益菌的豐度,如乳酸桿菌、普雷沃氏菌和擬普雷沃氏菌,且提高了條件致病菌豐度,如擬桿菌和另枝菌。與正常飲食小鼠相比,HFD小鼠腸道變形菌門和厚壁菌門豐度更高;在屬水平上,擬桿菌表現出較高的種群數量;腸桿菌科如大腸桿菌、克雷伯菌和志賀菌占據主導地位[102]。食物中FA的種類也可能影響腸道微生物的組成。飼料中添加反式-10,順式-12-共軛亞油酸顯著提高小鼠盲腸SCFA如乙酸、丙酸和異丁酸水平,且降低F/B比例[103]。較高的長鏈和中鏈飽和脂肪酸飲食會降低腸道微生物多樣性,提高厚壁菌門豐度,并降低擬桿菌門豐度[104]。富含n-3多不飽和脂肪酸的飲食改善小鼠腸道微生物組成,提高腸桿菌屬、乳桿菌屬、卟啉單胞菌科和擬桿菌門豐度并誘導產生乙酸、丙酸和丁酸等SCFA[105]。
4 腸道微生物與脂肪代謝疾病的關系
4.1 炎癥
機體出現慢性炎癥是脂肪代謝紊亂的特征之一,與肥胖、Ⅱ型糖尿病和MAFLD等疾病密切相關[106]。腸道微生物豐度較低的個體發生整體肥胖、血脂異常、IR和炎癥等現象更為明顯[107]。因此,有必要在討論腸道微生物與脂肪代謝相關疾病之前闡述清楚腸道微生物與炎癥之間的關系。LPS是引發HFD誘導的代謝性疾病的早期因素,與先天免疫細胞表面的膜CD14和TLR4復合物結合時會觸發促炎細胞因子的分泌[108]。腸道微生物的異常可導致腸道屏障的完整性降低,引發LPS滲漏增加,大量LPS進入血液(內毒素血癥)作用于 TLR4[109],引起低度慢性炎癥,其標志是較高的瘦素、IL-1β、IL-6和TNF-α水平,較低的脂聯素和IL-10水平[110]。在HFD的誘導下,小鼠腸道微生物發生改變,引發LPS進入循環系統,導致肥胖、糖尿病和炎癥加重等情況[108]。也就是說,如果對腸道微生物及其代謝產物的進行調整,可適當緩解肥胖引起的炎癥。InKim等[111]研究指出,外源補充植物乳桿菌LC27和長雙歧桿菌LC67可減少小鼠糞便LPS的產生。腸道微生物代謝產物吲哚可抑制核因子κB(nuclear factor kappa-B, NF-κB)通路關鍵蛋白和下游促炎基因的表達,并促進肝中4β-羥基膽固醇相關基因的轉錄來預防LPS誘導的膽固醇代謝異常,緩解小鼠肝的炎癥[112]。丁酸鹽通過刺激IL-18分泌,并促進由GPR109a介導的調節性T細胞和產生IL-10的T細胞分化,以及上調PPAR-γ和抑制LPS誘導的NF-κB活化來避免小鼠炎癥的發生[113]。此外,SCFA也能與結腸上皮細胞的GPR43結合刺激K+外排和超極化,從而激活NLRP3炎癥小體,而炎癥小體通路是促進腸道上皮完整性的主要通路[114]。綜上,宿主腸道微生物異常可釋放促炎因子誘發炎癥,而某些有益腸道微生物則可分泌抗炎分子或利用其代謝產物抑制炎癥通路相關基因表達,調節免疫細胞的分化等方式來對抗炎癥。
4.2 肥胖
肥胖是一種以脂肪組織過度擴張和低度炎癥為特征的慢性疾病,是誘發其他疾病的因素之一,正如身體質量指數(body mass index, BMI)與炎癥標志物C反應蛋白之間存在強烈正相關關系[115]。肥胖患者的腸道中產LPS的菌群含量增加,引起一系列炎癥并導致代謝性內毒素血癥[116-117]。不管是人還是動物的研究均表明腸道微生物對預防肥胖具有重要作用。首先,肥胖者腸道微生物組成與正常體重者明顯不同,腸道微生物多樣性顯著降低[118]。肥胖與擬桿菌門和厚壁菌門的相對豐度變化密切相關,其中擬桿菌門的菌群數量減少,而厚壁菌門的菌群數量增加,尤其是桿菌科和梭菌科[119]。桿菌門和擬桿菌/普雷沃氏菌群的降低與高BMI有關,厚壁菌門與體重增加呈正相關[120]。與正常體重者相比,肥胖者的腸道微生物中梭桿菌、羅伊氏乳桿菌、脆弱擬桿菌和金黃色葡萄球菌數量較高,而甲烷桿菌、植物乳桿菌、嗜黏蛋白阿克曼菌和雙歧桿菌數量較低[121]。與BMIgt;30的肥胖者相比,克里斯滕森菌科在BMIlt;25的人群中顯著富集[122]。Ley等[123]分析比較瘦和肥胖小鼠盲腸微生物16S rRNA基因序列后指出,肥胖小鼠擬桿菌門數量減少50%,而厚壁菌比例顯著增加,并且移植了肥胖小鼠腸道微生物的GF小鼠在兩周內變得肥胖,說明肥胖影響腸道微生物多樣性,同時也說明通過人工干預腸道微生物結構調控脂肪沉積是可行的。現有文獻已證明通過外源補充有益微生物對改善宿主的肥胖具有良好的作用。副干酪乳酪桿菌K56可顯著降低肥胖者體脂百分比、內臟脂肪面積、全身脂肪量、軀干體脂量和腰圍[124]。植物乳桿菌PL62可降低肥胖小鼠腹股溝、附睪和腎周白色脂肪組織的重量,同時顯著改善飲食誘導的體重增加和高血糖[27]。青春雙歧桿菌可減輕HFD誘導的小鼠體重增加和內臟脂肪堆積[125]。綜上,大量研究證實腸道微生物與肥胖有著必然關系,反過來通過外源補充有益微生物在一定程度上可降低體脂百分比以及內臟和全身脂肪量等肥胖相關指標。
4.3 糖尿病
