999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

爆炸沖擊波性腦損傷的發生機制和生物標志物研究進展

2024-12-04 00:00:00包昀禹,辛佳艷張安強王延江卜先樂
爆炸與沖擊 2024年11期
關鍵詞:生物標志物

摘要: 爆炸沖擊波性腦損傷( blast-induced traumatic brain injury, bTBI)是由爆炸時的沖擊波對顱腦造成的損傷效應,傷者可表現出不同程度的軀體和行為障礙以及遠期認知功能損害,是戰時最常見的腦損傷類型。bTBI 的發生機制復雜且尚未完全闡明。爆炸產生的沖擊波作用于頭部表面并在顱內傳播,造成顱腦彌漫性損傷,從病理學層面可將bTBI 分為原發性損傷和繼發性損傷。沖擊波的機械致傷效應會造成腦內結構的原發性受損,通常不可逆,只能采取有效的預防措施減少傷害。原發性損傷可引發一系列復雜的繼發性級聯反應,包括突觸功能障礙、興奮性毒性損傷、血腦屏障破壞、腦膜淋巴系統功能障礙、神經炎癥、線粒體功能障礙、氧化應激反應、tau 蛋白過度磷酸化和淀粉樣蛋白-β 病理改變等,可持續至傷后數天甚至慢性階段,為臨床治療提供了干預的時間窗。輕度bTBI 臨床表現異質性高,影像學表現常呈陰性,早期診斷困難。但近年來bTBI 的血液生物標志物取得長足進展,包括泛素C 末端水解酶L1、神經元特異性烯醇化酶、神經絲蛋白輕鏈、磷酸化tau 蛋白、髓鞘堿性蛋白、膠質纖維酸性蛋白、S100 鈣結合蛋白B和其他新興生物標志物等,有望成為影像學陰性的bTBI 的早期診斷和預后判斷的潛在生物標志物。綜上,本文重點綜述了近年來關于bTBI 的發生機制和生物標志物研究的前沿進展,并展望了未來的研究方向,以期為探索bTBI 的發生機制、早期診斷策略和干預靶點提供新思路。

關鍵詞: 爆炸沖擊波性腦損傷;沖擊波;發生機制;生物標志物

中圖分類號: O383; R741 國標學科代碼: 13035; 32054 文獻標志碼: A

創傷性腦損傷(traumatic brain injury, TBI)是指由外力引起的腦功能或腦病理學的改變[1],其致傷因素復雜,通常包括道路交通事故、意外墜落和暴力傷害等。爆炸是戰時最常見的致傷因素,自2022 年2 月以來,俄烏沖突在兩年間造成的30 457 名烏克蘭平民傷亡中,91% 由廣域爆炸性武器造成,包括火炮、坦克、導彈、空襲等,地雷和戰爭遺留爆炸物占3.7%[2]。現代戰爭中高爆武器的大量應用使爆炸沖擊波成為戰時TBI 最主要致傷因素,一項關于2001-2018 年的美軍作戰人員TBI 的回顧性研究顯示,在46 309 名遭受了TBI 的服役人員中,有71% 是由于爆炸沖擊波所致[3]。

爆炸沖擊波性腦損傷(blast-induced traumatic brain injury,bTBI)是爆炸時產生的沖擊波作用于頭部引起的顱腦彌漫性損傷,是戰時最常見的戰創傷類型,傷死率高達30%,給衛勤保障帶來了嚴峻挑戰[4]。戰時沖擊波主要來自于爆炸型的武器、彈藥,平時亦可發生于化學爆炸、煙花爆炸或工業事故等[5]。與傳統意義上外傷導致的TBI 不同,bTBI 具有特殊的致傷機制、病理變化及臨床表現,雖多無局灶性損傷,但可表現出精神行為癥狀和遠期認知障礙,被認為是TBI 的一種獨特類型。沖擊波作用于腦組織的機制十分復雜,bTBI 的發生機制目前尚未完全闡明。此外,輕度bTBI 早期診斷困難,臨床漏診和延誤診斷比例高,往往造成遠期不可逆性神經功能損害。因此,揭示bTBI 的發生機制、探索早期診斷方法和有效干預靶點是該領域亟待解決的重要科學問題。本文綜述bTBI 的發生機制及生物標志物研究進展,以期為探索bTBI 的發生機制和臨床診治策略提供新思路。

1 爆炸沖擊波性腦損傷的主要臨床表現

bTBI 的臨床表現異質性強,傷員病情輕重不一,輕者可無明顯癥狀或表現為不同程度的頭暈頭痛、記憶喪失、注意力不集中、焦慮行為等,嚴重者可死亡。遠期可出現認知能力受損、行為改變、睡眠障礙、癲癇發作等[6],嚴重影響單兵作戰能力和遠期生活質量[7],增加了軍隊醫療成本及長期社會保障壓力。

1.1 根據嚴重程度劃分

美國國防部TBI 指南[8] 根據格拉斯哥昏迷量表(Glasgow coma scale,GCS)、意識喪失(loss ofconsciousness,LOC)、意識改變(alteration of consciousness,AOC)、創傷后遺忘(post-traumatic amnesia,PTA)和神經影像學表現5 個方面,將bTBI 患者分為輕、中、重3 級,如表1 所示,其中以輕度最常見,占80% 以上[3, 9]。

輕度bTBI 患者最常見的表現是頭痛、健忘、認知功能障礙、注意力分散、平衡受損、情緒改變和睡眠障礙,大部分患者計算機斷層成像(computed tomography,CT)檢查呈陰性,癥狀可在幾小時或幾天內消退,少數可持續數天甚至更長時間,出現腦震蕩后綜合征(postconcussive syndrome,PCS)[5, 10-11]。中度bTBI 患者可出現更長時間的意識喪失,常伴有逆行性或順行性遺忘,頭顱CT 檢查可見陽性征象,如顱內出血、水腫等[12-13]。重度bTBI 患者傷情嚴重,頭顱CT 多呈陽性,顯示顱骨骨折、顱內出血和腦實質挫傷等,短時間內即可繼發惡性腦水腫和腦血管痙攣,死亡率高達30%~40%[9, 11-12, 14]。