糖尿病是一種以持續高血糖為標志的代謝紊亂類疾病,根據產生的機制不同可分為Ⅰ型糖尿病(type 1 diabetes Mellitus, T1D)和Ⅱ型糖尿病(type 2 diabetes Mellitus, T2D),前者發生于自身免疫性T細胞攻擊胰島β細胞導致胰島素分泌不足時,后者發生于胰島β細胞衰竭和IR同時發生時間[126]。研究證實,腸道微生物與糖尿病之間存在密切聯系。糖尿病前期患者通常伴隨著腸道微生物的異常,主要表現是梭狀芽胞桿菌屬和嗜黏蛋白阿克曼氏菌豐度的降低[127]。通過糞菌移植(fecal microbiota transplantation, FMT)將正常小鼠腸道微生物轉移到糖尿病小鼠后,產生SCFA的細菌組成得以改善,并通過激活GPR43/GLP-1通路達到改善糖脂紊亂的目的[128]。此外,在肥胖個體上,丙酸能通過誘導特定的DNA甲基化使其更易患糖尿病[129]。
從不同類型糖尿病的發病機制來看,T1D患者腸道微生物結構往往出現失衡的現象,其糞便中富含克里斯滕森氏菌和雙歧桿菌,能增加LPS的合成[130],而普氏糞桿菌、直腸真桿菌和腸薔薇菌等產丁酸鹽的菌群豐度降低[131],LPS和丁酸分別對T1D小鼠的葡萄糖代謝和胰島結構和功能起破壞和保護作用。斑馬魚上的研究表明,其腸道微生物編碼的β細胞擴增因子a能通過誘導斑馬魚幼蟲β細胞增殖來恢復正常β細胞數量,以分泌足夠的胰島素來改善T1D[132]。此外,腸道上皮屏障的破壞和微生物代謝產物的逃逸也可能是誘導T1D產生的因素。T1D患者發病前的特征之一即是產生丁酸鹽的腸道微生物數量降低,對腸道通透性產生負面影響,導致腸道微生物及其代謝產物的易位[133]。Costa等[134]研究指出,小鼠腸上皮屏障的破壞導致腸道微生物轉移到胰腺淋巴結,觸發并激活核苷酸結合寡聚化結構域2引起T1D。相反,腸道微生物的改變也能促進胰島素的分泌而改善大鼠T1D,如乙酸增加激活副交感神經系統,促進葡萄糖誘導的胰島素分泌[135]。吲哚和吲哚乙酸則通過誘導小鼠結腸L細胞分泌GLP-1來促進胰腺β細胞分泌胰島素[136]。
與T1D類似,T2D患者的腸道微生物也異于健康者,比如瘤胃球菌屬、梭桿菌屬和布勞蒂亞屬豐度升高,而雙歧桿菌屬、擬桿菌屬、糞桿菌屬、阿克曼氏菌屬和羅斯伯里屬豐富降低[137]。T2D患者的腸道微生物失調導致丁酸鹽分泌不足,HDAC3活性和結腸通透性增加,活性氧和IL-1β水平升高,而IL-10和IL-17α水平降低,進一步促使T2D癥狀加重[138]。腸道微生物失調還可能阻斷胰島素、JNK、Janus激酶、JAK/STAT以及NF-κB信號通路的正常運行,導致IR產生[139-140]。實踐中,可采用補充外源有益微生物的方式來調節T2D患者腸道微生物進行治療。植物乳桿菌HAC01能緩解小鼠高血糖和T2D癥狀,具有調節肝糖代謝、保護胰島β細胞團、恢復腸道菌群和SCFA分泌的作用[141]。此外,腸道微生物代謝產物也可作用于治療T2D。丁酸促進AMPK磷酸化后,提高GLP-1分泌并上調結腸黏蛋白和TJ蛋白基因表達,增強腸道屏障,減少LPS滲漏和炎癥的發生,從而改善大鼠的IR[142]。對丙酸的研究表現出截然不同的兩面性,一面是在體外腸肝模型中發現丙酸參與激活宿主的腸道糖異生,調節食物攝入,增強胰島素敏感性[143],另一面是丙酸通過增加血漿中胰高血糖素、脂肪酸結合蛋白4和去甲腎上腺素的水平來刺激小鼠糖原分解并升高血糖,導致IR[144]。鑒于此,丙酸對胰島素的影響機制還需進一步的研究。同時,炎癥與T2D之間也具有緊密的聯系,表現在LPS激活脂肪細胞的TLR4/MyD88/NF-κB通路,觸發炎癥反應和促炎因子TNF-α、IL-1β、IL-6和誘導型一氧化氮合酶的釋放,TNF-α受體和JNK隨之被激活,下調胰島素受體底物的絲氨酸磷酸化,抑制胰島素信號傳導并發生IR,形成T2D[145]。綜上,通過改善腸道微生物組成對糖尿病患者胰島素分泌、糖代謝、腸道屏障、胰島素敏感性和炎癥等具有積極作用,比如激活GPR43/GLP-1、JAK/STAT和NF-κB等通路、保護胰島β細胞、誘導DNA甲基化及調節SCFA分泌等。
4.4 代謝相關脂肪性肝病
代謝相關脂肪性肝病(metabolic-related fatty liver disease, MAFLD),也稱為非酒精性脂肪肝,是一種以肝細胞內脂肪沉積為典型特征的肥胖性疾病[146],患病率與BMI呈現顯著的正相關關系[147]。肝是脂肪代謝的主要部位,脂肪代謝發生異常時,肝組織常受到損傷或出現炎癥。研究證實,腸道微生物在MAFLD的發生過程中起著重要作用。與健康者相比,MAFLD 患者糞便中大腸桿菌、普氏菌和鏈球菌豐度較高,而糞球菌、糞桿菌和瘤胃球菌豐度較低[148]。同時,健康者具有豐富的另枝菌屬,與血清葡萄糖、γ-谷氨酰轉移酶和谷丙轉氨酶(Alanine aminotransferase, ALT)呈負相關,以及較少的多爾氏菌屬,其富集程度隨異常肝酶活性的升高而增加[149]。MAFLD患者的腸道微生物失調還會改變BA水平,引起肝脂肪堆積和微炎癥的病理生理級聯反應,導致肝纖維化并發展為非酒精性脂肪肝炎[150]。當然,通過適當的干預也能緩解MAFLD的癥狀。Han等[151]利用金銀花多糖來改善小鼠腸道微生物結構,脫硫弧菌的豐度提高,激活了AMPK信號通路,進而緩解小鼠MAFLD。通常情況下,MAFLD的誘因主要是HFD。將常規飲食的小鼠腸道微生物移植給HFD小鼠后,后者腸道微生物紊亂得以改善,有益菌克里斯滕森菌科和乳酸桿菌豐度升高,使MAFLD癥狀得到緩解,相關表征如肝內脂肪積累、肝內促炎細胞因子和NAFLD活動度評分顯著降低,并減輕HFD誘導的脂肪性肝炎[152]。腸-肝軸為腸道微生物及其代謝產物提供了直接通往肝的通道[153]。乙酸可通過減少F4/80陽性巨噬細胞浸潤以及單核細胞趨化蛋白-1和TNF-α的表達來緩解小鼠因HFD引起的肝的炎癥[154]。丁酸可顯著逆轉小鼠因高胰島素誘導的GPR43和β-arrestin2表達的降低,并通過促進AMPK-PGC1-α信號通路和阻斷HDAC信號通路來增加線粒體的生物發生,從而改善肝功能[155]。綜上,通過干預腸道微生物組成有效緩解肝的脂肪沉積、炎癥和纖維化等MAFLD癥狀主要涉及BA水平調節、AMPK信號通路激活、炎癥細胞浸潤減少和阻斷HDAC信號通路等過程。