1.2 根據病情進展劃分

由于沖擊波的致傷機制復雜,且腦組織具有高度異質性,bTBI 患者在疾病進展過程中的表現也不完全相同。目前針對bTBI 的臨床病情分期未有統一且明確的劃分,故根據bTBI 的病情進展,概括梳理其臨床表現如下。

顱腦沖擊傷后急性期即可出現腦震蕩相關臨床表現,主要包括軀體(頭痛、頭暈、惡心等)、認知(信息處理能力下降、注意力分散等)和行為(暴躁易怒、情緒不穩、多動等)3 個方面的能力下降,大部分可在1~2 周內恢復,但10%~15% 的患者會持續更長時間[9, 15]。若頭痛頭暈、疲勞、注意力不集中、睡眠障礙、情緒改變等癥狀持續超過30 d 則稱為PCS[15]。爆炸暴露可增加創傷后應激障礙(post-traumaticstress disorder,PTSD)罹患風險[5, 7]。具有爆炸暴露史的退伍軍人可表現出明顯的PTSD 癥狀,且與神經心理功能下降如信息處理速度減慢有關[16-17]。受傷后數月內,部分患者表現為頭痛、疲勞、對光或聲音敏感、認知障礙、注意力難以集中、重度抑郁、焦慮、睡眠障礙、神經內分泌失調等。PCS 和PTSD 癥狀表現有很大程度的重疊[9]。上述癥狀特異性不高,影像學檢查多為正常,部分患者的神經精神癥狀可能持續存在至傷后數月,表現為慢性創傷性腦病(chronic traumatic encephalopathy,CTE)[9]。研究表明,CTE 與bTBI 病史密切相關[18],可表現出認知障礙、情緒障礙、行為改變、藥物濫用和自殺等[19-20]。此外,TBI 可增大遠期癲癇風險,且癲癇的發生率隨TBI 嚴重程度的提高而上升[21]。

2 爆炸沖擊波性腦損傷的發生機制

炸藥爆炸后產生巨大的能量,推動周圍介質(空氣、水等)迅速膨脹并瞬間壓縮形成沖擊波,介質壓力、密度和溫度驟然升高達到峰值,而后隨著沖擊波的擴散和傳播,指數衰減直至負壓狀態。bTBI 的主要致傷因素是爆炸發生后沖擊波作用于頭部表面并在顱內傳播形成的應力波[5, 22]。因為戰場環境多變,且腦組織異質性明顯,bTBI 的生物力學機制十分復雜。目前研究公認最普遍的是波傳播機制和顱骨變形機制,前者指沖擊波經顱骨或經顱骨孔道傳遞至大腦引起腦損傷,后者指沖擊波作用于顱骨,使顱骨產生局部彎曲變形進而導致顱內壓的正負交替改變造成腦損傷。此外,沖擊過程中腦內空化氣泡破裂產生的微射流、加速效應導致的機械性損傷和胸腹部壓縮產生的血涌都會造成腦組織不同程度的受損。上述致傷機制可同時存在且彼此間相互關聯,受多種因素影響[5, 22-26]。

與鈍性撞擊導致的TBI 不同,由于顱骨的整體暴露,bTBI 通常表現為彌漫性損傷[27]。從病理學層面可分為原發性損傷和繼發性損傷,原發性損傷指因沖擊波致傷效應導致的腦組織的直接機械損傷,具有不可逆性,只能采取有效的預防措施減少傷害[28-29]。繼發性bTBI 是指沖擊波致傷后數小時或數天內,由原發性損傷引發的一系列復雜的級聯反應,可持續至傷后數天甚至慢性階段,為臨床治療提供了一個干預時間窗[28-30]。結合當前研究進展,簡要總結bTBI 的主要病理過程如圖1 所示。

2.1 彌漫性軸索損傷

彌漫性軸索損傷(diffuse axonal injury,DAI)是bTBI 的典型病理特征。爆炸暴露引起的DAI 和持續性軸突變性與bTBI 后慢性神經精神癥狀有關,是導致長期認知功能障礙和死亡的重要內因[31-33]。沖擊波顱內傳播時,因為腦組織的旋轉、變形或位移,作用于軸突的軸向應力和剪切應力會造成軸突的原發機械損傷,包括旋轉、拉伸和壓縮[34]。腦白質包含大量的神經纖維束,且相鄰結構密度不同,因此最易受損[35]。DAI 后微管蛋白水解致微管穩定性下降,神經絲蛋白結構改變,肌動蛋白環-血影蛋白復合物間距增大,軸突骨架破壞[36]。軸突運輸中斷,軸突內轉運的蛋白質如β-淀粉樣蛋白前體蛋白( β-amyloidprecursor protein,β-APP)等快速積累,導致軸突腫脹。通過免疫組織化學技術檢測APP 積累是目前評估軸突損傷的金標準[37]。部分神經元軸突遠端與胞體間發生不可逆性斷裂,伴有髓鞘的丟失[32]。除原發性的機械損傷外,DAI 還與許多繼發損傷相互影響構成復雜的級聯反應,如線粒體功能障礙、氧化應激反應、鈣離子失衡等,進一步加重脫髓鞘和軸突變性[37-39]。隨著時間的推移,持續的神經元回路功能障礙和白質束軸突變性,引發長期的進行性神經退行性變[32]。

2.2 腦血管損傷

沖擊波的機械損傷效應可導致腦血管結構的缺失和完整性受損[27]。Chen 等[40] 研究發現,爆炸沖擊波可損傷血管內皮細胞表面的糖萼結構,導致腦血管功能障礙和血腦屏障(blood-brain barrier, BBB)受損。輕度爆炸傷一般不會引起明顯的局灶性出血,但可損傷小血管并誘導持續的局灶性創傷性微血管損傷,中重度可能會導致顱內出血和水腫,甚至形成延遲性血管痙攣和假性動脈瘤[5, 41-42]。在多種急性沖擊波損傷動物模型中,通過肉眼和顯微鏡可見硬膜下、蛛網膜下和腦實質出血,且其嚴重程度與沖擊波超壓大小和距離相關[43-44]。bTBI 大鼠急性期、亞急性期和慢性期的高分辨CT 結果顯示,爆炸暴露后48 h 就可在部分腦區觀察到血管閉塞,6 周可見到腦血管排列紊亂和灌注不足,13 個月時腦血管變性更加明顯[45]。并且既往有過爆炸暴露的輕度bTBI 退伍軍人在5 年后血漿中血管內皮生長因子-A(vascular endothelial growth factor-A,VEGF-A)仍顯著高于對照組,進一步提示慢性血管功能障礙[46]。

2.3 突觸功能障礙

Wang 等[47] 研究發現,bTBI 急性期即可在聽覺皮層發現突觸傳遞受損和樹突改變。輕度bTBI 小鼠可出現頂葉皮層和海馬的樹突密度降低、分支減少,且頂葉皮層的中間層尤為明顯[48]。電鏡下可在bTBI 腦組織中觀察到神經元核周變暗、內質網扭曲、線粒體腫脹、軸突微管紊亂和突觸密度降低,皮質興奮性突觸喪失而海馬興奮性突觸增加[49]。多項大鼠海馬切片的體外爆炸實驗表明,爆炸暴露可以誘導體外培養的海馬切片長時程增強作用降低[50-51],突觸完整性受損,突觸傳遞障礙,降低與認知障礙相關的突觸蛋白表達[52]。另外,Tagge 等[42] 研究發現,TBI 后小鼠海馬軸突傳導速度出現急性、持續性下降,部分大腦區域的短時程和長時程活動依賴性突觸可塑性降低。

2.4 興奮性毒性

谷氨酸是由大腦神經元釋放的主要興奮性神經遞質,其作用于突觸后膜的神經遞質受體主要包含2 種:主要門控Ca2+內流的N-甲基-D-天冬氨酸受體(N-methyl-D-aspartic acid receptor,NMDAR)和主要門控Na+內流的α-氨基-3-羥基-5-甲基-4-異惡唑丙酸受體(α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacidreceptor,AMPAR),兩者在神經元興奮性遞質傳遞和突觸可塑性中發揮至關重要的作用[53]。爆炸暴露可引起細胞外谷氨酸水平升高,誘導谷氨酸受體異常過度激活,細胞內Ca2+水平激增,谷氨酸能神經元過度興奮,和相關第二信使系統的變化,最終誘導神經元損傷和細胞死亡,并且神經遞質傳遞障礙的持續累積,以及其與氧化應激、線粒體功能障礙、神經炎癥等繼發性級聯反應的復雜相互作用,導致突觸可塑性受損和長期認知功能障礙[53-56]。海馬神經元的高密度NMDAR 可能是該部位易受興奮性毒性損傷的原因[57]。

2.5 血腦屏障破壞

BBB 由腦毛細血管內皮細胞、細胞間的緊密連接、基膜、周細胞以及星形膠質細胞終足形成的神經膠質膜構成,生理情況下可阻礙外來病原體和免疫介質進入大腦,其基本結構和功能單位是由內皮細胞及其支持的神經膠質細胞和神經元構成的神經血管單元(neurovascular unit,NVU),若NVU 內的細胞元件受到沖擊波的干擾,則會引起BBB 的破壞和一系列繼發性改變[58]。爆炸發生后,內皮細胞、血管平滑肌細胞、周細胞損傷,星形膠質細胞終足腫脹,細胞間緊密連接被破壞,BBB 受損[42-44, 59],同時神經炎癥和神經膠質細胞活化又可釋放多種炎癥介質加劇BBB 的破壞[60]。BBB 損傷后內皮完整性受損、血管平滑肌變性、神經膠質血管損傷、細胞外基質重組、血管重塑,影響腦內血液、腦脊液流動,細胞外液體積聚,進而引發血管源性水腫、顱內壓升高及其他繼發性損傷,使認知和行為發生改變[43, 45, 61]。除血管源性水腫外,引起bTBI 后腦水腫的原因還包括細胞毒性水腫。許多研究都表明水通道蛋白4(aquaporin-4,AQP4)可能參與TBI 后腦水腫的發生發展與轉歸[60, 62]。AQP4 主要在星形膠質細胞中表達,介導了TBI 后因細胞(如星形膠質細胞)內過度水潴留導致的細胞毒性水腫[60]。

2.6 腦膜淋巴系統功能障礙

腦膜淋巴管參與大分子物質、細胞碎片和免疫細胞從大腦向外周引流的功能,維護腦內穩態。有蛋白組學研究在液壓沖擊傷小鼠模型腦膜淋巴系統外周遠端的頸深淋巴結中發現了腦源性蛋白富集和BBB 相關蛋白的功能失調,提示腦膜淋巴系統參與TBI 發生發展[63]。近幾年的研究表明,TBI 可誘導腦膜淋巴系統形態改變和功能障礙[64],TBI 后腦膜淋巴管內皮細胞受損致腦膜淋巴管生成障礙,顱內有害代謝物質清除受阻[65],進而引發腦水腫和顱內壓升高[66]。恢復腦膜淋巴引流功能,促進腦脊液引流和腦水腫吸收,可減輕神經炎癥并降低活性氧(reactive oxygen species,ROS)形成,改善預后[64, 66]。重復爆炸的小鼠模型研究提示AQP4 的表達增加和定位改變介導了bTBI 后的延遲性淋巴功能損傷[67]。近來研究發現,腦淋巴引流障礙可引起tau 蛋白、淀粉樣蛋白-β(amyloid-β,Aβ)清除受阻,導致認知障礙[68-69]。