5 小結與展望
腸道微生物通過多種方式影響宿主的脂肪沉積,調節短鏈脂肪酸的產生、能量攝取、腸道屏障功能和脂肪代謝基因表達等機制是腸道微生物介導的脂肪沉積調控的關鍵因素,這些機制的紊亂或腸道微生物的異常都能影響代謝相關疾病的發展。實踐中,常通過飲食改變、益生菌和益生元的使用、FMT等方式來改善宿主腸道微生物,進而調節脂肪代謝。未來,基于研究技術的快速發展,將會極大加深人類對腸道微生物相互作用以及調控脂肪代謝機理的認識,探索并優化新的調節手段以更高效地干預腸道微生物,進而起到調控脂肪沉積的作用。此外,對腸道微生物代謝產物影響宿主生理學和多種病理學的進一步認識將有效促進人類的代謝健康,并為預防或對抗常見的代謝紊亂提供新的有效途徑。然而,值得注意的是,腸道微生物具有極高的復雜性,不僅涉及細菌和古菌,還包括真菌、噬菌體和真核病毒等,確保腸道微生物研究的安全性、可靠性和有效性仍然是重中之重。
參考文獻(References):
[1] CHEN Y B,LAWSON R,SHANDILYA U,et al.Dietary protein,lipid and insect meal on growth,plasma biochemistry and hepatic immune expression of lake whitefish (Coregonus clupeaformis)[J].Fish Shellfish Immunol Rep,2023,5:100111.
[2] 徐子葉,吳緯澈,汪以真,等.調控肌內脂肪沉積的分子機制研究進展[J].中國畜牧雜志,2018,54(5):1-5.
XU Z Y,WU W C,WANG Y Z,et al.Research progress on molecular mechanisms regulating intramuscular fat deposition[J].Chinese Journal of Animal Science,2018,54(5):1-5.(in Chinese)
[3] AL SAMARRAIE A,PICHETTE M,ROUSSEAU G.Role of the gut microbiome in the development of atherosclerotic cardiovascular disease[J].Int J Mol Sci,2023,24(6):5420.
[4] B?CKHED F,DING H,WANG T,et al.The gut microbiota as an environmental factor that regulates fat storage[J].Proc Natl Acad Sci U S A,2004,101(44):15718-15723.
[5] LEUNG C,RIVERA L,FURNESS J B,et al.The role of the gut microbiota in NAFLD[J].Nat Rev Gastroenterol Hepatol,2016,13(7):412-425.
[6] HENAO-MEJIA J,ELINAV E,JIN C C,et al.Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J].Nature,2012,482(7384):179-185.
[7] VATANEN T,FRANZOSA E A,SCHWAGER R,et al.The human gut microbiome in early-onset type 1 diabetes from the TEDDY study[J].Nature,2018,562(7728):589-594.
[8] DUAN Y H,ZHONG Y Z,XIAO H,et al.Gut microbiota mediates the protective effects of dietary β-hydroxy-β-methylbutyrate (HMB) against obesity induced by high-fat diets[J].FASEB J,2019,33(9):10019-10033.
[9] AHMED B,SULTANA R,GREENE M W.Adipose tissue and insulin resistance in obese[J].Biomed Pharmacother,2021,137:111315.