2.7 神經炎癥

顱腦創傷后神經炎癥反應既有神經保護作用又可引起額外腦損傷[70]。沖擊波致傷腦組織后,損傷相關分子模式被釋放,誘導局部細胞因子和趨化因子如白介素(interleukin,IL)-1β、IL-6、腫瘤壞死因子(tumor necrosis factor,TNF)-α 等產生,引起固有免疫應答,使得下游免疫細胞和神經膠質細胞活化后增生并募集到損傷區域進行修復[71]。急性反應的細胞主要包括中性粒細胞、星形膠質細胞、小膠質細胞、單核細胞或巨噬細胞和T 細胞等。中性粒細胞最先反應,迅速募集到中樞神經系統進行修復,但同時又可釋放金屬蛋白酶、TNF、ROS 等加重BBB 分解[72]。3~5 d 后中性粒細胞減少,同時損傷部位周圍單核-巨噬細胞浸潤,神經膠質細胞激活。反應性星形膠質細胞增生,分泌炎癥介質并促進小膠質細胞和其他免疫細胞的活化,從而誘導持續的神經炎癥[60, 73-74]。慢性bTBI 患者的尸檢研究顯示在軟膜下膠質板、穿透皮質的血管、灰/白質交界和腦室內壁等結構處有明顯的星形膠質細胞瘢痕形成,急性bTBI 病例亦在相同區域表現出早期反應性星形膠質細胞增生[74]。此外,小膠質細胞也在創傷后快速激活并顯示出向反應性更強的表型轉變[70, 75],既促進炎癥反應,又具有神經修復保護作用,并且隨著神經炎癥的發展,小膠質細胞活化可持續數年[76]。在隨后的時間點,由T 細胞和B 細胞介導的適應性免疫反應參與損傷后的炎癥修復[70-71]。受傷后2 周,大腦基本無免疫細胞浸潤,但活化的星形膠質細胞、小膠質細胞和細胞因子等可持續至慢性階段,且有證據表明bTBI 后神經退行性變與慢性炎癥具有相關性[74, 76-77]。

2.8 線粒體功能障礙與氧化應激反應

線粒體損傷是bTBI 的標志性事件,可導致代謝功能障礙,最終導致細胞死亡。有研究表明,原發性低強度爆炸會誘導與線粒體功能障礙有關的氧化應激反應增加,線粒體裂解-融合受損、線粒體自噬、氧化磷酸化降低和呼吸相關的酶活性代償等分子機制是導致后期神經退行性變的重要因素[78]。bTBI 后,過量的細胞內Ca2+可驅動線粒體產生ROS,誘導氧化應激反應的發生。ROS 過量產生可誘導細胞和血管結構的過氧化、蛋白質氧化和線粒體電子傳遞鏈抑制,引起氧化性細胞損傷[79]。ROS 可進一步誘導炎癥細胞因子產生,破壞BBB 完整性,引起更廣泛的病理改變如腦缺血和水腫[80]。爆炸暴露后的氧化應激反應在提高BBB 通透性[81]、突觸功能障礙和慢性神經炎癥[82] 等病理進展中起到重要的協同作用。另外,有研究發現細胞外線粒體在TBI 后增加,并以ROS 依賴性方式結合和激活M1 型小膠質細胞,加重TBI 的神經炎癥和腦水腫[83]。

2.9 tau 病理

tau 蛋白是一種在神經元中高表達的微管結合蛋白,主要作用是穩定軸突微管[84]。bTBI 后,腦內過度磷酸化tau 蛋白(hyperphosphorylated tau protein,p-tau)顯著增加,破壞微管穩定性,致使突觸可塑性下降和認知能力受損[84-85]。由p-tau 在血管周圍聚集形成的神經原纖維纏結(neurofibrillary tangle,NFT)是CTE 的主要病理特征之一,其他常見神經病理學特征包括小膠質細胞和星形膠質細胞增多、髓鞘軸突病變和進行性神經退行性變等[18-20, 41]。有研究對納入的10 名bTBI 退伍軍人進行了tau 蛋白正電子發射計算機斷層掃描(positron emission tomography,PET)腦顯像,發現了其中一半的受試者腦內tau 蛋白分布于額葉、頂葉和顳葉的灰/白質交界,符合CTE 典型病理改變,表明了爆炸損傷與CTE 之間的相關性[86]。與CTE 相關的p-tau 病理改變由血管周圍的神經元細胞驅動,并且與頭部反復創傷暴露年限及CTE 嚴重程度顯著相關[87]。有研究發現,TBI 小鼠12 h 內神經元即可急性產生一種異常的順式p-tau,從而破壞軸突微管網絡和線粒體轉運,并導致細胞凋亡[88]。對CTE 病人腦中tau 纖維絲的冷凍電鏡研究揭示了CTE 中tau 的構象與阿爾茨海默病(Alzheimer?s disease,AD)和皮克病明顯不同,表明tau 蛋白運輸和聚集的機制在不同的神經退行性疾病中可能具有特異性的差異[89]。

2.10 Aβ 病理

顱腦爆震傷患者可表現出Aβ 病理,其來源與軸突受損后APP 積累有關[37],但目前其病理變化和發生機制尚不清楚,且bTBI 人群與AD 患者的典型Aβ 病理改變存在差異,仍有待進一步研究。一項納入了30 名既往接受過爆炸暴露的美國現役人員研究顯示,bTBI 人群的血清Aβ40 和Aβ42 水平與健康對照組相比明顯升高[90]。有bTBI 人群的淀粉樣蛋白PET 腦顯像結果顯示爆炸暴露后淀粉樣蛋白在部分腦區沉積顯著增加[91],少部分bTBI 人群的尸檢結果也發現了Aβ 斑塊[20, 92-93]。但嚙齒動物bTBI 模型顯示爆炸暴露后腦內Aβ42 水平降低,APP/PS1 轉基因小鼠在接受爆炸暴露后出現認知功能改善和Aβ42 水平長期降低[94-95]。另外,最近也有bTBI 隊列研究發現患有爆炸相關輕度腦損傷的中年退伍軍人腦脊液中Aβ40 和Aβ42 水平均低于無腦損傷對照組[96]。有CTE 患者尸檢研究顯示其腦脊液中Aβ42 水平低于AD 患者,且低級別CTE 患者的Aβ42 水平低于無CTE/無AD 對照組[97]。既往有研究將TBI 列為AD 發病的危險因素,但也有大型臨床隊列研究表明,未能發現兩者之間在神經病理學和臨床表型等方面的相關性[98-99]。