[10] WU D,WANG H Y,XIE L J,et al.Cross-talk between gut microbiota and adipose tissues in obesity and related metabolic diseases[J].Front Endocrinol (Lausanne),2022,13:908868.
[11] DONG H J,QIN M,WANG P,et al.Regulatory effects and mechanisms of exercise on activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT)[J].Adipocyte,2023,12(1):2266147.
[12] LEE Y S,PARK E J,PARK G S,et al.Lactiplantibacillus plantarum ATG-K2 exerts an anti-obesity effect in high-fat diet-induced obese mice by modulating the gut microbiome[J].Int J Mol Sci,2021,22(23):12665.
[13] WANG Z Y,LAM K L,HU J M,et al.Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice[J].Food Sci Nutr,2019,7(2):579-588.
[14] SUN C B,LI A,WANG H,et al.Positive regulation of acetate in adipocyte differentiation and lipid deposition in obese mice[J].Nutrients,2023,15(17):3736.
[15] GHESMATI Z,RASHID M,FAYEZI S,et al.An update on the secretory functions of brown,white,and beige adipose tissue:towards therapeutic applications[J].Rev Endocr Metab Disord,2024,25(2):279-308.
[16] BARGUT T C L,SOUZA-MELLO V,AGUILA M B,et al.Browning of white adipose tissue:lessons from experimental models[J].Horm Mol Biol Clin Investig,2017,31(1):20160051.
[17] SUREZ-ZAMORANO N,FABBIANO S,CHEVALIER C,et al.Microbiota depletion promotes browning of white adipose tissue and reduces obesity[J].Nat Med,2015,21(12):1497-1501.
[18] XU Y,WANG N,TAN H Y,et al.Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity[J].Theranostics,2020,10(24):11302-11323.
[19] ZHANG S,LI J J,SHI X Y,et al.Naringenin activates beige adipocyte browning in high fat diet-fed C57BL/6 mice by shaping the gut microbiota[J].Food Funct,2022,13(19):9918-9930.
[20] CHEVALIER C,STOJANOVIC′ O,COLIN D J,et al.Gut microbiota orchestrates energy homeostasis during cold[J].Cell,2015,163(6):1360-1374.
[21] SIMOPOULOS A P.An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity[J].Nutrients,2016,8(3):128.
[22] ROGERO M M,CALDER P C.Obesity,inflammation,toll-like receptor 4 and fatty acids[J].Nutrients,2018,10(4):432.
[23] MIYAMOTO J,IGARASHI M,WATANABE K,et al.Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids[J].Nat Commun,2019,10(1):4007.
[24] KINDT A,LIEBISCH G,CLAVEL T,et al.The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice[J].Nat Commun,2018,9(1):3760.
[25] FURUSE M,MURAI A,OKUMURA J.Gut microflora can modify fatty acid composition in liver and egg yolk lipids of laying Japanese quail (Coturnix coturnix japonica)[J].Comp Biochem Physiol Comp Physiol,1992,103(3):569-571.
[26] WALL R,ROSS R P,SHANAHAN F,et al.Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues[J].Am J Clin Nutr,2009,89(5):1393-1401.
[27] LEE K,PAEK K,LEE H Y,et al.Antiobesity effect of trans-10,cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice[J].J Appl Microbiol,2007,103(4):1140-1146.
[28] SEBASTIà C,FOLCH J M,BALLESTER M,et al.Interrelation between gut microbiota,SCFA,and fatty acid composition in pigs[J].mSystems,2024,9(1):e0104923.
[29] JIA X K,XU W,ZHANG L,et al.Impact of gut microbiota and microbiota-related metabolites on hyperlipidemia[J].Front Cell Infect Microbiol,2021,11:634780.
[30] HAN S W,PAN Y F,YANG X,et al.Intestinal microorganisms involved in colorectal cancer complicated with dyslipidosis[J].Cancer Biol Ther,2019,20(1):81-89.
[31] HAN H,WANG M Y,ZHONG R Q,et al.Depletion of gut microbiota inhibits hepatic lipid accumulation in high-fat diet-fed mice[J].Int J Mol Sci,2022,23(16):9350.
[32] ZHANG Y N,MA L,ZHANG L,et al.Effects and action mechanisms of lotus leaf (Nelumbo nucifera) ethanol extract on gut microbes and obesity in high-fat diet-fed rats[J].Front Nutr,2023,10:1169843.
[33] LI X H,HU Y,LV Y F,et al.Gut microbiota and lipid metabolism alterations in mice induced by oral cadmium telluride quantum dots[J].J Appl Toxicol,2020,40(8):1131-1140.
[34] ZHANG F,QIU L,XU X P,et al.Beneficial effects of probiotic cholesterol-lowering strain of Enterococcus faecium WEFA23 from infants on diet-induced metabolic syndrome in rats[J].J Dairy Sci,2017,100(3):1618-1628.
[35] TARANTO M P,MEDICI M,PERDIGON G,et al.Evidence for hypocholesterolemic effect of Lactobacillus reuteri in hypercholesterolemic mice[J].J Dairy Sci,1998,81(9):2336-2340.
[36] XIAO J Z,KONDO S,TAKAHASHI N,et al.Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers[J].J Dairy Sci,2003,86(7):2452-2461.
[37] LIN S Y,AYRES J W,WINKLER Jr W,et al.Lactobacillus effects on cholesterol:in vitro and in vivo results[J].J Dairy Sci,1989,72(11):2885-2899.
[38] 吳永保,李 琳,聞治國,等.動物體內極長鏈多不飽和脂肪酸代謝及其生理功能[J].中國畜牧雜志,2018,54(3):20-26.