3 爆炸沖擊波性腦損傷的生物標志物

3.1 影像學生物標志物

目前評估bTBI 的影像診斷手段眾多,包括CT、磁共振成像(magnetic resonance imaging,MRI)、經顱多普勒、磁共振波譜(magnetic resonance spectroscopy,MRS)、電生理技術(腦磁圖和腦電圖)和PET 等。因為bTBI 傷情的異質性,沒有一種影像評估手段適用于所有患者,因此,有必要綜合考量,以便在物理層面實現腦損傷可視化[54]。

CT 檢查快速、簡便,對急性出血和骨折敏感,是排除中重度bTBI 的首選方式[100]。但是,CT 識別bTBI 白質病變的靈敏度有限,假陰性較高,而且對DAI 和相關血管損傷的敏感性不足。MRI 對神經結構損傷的分辨率高,可通過綜合不同序列實現對bTBI 后不同病理改變的早期識別:磁共振成像液體衰減反轉恢復序列可識別bTBI 中的白質高信號;磁敏感加權成像對腦微出血特別敏感;MRS 可用于檢測腦損傷后代謝成分改變;磁共振彌散加權成像能夠檢測受損后腦組織內水分子彌散運動情況;功能性MRI 通過血氧水平依賴性信號的變化來評估神經元活動和腦功能;磁共振彌散張量成像(diffusion tensorimaging,DTI)能夠間接通過水分子彌散運動的各向異性,對腦白質纖維束結構進行成像[9, 101]。

DTI 能夠顯示顱腦損傷后腦白質纖維束結構的完整性和微觀組織變化,現已成為bTBI 診斷和預后評估公認有效的影像生物標志物,常表現為各向異性(fractional anisotropy,FA)降低和平均擴散系數(mean diffusivity,MD)升高,其余常用參數還有表觀擴散系數、徑向擴散率(radial diffusivity,RD)和軸向擴散率等[102-103]。有研究對72 名患有bTBI 的退伍軍人和21 名未患有bTBI 的退伍軍人的DTI 圖像進行了比較,發現患有輕度bTBI 的退伍軍人顯示出多灶性白質異常的證據,與損傷的嚴重程度和神經心理學表現都具有相關性,表明DTI 是識別bTBI 后腦白質完整性的敏感生物標志物[104]。有研究團隊招募了20 名bTBI 人員及14 名對照,DTI 結果顯示FA 值顯著降低而RD 顯著升高,與慢性白質損傷結論一致[105]。一項多中心臨床研究發現,與健康對照組相比,輕度TBI 患者MD 值升高、FA 值降低,且其可較準確地預測患者6 個月后的臨床結局,表明DTI 對輕度TBI 患者具有一定的早期診斷和預后評估價值[106]。一項關于中重度TBI 患者的縱向研究發現,DTI 對DAI 的腦白質萎縮具有很強的預測作用,提示DTI 檢測有助于準確判斷DAI 患者遠期神經退行性變的風險[107]。

3.2 血液生物標志物

結合現有bTBI 和TBI 的生物標志物研究,目前對bTBI 嚴重程度的評估主要依靠臨床評估和影像學檢查,但GCS 評分對有意識障礙或氣管插管的患者應用受限,且評估腦損傷預后的能力有限。頭顱MRI 較CT 對更小病灶的識別有顯著優勢,但考慮到bTBI 患者可能合并有金屬碎片影響成像效果以及軍事特殊作業環境缺乏MRI 設備,尋找便于檢測的血液生物標志物是探索bTBI 傷情評估手段的重要方向[108-113]。對于可能適用于bTBI 人群的血液生物標志物簡要總結如圖1 所示,以下對bTBI 的可能血液生物標志物和新興標志物研究進展進行了討論。

3.2.1 神經元胞體損傷

泛素C 末端水解酶L1(ubiquitin carboxyl-terminal hydrolase L1,UCH-L1)是一種在神經元中高表達的去泛素化酶[109],血液UCH-L1 可以作為bTBI 急性期的生物標志物。2018 年,UCH-L1 被美國食品藥品監督管理局授權應用于12 h 內輕度TBI 的血液檢測,以減少顱腦創傷診斷過程中不必要的CT 掃描[114-115]。有研究納入了30 名既往接受過爆炸暴露的軍隊人員,與健康對照組相比,血清UCH-L1 水平顯著升高[90]。對108 名參加為期 2 周的爆炸訓練軍人的血清UCH-L1 急性變化研究發現,UCH-L1 水平因爆炸暴露而升高但與爆炸強度相關性弱,與神經認知表現無相關性[116]。但另一項對29 名軍隊人員爆炸超壓暴露前后血清生物標志物改變的研究顯示,血清UCH-L1 水平在急性爆炸后有頭暈癥狀的人群中出現有統計學意義的升高[117]。另外,多項研究指出,UCH-L1 對于TBI 后的功能結局具有預測作用[118-120]。一項研究招募了1 696 名受試者,針對TBI 受傷后當日血漿UCH-L1 預后能力進行研究,發現UCH-L1 對死亡和不良結局預測較好,但對6 個月時不完全恢復情況的預測能力有限[119]。

神經元特異性烯醇化酶(neuron-specific enolase,NSE)主要存在于神經元胞體中的一種糖酵解酶,在神經元損傷時釋放到細胞外,可作為評價神經元損傷嚴重程度的生物標志物[109]。NSE 對bTBI 的嚴重程度具有診斷效能,但準確性相對較弱[121],也是不良臨床結局的預測指標[122]。一項臨床研究納入了104 名特種部隊作戰人員,發現既往患有輕度TBI 的人群(55 例)血液NSE 水平較健康對照(49 例)顯著升高[123]。有研究表明,血清NSE 水平與輕度TBI 后PCS 臨床表型無顯著關聯,提示預后價值有限[124],但另一項研究發現中重度TBI 患者的血清NSE 水平升高與不良結局(死亡率及GCS≤3)之間具有相關性[125]。一項納入63 名中重度TBI 患者的臨床研究表明,血清NSE 對腦干損傷診斷的靈敏度為100%,可避免20%的MRI 檢查[126]。然而,NSE 也存在于紅細胞中,溶血可增加血液NSE 水平,因此,其作為血液生物標志物的用途受限[109-110]。