WU Y B,LI L,WEN Z G,et al.Research progress on metabolism and physiological function of very-long-chain polyunsaturated fatty acids in animals[J].Chinese Journal of Animal Science,2018,54(3):20-26.(in Chinese)
[39] JIN Y X,WU Y,ZENG Z Y,et al.From the cover:exposure to oral antibiotics induces gut microbiota dysbiosis associated with lipid metabolism dysfunction and low-grade inflammation in mice[J].Toxicol Sci,2016,154(1):140-152.
[40] HAMAMAH S,AMIN A,AL-KASAIR A L,et al.Dietary fat modulation of gut microbiota and impact on regulatory pathways controlling food intake[J].Nutrients,2023,15(15):3365.
[41] LIU H M,DU T, XLI C,et al.STAT3 phosphorylation in central leptin resistance[J].Nutr Metab (Lond),2021,18(1):39.
[42] TREVELLINE B K,KOHL K D.The gut microbiome influences host diet selection behavior[J].Proc Natl Acad Sci U S A,2022,119(17):e2117537119.
[43] KIM J D,YOON N A,JIN S,et al.Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding[J].Cell Metab,2019,30(5):952-962.e5.
[44] GU M,LIU C,YANG T Y,et al.High-fat diet induced gut microbiota alterations associating with Ghrelin/JAK2/STAT3 up-regulation to promote benign prostatic hyperplasia development[J].Front Cell Dev Biol,2021,9:615928.
[45] SHANAHAN F.The colonic microbiota in health and disease[J].Curr Opin Gastroenterol,2013,29(1):49-54.
[46] 秦昆鵬,王志云,高 騫,等.乙酸對脂肪代謝的影響及其作用機制[J].動物營養學報,2021,33(5):2544-2554.
QIN K P,WANG Z Y,GAO Q,et al.Effects of acetic acid on fat metabolism and its mechanism[J].Chinese Journal of Animal Nutrition,2021,33(5):2544-2554.(in Chinese)
[47] RAYBOULD H E.Gut microbiota,epithelial function and derangements in obesity[J].J Physiol,2012,590(3):441-446.
[48] GILLILAND S E,NELSON C R,MAXWELL C.Assimilation of cholesterol by Lactobacillus acidophilus[J].Appl Environ Microbiol,1985,49(2):377-381.
[49] MARTINEZ-GURYN K,HUBERT N,FRAZIER K,et al.Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids[J].Cell Host Microbe,2018,23(4):458-469.e5.
[50] SEMOVA I,CARTEN J D,STOMBAUGH J,et al.Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish[J].Cell Host Microbe,2012,12(3):277-288.
[51] BEGLEY M,GAHAN C G M,HILL C.The interaction between bacteria and bile[J].FEMS Microbiol Rev,2005,29(4):625-651.
[52] RAMASAMY K,ABDULLAH N,WONG M C,et al.Bile salt deconjugation and cholesterol removal from media by Lactobacillus strains used as probiotics in chickens[J].J Sci Food Agric,2010,90(1):65-69.
[53] SAYIN S I,WAHLSTR?M A,FELIN J,et al.Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid,a naturally occurring FXR antagonist[J].Cell Metab,2013,17(2):225-235.
[54] TANNOCK G W,DASHKEVICZ M P,FEIGHNER S D.Lactobacilli and bile salt hydrolase in the murine intestinal tract[J].Appl Environ Microbiol,1989,55(7):1848-1851.
[55] SATO H,ZHANG L S,MARTINEZ K,et al.Antibiotics suppress activation of intestinal mucosal mast cells and reduce dietary lipid absorption in sprague-dawley rats[J].Gastroenterology,2016,151(5):923-932.
[56] PREISS-LANDL K,ZIMMERMANN R,H?MMERLE G,et al.Lipoprotein lipase:the regulation of tissue specific expression and its role in lipid and energy metabolism[J].Curr Opin Lipidol,2002,13(5):471-481.
[57] JAKAB J,MI?KIC′ B,MIK?IC′ ?,et al.Adipogenesis as a potential anti-obesity target:a review of pharmacological treatment and natural products[J].Diabetes Metab Syndr Obes,2021,14:67-83.
[58] ZHANG T,DING H,CHEN L,et al.Antibiotic-induced dysbiosis of microbiota promotes chicken lipogenesis by altering metabolomics in the cecum[J].Metabolites,2021,11(8):487.
[59] PARK E J,LEE Y S,KIM S M,et al.Beneficial effects of Lactobacillus plantarum strains on non-alcoholic fatty liver disease in high fat/high fructose diet-fed rats[J].Nutrients,2020,12(2):542.
[60] DENTIN R,PéGORIER J P,BENHAMED F,et al.Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression[J].J Biol Chem,2004,279(19):20314-20326.
[61] ALVES C C,WAITZBERG D L,DE ANDRADE L S,et al.Prebiotic and synbiotic modifications of beta oxidation and lipogenic gene expression after experimental hypercholesterolemia in rat liver[J].Front Microbiol,2017,8:2010.
[62] BRAHE L K,ASTRUP A,LARSEN L H.Can we prevent obesity-related metabolic diseases by dietary modulation of the gut microbiota?[J].Adv Nutr,2016,7(1):90-101.
[63] WEITKUNAT K,SCHUMANN S,PETZKE K J,et al.Effects of dietary inulin on bacterial growth,short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice[J].J Nutr Biochem,2015,26(9):929-937.
[64] DELZENNE N M,KOK N.Effects of fructans-type prebiotics on lipid metabolism[J].Am J Clin Nutr,2001,73(2):456s-458s.
[65] HEIMANN E,NYMAN M,DEGERMAN E.Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes[J].Adipocyte,2015,4(2):81-88.
[66] GAO X,LIN S H,REN F,et al.Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia[J].Nat Commun,2016,7:11960.
[67] TAKAHASHI D,HOSHINA N,KABUMOTO Y,et al.Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory T cells[J].EBioMedicine,2020,58:102913.
[68] LI G L,YAO W,JIANG H L.Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue[J].J Nutr,2014,144(12):1887-1895.
[69] DING L L,YANG L,WANG Z T,et al.Bile acid nuclear receptor FXR and digestive system diseases[J].Acta Pharm Sin B,2015,5(2):135-144.
[70] CHIANG J Y L,PATHAK P,LIU H L,et al.Intestinal farnesoid X receptor and takeda G protein couple receptor 5 signaling in metabolic regulation[J].Dig Dis,2017,35(3):241-245.
[71] PATHAK P,HELSLEY R N,BROWN A L,et al.Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism[J].Am J Physiol Heart Circ Physiol,2020,318(6):H1474-H1486.
[72] CHEN J Z,VITETTA L.Gut microbiota metabolites in NAFLD pathogenesis and therapeutic implications[J].Int J Mol Sci,2020,21(15):5214.
[73] LONG Y C,ZIERATH J R.AMP-activated protein kinase signaling in metabolic regulation[J].J Clin Invest,2006,116(7):1776-1783.
[74] CHANG H,KWON O,SHIN M S,et al.Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation[J].J Appl Physiol (1985),2018,125(3):715-722.
[75] SHAN B X,AI Z F,ZENG S F,et al.Gut microbiome-derived lactate promotes to anxiety-like behaviors through GPR81 receptor-mediated lipid metabolism pathway[J].Psychoneuroendocrinology,2020,117:104699.
[76] ARAúJO J R,TAZI A,BURLEN-DEFRANOUX O,et al.Fermentation products of commensal bacteria alter enterocyte lipid metabolism[J].Cell Host Microbe,2020,27(3):358-375.e7.
[77] SCHWEIGER M,SCHREIBER R,HAEMMERLE G,et al.Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism[J].J Biol Chem,2006,281(52):40236-40241.
[78] JIA Y M,HONG J,LI H F,et al.Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β3-adrenergic receptor activation in high-fat diet-induced obese mice[J].Exp Physiol,2017,102(2):273-281.
[79] JOCKEN J W E,GONZLEZ HERNNDEZ M A,HOEBERS N T H,et al.Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model[J].Front Endocrinol (Lausanne),2018,8:372.
[80] LU Y Y,FAN C N,LI P,et al.Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating g protein-coupled receptors and gut microbiota[J].Sci Rep,2016,6:37589.
[81] YAMASHITA H,MARUTA H,JOZUKA M,et al.Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats[J].Biosci Biotechnol Biochem,2009,73(3):570-576.
[82] HONG J,JIA Y M,PAN S F,et al.Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice[J].Oncotarget,2016,7(35):56071-56082.
[83] YAN H,AJUWON K M.Mechanism of butyrate stimulation of triglyceride storage and adipokine expression during adipogenic differentiation of porcine stromovascular cells[J].PLoS One,2015,10(12):e0145940.
[84] GRABNER G F,XIE H,SCHWEIGER M,et al.Lipolysis:cellular mechanisms for lipid mobilization from fat stores[J].Nat Metab,2021,3(11):1445-1465.
[85] LI Y,MA Z Q,JIANG S,et al.A global perspective on FOXO1 in lipid metabolism and lipid-related diseases[J].Prog Lipid Res,2017,66:42-49.
[86] MENG Q H,LI Y,XU Y D,et al.Acetobacter and lactobacillus alleviate the symptom of insulin resistance by blocking the JNK-JAK/STAT pathway in Drosophila melanogaster[J].Biochim Biophys Acta Mol Basis Dis,2024,1870(1):166901.
[87] KIM Y A,KEOGH J B,CLIFTON P M.Probiotics,prebiotics,synbiotics and insulin sensitivity[J].Nutr Res Rev,2018,31(1):35-51.
[88] WANG J F,FU S P,LI S N,et al.Short-chain fatty acids inhibit growth hormone and prolactin gene transcription via cAMP/PKA/CREB signaling pathway in dairy cow anterior pituitary cells[J].Int J Mol Sci,2013,14(11):21474-21488.
[89] KALTENECKER D,MUELLER K M,BENEDIKT P,et al.Adipocyte STAT5 deficiency promotes adiposity and impairs lipid mobilisation in mice[J].Diabetologia,2017,60(2):296-305.
[90] KALTENECKER D,SPIRK K,RUGE F,et al.STAT5 is required for lipid breakdown and beta-adrenergic responsiveness of brown adipose tissue[J].Mol Metab,2020,40:101026.
[91] WU M F,XI Q H,SHENG Y,et al.Antioxidant peptides from monkfish swim bladders:ameliorating nafld in vitro by suppressing lipid accumulation and oxidative stress via regulating AMPK/Nrf2 pathway[J].Mar Drugs,2023,21(6):360.
[92] XU N B,LI X F,WENG J,et al.Adiponectin ameliorates GMH-induced brain injury by regulating microglia M1/M2 polarization via AdipoR1/APPL1/AMPK/PPARγ signaling pathway in neonatal rats[J].Front Immunol,2022,13:873382.
[93] GéRARD P.Metabolism of cholesterol and bile acids by the gut microbiota[J].Pathogens,2013,3(1):14-24.
[94] VEIGA P,JUSTE C,LEPERCQ P,et al.Correlation between faecal microbial community structure and cholesterol-to-coprostanol conversion in the human gut[J].FEMS Microbiol Lett,2005,242(1):81-86.
[95] REN D W,LI L,SCHWABACHER A W,et al.Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222[J].Steroids,1996,61(1):33-40.