3.2.2 神經元軸突損傷

神經絲蛋白輕鏈(neurofilament protein-light,NfL)是細胞骨架蛋白之一,在有髓神經元中高表達,是評估軸突變性最成熟的生物標志物之一[110-111]。多項研究證明了血液NfL 是TBI 的有力生物標志物,其在亞急性期和慢性期的診斷和預后評估能力更明顯[127-128]。有研究對195 名既往患有bTBI 的退伍軍人血液生物標志物進行了檢測,發現血漿NfL 水平升高與爆炸暴露次數呈正相關性,并且可持續升高至慢性階段,在患有慢性PCS、PTSD 和抑郁癥狀的人群中更明顯[33]。對34 名參加爆炸培訓計劃的軍人爆炸暴露后30 min 的血樣進行檢測,發現NfL 水平在反復爆炸暴露后出現顯著升高[129]。另一項納入197 名重度TBI 患者的多中心隊列研究分析了TBI 后血液生物標志物、DTI 與臨床結局的關系,發現血漿NfL 在損傷后迅速增加,于亞急性期(10 d 到6 周)達到峰值,在6 個月和1 年時仍明顯高于正常水平,且血漿NfL 水平與DTI 測量值具有相關性。而且,在預測6 個月和1 年時的神經退行性變結局方面,亞急性期的血漿NfL 水平表現出了最強的預測能力,其次為DTI 的FA 評分[130]。一項納入了230 名TBI 患者的研究發現,NfL 不僅可以對TBI 嚴重程度進行區分,血清NfL 與TBI 的遠期功能結局和神經退行性變亦具有相關性[128]。最近一項對143 名TBI 患者長達5 年的橫斷面和縱向研究結果顯示,血清NfL 能夠獨立預測TBI 后的腦萎縮進展[131]。

磷酸化tau 蛋白( p-tau)是一種在神經元中高表達的微管結合蛋白,主要作用是穩定軸突微管[84]。CTE 患者尸檢研究中,腦脊液中p-tau231 水平與對照組和AD 患者相比顯著升高[97]。血液tau 蛋白水平能夠表征TBI 和CTE 的軸突病理損傷[132-133]。34 名參加爆炸培訓計劃的軍人在接受反復爆炸暴露后30 min 的血液總tau 蛋白(total tau protein, t-tau)和p-tau181 水平均出現顯著升高[129]。一項納入了30 名美國現役人員的研究也顯示急性爆炸暴露后受試者的血清t-tau 水平顯著升高[90]。為探索血漿p-tau 和p-tau/t-tau 對急慢性TBI 的早期診斷效能和預后價值,有研究納入196 例急性TBI 患者和21 例慢性TBI 患者,發現急性TBI 患者血漿t-tau、p-tau 和p-tau/t-tau 均顯著高于對照組,p-tau、p-tau/t-tau 水平可用于區分TBI 的嚴重程度,且慢性TBI 患者血漿p-tau、p-tau/t-tau 也顯著高于對照組。對于區分CT 結果為陽性/陰性方面,p-tau 和p-tau/t-tau 的AUC(受試者工作特征曲線下的面積,area under curve)分別為0.921 和0.923,顯示出準確的鑒別能力[133]。此外,血漿p-tau 和p-tau/t-tau 水平對6 個月時的不良預后具有一定的預測能力(AUC 分別為0.771 和0.777)[133]。最近一項研究顯示,血清tau 水平與TBI 的癥狀加重具有相關性,表明tau 或可作為TBI 不良預后的預測因子[134]。

髓鞘堿性蛋白(myelin basic protein,MBP)是中樞神經系統的少突膠質細胞和周圍神經系統的雪旺細胞形成髓鞘的主要蛋白成分[109, 111]。bTBI 后白質纖維束損傷,進而發生脫髓鞘病變和少突膠質細胞死亡,釋放MBP 到腦脊液,隨后經BBB 入血[135]。MBP 在血液中濃度較低,且通常在TBI 后2~3 d 釋放入血,因此血液檢測和急性篩查用途受限,但血液MBP 一旦升高可持續2 周,且MBP 作為表征軸突損傷的標志物具有較高的特異性[136-138]。TBI 患者的血液和腦脊液MBP 水平顯著高于健康對照[139-140],但近年來關于bTBI 人群血液MBP 變化的臨床研究少見。一項納入了131 例TBI 患者的臨床研究顯示,血清MBP 水平與TBI 嚴重程度呈正相關,并且能夠預測和區分TBI 后6 個月時的不同的功能結局,表明血清MBP 對TBI 具有一定的診斷和預后價值[141]。

3.2.3 神經炎癥

膠質纖維酸性蛋白(glial fibrillary acidic protein,GFAP)是星形膠質細胞骨架蛋白,作為TBI 后星形膠質細胞活化的生物標志物被廣泛研究[110],其對急性期TBI[127] 特別是頭部CT 掃描不可見的亞臨床顱內病變診斷準確性很高[142-143]。2018 年美國食品藥品監督管理局授權GFAP 應用于12 h 內輕度TBI 的血液檢測[114]。法國急診醫學會也推薦GFAP 用于非穿透性TBI 的早期診斷[144]。一項納入了1 959 例輕中度TBI 患者(其中頭顱CT 陽性者為6%)的研究發現,血清GFAP 對頭顱CT 陰性的輕度TBI 患者具有很高的診斷效能,其對CT 顱內損傷識別的靈敏度為0.976,陰性預測值為0.996[114]。此外,GFAP 對TBI 也有一定預后價值。一項納入143 例TBI 患者的縱向研究發現,血清GFAP 能夠獨立預測TBI 后的腦萎縮進展[131]。另一項招募了1 696 名TBI 患者的縱向研究中,TBI 后當日的血漿GFAP 水平在預測死亡(AUC 為0.87)和不良結局(AUC 為0.86)方面的能力較高,但對6 個月后不完全恢復(AUC 為0.62)的預測能力有限[119]。對30 名既往接受過爆炸暴露的美國現役人員的研究顯示,其血清GFAP 水平高于對照組,但差異無統計學意義[90]。在另一些臨床研究中bTBI 人群的血液GFAP 水平則表現出降低,這一點與TBI 人群相反[94, 117, 129, 145-147],目前原因不明。一項研究招募了550 名患有TBI 的退伍軍人,其中78.18% 至少經歷過一次爆炸暴露,自最近一次輕度TBI 發生以來的平均時間為9.15 年(0~46 年),研究結果表明,與無爆炸暴露史人群相比,bTBI 人群的血漿GFAP 顯著降低,并且和更嚴重的神經精神行為(PTSD、抑郁、神經行為癥狀等)有關[147]。上述研究得到了GFAP 降低的結論,但既往在bTBI 尸檢結果[74]和動物實驗[148-150] 中都發現了反應性星形膠質細胞增生的證據,因此,較低的GFAP 水平是否是bTBI 獨特的損傷特征,有待進一步研究。