[96] LYE H S,RUSUL G,LIONG M T.Removal of cholesterol by Lactobacilli via incorporation and conversion to coprostanol[J].J Dairy Sci,2010,93(4):1383-1392.
[97] ZIARNO M,ZARE′BA D,S′CIBISZ I,et al.Exploring the cholesterol-modifying abilities of Lactobacilli cells in digestive models and dairy products[J].Microorganisms,2023,11(6):1478.
[98] BUBECK A M,URBAIN P,HORN C,et al.High-fat diet impact on intestinal cholesterol conversion by the microbiota and serum cholesterol levels[J].iScience,2023,26(9):107697.
[99] OZIN′SKA N,JUNGNICKEL C.Importance of conjugation of the bile salt on the mechanism of lipolysis[J].Molecules,2021,26(19):5764.
[100] ROHR M W,NARASIMHULU C A,RUDESKI-ROHR T A,et al.Negative effects of a high-fat diet on intestinal permeability:a review[J].Adv Nutr,2020,11(1):77-91.
[101] KONG C,GAO R Y,YAN X B,et al.Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet[J].Nutrition,2019,60:175-184.
[102] SINGH R P,HALAKA D A,HAYOUKA Z,et al.High-fat diet induced alteration of mice microbiota and the functional ability to utilize fructooligosaccharide for ethanol production[J].Front Cell Infect Microbiol,2020,10:376.
[103] MARQUES T M,WALL R,O’SULLIVAN O,et al.Dietary trans-10,cis-12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice[J].Br J Nutr,2015,113(5):728-738.
[104] JAMAR G,PISANI L P.Inflammatory crosstalk between saturated fatty acids and gut microbiota-white adipose tissue axis[J].Eur J Nutr,2023,62(3):1077-1091.
[105] TAO F Z,XING X,WU J N,et al.Enteral nutrition modulation with n-3 PUFAs directs microbiome and lipid metabolism in mice[J].PLoS One,2021,16(3):e0248482.
[106] ROHM T V,MEIER D T,OLEFSKY J M,et al.Inflammation in obesity,diabetes,and related disorders[J].Immunity,2022,55(1):31-55.
[107] LE CHATELIER E,NIELSEN T,QIN J J,et al.Richness of human gut microbiome correlates with metabolic markers[J].Nature,2013,500(7464):541-546.
[108] CANI P D,AMAR J,IGLESIAS M A,et al.Metabolic endotoxemia initiates obesity and insulin resistance[J].Diabetes,2007,56(7):1761-1772.
[109] VELLOSO L A,FOLLI F,SAAD M J.TLR4 at the crossroads of nutrients,gut microbiota,and metabolic inflammation[J].Endocr Rev,2015,36(3):245-271.
[110] NAVALóN-MONLLOR V,SORIANO-ROMANí L,SILVA M,et al.Microbiota dysbiosis caused by dietetic patterns as a promoter of Alzheimer′s disease through metabolic syndrome mechanisms[J].Food Funct,2023,14(16):7317-7334.
[111] IN KIM H,KIM J K,KIM J Y,et al.Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis,endotoxemia,liver steatosis,and obesity in mice[J].Nutr Res,2019,67:78-89.
[112] BEAUMONT M,NEYRINCK A M,OLIVARES M,et al.The gut microbiota metabolite indole alleviates liver inflammation in mice[J].FASEB J,2018,32(12):6681-6693.
[113] CHENG Z L,ZHANG L,YANG L,et al.The critical role of gut microbiota in obesity[J].Front Endocrinol (Lausanne),2022,13:1025706.
[114] MACIA L,TAN J,VIEIRA A T,et al.Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J].Nat Commun,2015,6:6734.
[115] PARK S,KIM Y J,CHOI C Y,et al.Bariatric surgery can reduce albuminuria in patients with severe obesity and normal kidney function by reducing systemic inflammation[J].Obes Surg,2018,28(3):831-837.
[116] NEAL M D,LEAPHART C,LEVY R,et al.Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier[J].J Immunol,2006,176(5):3070-3079.
[117] VIJAY-KUMAR M,AITKEN J D,CARVALHO F A,et al.Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5[J].Science,2010,328(5975):228-231.
[118] TURNBAUGH P J,HAMADY M,YATSUNENKO T,et al.A core gut microbiome in obese and lean twins[J].Nature,2009,457(7228):480-484.
[119] PASCALE A,MARCHESI N,MARELLI C,et al.Microbiota and metabolic diseases[J].Endocrine,2018,61(3):357-371.
[120] DOS SANTOS PEREIRA INDIANI C M,RIZZARDI K F,CASTELO P M,et al.Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota:a systematic review[J].Child Obes,2018,14(8):501-509.
[121] MICHELS N,ZOUIOUICH S,VANDERBAUWHEDE B,et al.Human microbiome and metabolic health:an overview of systematic reviews[J].Obes Rev,2022,23(4):e13409.
[122] GOODRICH J K,WATERS J L,POOLE A C,et al.Human genetics shape the gut microbiome[J].Cell,2014,159(4):789-799.
[123] LEY R E,B?CKHED F,TURNBAUGH P,et al.Obesity alters gut microbial ecology[J].Proc Natl Acad Sci U S A,2005,102(31):11070-11075.
[124] KADEER G,FU W R,HE Y Q,et al.Effect of different doses of Lacticaseibacillus paracasei K56 on body fat and metabolic parameters in adult individuals with obesity:a pilot study[J].Nutr Metab (Lond),2023,20(1):16.
[125] CHEN J J,WANG R,LI X F,et al.Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome[J].Br J Nutr,2012,107(10):1429-1434.
[126] TAI N W,WONG F S,WEN L.The role of gut microbiota in the development of type 1,type 2 diabetes mellitus and obesity[J].Rev Endocr Metab Disord,2015,16(1):55-65.
[127] ALLIN K H,TREMAROLI V,CAESAR R,et al.Aberrant intestinal microbiota in individuals with prediabetes[J].Diabetologia,2018,61(4):810-820.
[128] HAN X,WANG Y,ZHANG P P,et al.Kazak faecal microbiota transplantation induces short-chain fatty acids that promote glucagon-like peptide-1 secretion by regulating gut microbiota in db/db mice[J].Pharm Biol,2021,59(1):1075-1085.
[129] GUO W Q,ZHANG Z L,LI L R,et al.Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes[J].Pharmacol Res,2022,182:106355.
[130] DE GROOT P F,BELZER C,AYDIN ?,et al.Distinct fecal and oral microbiota composition in human type 1 diabetes,an observational study[J].PLoS One,2017,12(12):e0188475.
[131] YUAN X X,WANG R R,HAN B,et al.Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes[J].Nat Commun,2022,13(1):6356.
[132] HILL J H,FRANZOSA E A,HUTTENHOWER C,et al.A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development[J].Elife,2016,5:e20145.
[133] DEL CHIERICO F,RAPINI N,DEODATI A,et al.Pathophysiology of type 1 diabetes and gut microbiota role[J].Int J Mol Sci,2022,23(23):14650.
[134] COSTA F R C,FRAN?OZO M C S,DE OLIVEIRA G G,et al.Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset[J].J Exp Med,2016,213(7):1223-1239.
[135] PERRY R J,PENG L,BARRY N A,et al.Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J].Nature,2016,534(7606):213-217.
[136] HENDRIKX T,SCHNABL B.Indoles:metabolites produced by intestinal bacteria capable of controlling liver disease manifestation[J].J Intern Med,2019,286(1):32-40.
[137] GURUNG M,LI Z P,YOU H,et al.Role of gut microbiota in type 2 diabetes pathophysiology[J].EBioMedicine,2020,51:102590.
[138] NOURELDEIN M H,BITAR S,YOUSSEF N,et al.Butyrate modulates diabetes-linked gut dysbiosis:epigenetic and mechanistic modifications[J].J Mol Endocrinol,2020,64(1):29-42.
[139] MUSSO G,GAMBINO R,CASSADER M.Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes[J].Annu Rev Med,2011,62:361-380.
[140] BAKO H Y,IBRAHIM M A,ISAH M S,et al.Inhibition of JAK-STAT and NF-κB signalling systems could be a novel therapeutic target against insulin resistance and type 2 diabetes[J].Life Sci,2019,239:117045.
[141] LEE Y S,LEE D,PARK G S,et al.Lactobacillus plantarum HAC01 ameliorates type 2 diabetes in high-fat diet and streptozotocin-induced diabetic mice in association with modulating the gut microbiota[J].Food Funct,2021,12(14):6363-6373.
[142] GONZALEZ A,KRIEG R,MASSEY H D,et al.Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression[J].Nephrol Dial Transplant,2019,34(5):783-794.
[143] EL HAGE R,HERNANDEZ-SANABRIA E,CALATAYUD ARROYO M,et al.Supplementation of a propionate-producing consortium improves markers of insulin resistance in an in vitro model of gut-liver axis[J].Am J Physiol Endocrinol Metab,2020,318(5):E742-E749.
[144] TIROSH A,CALAY E S,TUNCMAN G,et al.The short-chain fatty acid propionate increases glucagon and FABP4 production,impairing insulin action in mice and humans[J].Sci Transl Med,2019,11(489):eaav0120.
[145] ZHAI L X,WU J Y,LAM Y Y,et al.Gut-Microbial metabolites,probiotics and their roles in type 2 diabetes[J].Int J Mol Sci,2021,22(23):12846.
[146] YAQUB S,ANANIAS P,SHAH A,et al.Decoding the pathophysiology of non-alcoholic fatty liver disease progressing to non-alcoholic steatohepatitis:a systematic review[J].Cureus,2021,13(9):e18201.
[147] STOLS-GON?ALVES D,MAK A L,MADSEN M S,et al.Faecal Microbiota transplantation affects liver DNA methylation in Non-alcoholic fatty liver disease:a multi-omics approach[J].Gut Microbes,2023,15(1):2223330.
[148] LI F X,YE J Z,SHAO C X,et al.Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients:a systematic review and meta-analysis[J].Lipids Health Dis,2021,20(1):22.
[149] YANG C,XU J G,XU X M,et al.Characteristics of gut microbiota in patients with metabolic associated fatty liver disease[J].Sci Rep,2023,13(1):9988.
[150] ABENAVOLI L,MAURIZI V,RINNINELLA E,et al.Fecal microbiota transplantation in NAFLD treatment[J].Medicina (Kaunas),2022,58(11):1559.
[151] HAN C,LI Z S,LIU R Y,et al.Lonicerae flos polysaccharides improve nonalcoholic fatty liver disease by activating the adenosine 5’-monophosphate-activated protein kinase pathway and reshaping gut microbiota[J].J Sci Food Agric,2023,103(15):7721-7738.
[152] ZHOU D,PAN Q,SHEN F,et al.Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota[J].Sci Rep,2017,7(1):1529.
[153] BARBER T M,HANSON P,WEICKERT M O.Metabolic-associated fatty liver disease and the gut microbiota[J].Endocrinol Metab Clin North Am,2023,52(3):485-496.
[154] JI Y,GAO Y,CHEN H,et al.Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis,and oxidative and inflammatory stress[J].Nutrients,2019,11(9):2062.
[155] ZHAO T T,GU J L,ZHANG H X,et al.Sodium butyrate-modulated mitochondrial function in high-insulin induced HepG2 cell dysfunction[J].Oxid Med Cell Longev,2020,2020:1904609.
(編輯 范子娟)