S100 鈣結合蛋白B(S100 calcium-binding protein B,S100B)是一種細胞內鈣結合蛋白,主要由星形膠質細胞合成,血液S100B 是TBI 急性期生物標志物,與TBI 嚴重程度和預后有關[110]。S100B 是首個被納入TBI 指南的生物標志物,先后被斯堪的納維亞成人輕中度顱腦損傷管理指南和法國急診醫學會指南推薦用做TBI 早期診斷和是否需要CT 掃描的分層診療證據[ 1 4 4 , 1 5 1 ]。將其納入指南后至少減少了30% 的CT 掃描需求,但S100B 也存在局限性,如半衰期短(需要在TBI 后3 h 內采血)以及缺乏神經特異性(存在顱外釋放)[152]。S100B 檢測顱腦損傷的敏感性很高,基于近2 000 名輕度顱腦損傷患者的前瞻性研究發現血清S100B 鑒別CT 結果的敏感性和陰性預測值分別為98.2% 和99.5%,而鑒別臨床相關顱內并發癥的敏感性和陰性預測值則分別為100% 和100%[153]。但最近的一項研究納入了933 例輕度TBI 患者,發現在損傷后6 h 內、>6~9 h、>9~12 h,血清GFAP 和UCH-L1 診斷TBI 后顱內損傷的敏感性和特異性以及對TBI 患者的結局預測能力均高于S100B[115]。 bTBI 大鼠模型的免疫組化研究顯示,爆炸暴露后1 h,S100B 即可存在,24 h 分布更均勻,3 周時仍可檢測到[148],但目前S100B 診斷bTBI 的臨床隊列研究少見。

3.2.4 其他新興生物標志物

近年來,細胞外囊泡(extracellular vesicles,EV)和外泌體作為TBI 的新興生物標志物受到關注[111]。EV 是不同細胞分泌到體液中的膜狀顆粒,參與細胞間信號傳遞[154]。在多項研究中發現了bTBI/TBI 患者血液EV 中相關生物標志物水平的升高,包括GFAP、NfL、tau 蛋白、MBP、CD13、CD196、MOG、CD133 等[155-157]。外泌體是EV 的其中一種亞型,其內包含的微小核糖核酸(microRNA,miRNA)轉運至受體細胞后在轉錄后基因表達調控中發揮重要作用[154]。最近一項研究通過高通量測序技術發現了TBI 后血清中245 個外泌體miRNA 發生顯著變化,并鑒定了與神經血管重塑、BBB 完整性、神經炎癥和一系列繼發性損傷相關的血清外泌體miRNA 表達譜改變,包括8 個上調的miRNA(miR-124-3p、miR-137-3p、miR-9-3p、miR-133a-5p、miR-204-3p、miR-519a-5p、miR-4 732-5p 和miR-206)和2 個下調的miRNA(miR-21-3p 和miR-199a-5)[158]。

目前,關于TBI 后血液中miRNA 水平變化的研究眾多。一項納入了47 名受試者的臨床研究顯示,重度TBI 患者血漿中miR-765、miR-16、miR-92a 作為TBI 生物標志物的AUC 值分別為0.89、0.82 和0.86,這些生物標志物組合后對區分重度TBI 和健康對照人群具有100% 的敏感性和特異性[159]。一項納入了5 名輕度TBI 和5 名重度TBI 患者的臨床研究顯示,miR-425-5p 和miR-502 是診斷輕度TBI 的有效生物標志物,miR-21 和miR-335 是診斷重度TBI 的有效生物標志物,且miR-425-5p 和miR-21 對TBI 后6 個月時的功能結局能夠較好預測[160]。另外,miR-320c、miR-92a、miR-126-3p、miR-3 610、miR-206、miR-549a-3p、miR-let-7i 等都與bTBI/TBI 有較好的相關性,顯示出miRNA 作為TBI 診斷和預后生物標志物的潛力[161-164]。

綜上,GFAP 和S100B 是急性期TBI 的有效診斷生物標志物,且具有一定的預后判斷能力,但還需進一步發掘其在bTBI 人群中的表現。在bTBI 亞急性期和慢性期,NfL 表現最佳,并且對臨床結局具有很強的預測作用。UCH-L1 和p-tau 也可作為bTBI 的候選血液生物標志物。NSE 雖對疾病具有一定診斷能力但血液檢測用途受限。近年來關于MBP 在bTBI/TBI 后的研究較少,雖然特異性高,但血液中濃度過低且急性篩查受限。此外,外泌體和miRNA 作為TBI 新興生物標志物受到廣泛關注,但需進一步深入研究驗證其在爆炸性顱腦損傷早期診斷和預后中的臨床價值。另外,當前針對特定顱腦爆震傷人群的生物標志物臨床研究有限且多數研究納入病例數較少,但考慮到bTBI 是一種特殊類型的TBI,上述內容參考和借鑒了當前TBI 人群的血液生物標志物研究內容。值得注意的是,雖然兩者發生機制和易損靶點有很大程度的重疊,但尚有諸多不同之處且機制未明,TBI 的生物標志物對于bTBI 人群的實際適用性還需要進一步臨床驗證。

4 小結和展望

首先,bTBI 的致傷機制復雜,且占絕大多數比例的輕度bTBI 腦內關鍵病理變化尚不清楚,細胞和分子層面機制解析不足,未來亟需從時間和空間維度上探索bTBI 是否存在腦區易感性和易損細胞類型。

其次,當前對輕度bTBI 的遠期損害關注較少,未來需建立bTBI 臨床隊列,明確輕度bTBI 的遠期神經損害特征,為提高bTBI 戰傷救治提供科學依據。此外,目前的影像診斷手段難以早期捕捉到細微神經損害,導致輕型bTBI 的臨床漏診和延誤診斷比例較高。最近多種血液生物標志物顯示出反映早期輕度腦損傷的潛力,未來需進一步在大樣本bTBI 臨床隊列中驗證它們在早期診斷和預測疾病進展中的臨床價值,明確bTBI 血液生物標志物劃界值范圍,建立bTBI 的早期篩查和預警體系。

參考文獻:

[1]MORTIMER D S. Military traumatic brain injury [J]. Physical Medicine and Rehabilitation Clinics of North America, 2024,35(3): 559–571. DOI: 10.1016/j.pmr.2024.02.008.

[2]Office of the United Nations High Commissioner for Human Rights. Two-year update-protection of civilians: impact ofhostilities on civilians since 24 February 2022 [EB/OL]. (2024-02-22)[2024-09-05]. https://www.ohchr.org/en/documents/country-reports/two-year-update-protection-civilians-impact-hostilities-civilians-24.

[3]DENGLER B A, AGIMI Y, STOUT K, et al. Epidemiology, patterns of care and outcomes of traumatic brain injury indeployed military settings: implications for future military operations [J]. Journal of Trauma and Acute Care Surgery, 2022,93(2): 220–228. DOI: 10.1097/TA.0000000000003497.

[4]夏照帆, 伍國勝. 創傷性腦損傷的臨床研究進展 [J]. 第二軍醫大學學報, 2021, 42(2): 117–121. DOI: 10.16781/j.0258-879x.2021.02.0117.

XIA Z F, WU G S. Traumatic brain injury: a clinical research progress [J]. Academic Journal of Second Military MedicalUniversity, 2021, 42(2): 117–121. DOI: 10.16781/j.0258-879x.2021.02.0117.

[5]ROSENFELD J V, MCFARLANE A C, BRAGGE P, et al. Blast-related traumatic brain injury [J]. The Lancet Neurology,2013, 12(9): 882–893. DOI: 10.1016/S1474-4422(13)70161-3.

[6]張文超, 王舒, 梁增友, 等. 爆炸沖擊波致顱腦沖擊傷數值模擬研究 [J]. 北京理工大學學報, 2022, 42(9): 881–890. DOI:10.15918/j.tbit1001-0645.2021.191.

ZHANG W C, WANG S, LIANG Z Y, et al. Numerical simulation on traumatic brain injury induced by blast waves [J].Transactions of Beijing Institute of Technology, 2022, 42(9): 881–890. DOI: 10.15918/j.tbit1001-0645.2021.191.

[7]HOGE C W, MCGURK D, THOMAS J L, et al. Mild traumatic brain injury in U. S. soldiers returning from Iraq [J]. NewEngland Journal of Medicine, 2008, 358(5): 453–463. DOI: 10.1056/NEJMoa072972.

[8]Management of Concussion/mTBI Working Group. VA/DoD clinical practice guideline for management of concussion/mildtraumatic brain injury [J]. Journal of Rehabilitation Research and Development, 2009, 46(6): CP1–68.

[9]KIM S Y, YEH P H, OLLINGER J M, et al. Military-related mild traumatic brain injury: clinical characteristics, advancedneuroimaging, and molecular mechanisms [J]. Translational Psychiatry, 2023, 13(1): 289. DOI: 10.1038/s41398-023-02569-1.

[10]MAAS A I R, MENON D K, ADELSON P D, et al. Traumatic brain injury: integrated approaches to improve prevention,clinical care, and research [J]. The Lancet Neurology, 2017, 16(12): 987–1048. DOI: 10.1016/S1474-4422(17)30371-X.

[11]LING G S, ECKLUND J M. Traumatic brain injury in modern war [J]. Current Opinion in Anesthesiology, 2011, 24(2):124–130. DOI: 10.1097/ACO.0b013e32834458da.

[12]CAPIZZI A, WOO J, VERDUZCO-GUTIERREZ M. Traumatic brain injury [J]. Medical Clinics of North America, 2020,104(2): 213–238. DOI: 10.1016/j.mcna.2019.11.001.

[13]DAVIS L E, PIRIO RICHARDSON S. Traumatic brain injury and subdural hematoma [M]//DAVIS L E, PIRIORICHARDSON S. Fundamentals of Neurologic Disease. 2nd ed. New York: Springer, 2015: 225–233. DOI: 10.1007/978-1-4939-2359-5_18.

[14]MAGNUSON J, LEONESSA F, LING G S F. Neuropathology of explosive blast traumatic brain injury [J]. CurrentNeurology and Neuroscience Reports, 2012, 12(5): 570–579. DOI: 10.1007/s11910-012-0303-6.

[15]EME R. Neurobehavioral outcomes of mild traumatic brain injury: a mini review [J]. Brain Sciences, 2017, 7(5): 46. DOI:10.3390/brainsci7050046.

[16]CLAUSEN A N, BOUCHARD H C, Workgroup M A M, et al. Assessment of neuropsychological function in veterans withblast-related mild traumatic brain injury and subconcussive blast exposure [J]. Frontiers in Psychology, 2021, 12: 686330.DOI: 10.3389/fpsyg.2021.686330.

[17]JURICK S M, CROCKER L D, MERRITT V C, et al. Independent and synergistic associations between TBI characteristicsand PTSD symptom clusters on cognitive performance and postconcussive symptoms in Iraq and Afghanistan veterans [J].The Journal of Neuropsychiatry and Clinical Neurosciences, 2021, 33(2): 98–108. DOI: 10.1176/appi.neuropsych.20050128.

[18]LUCKE-WOLD B P, TURNER R C, LOGSDON A F, et al. Linking traumatic brain injury to chronic traumaticencephalopathy: identification of potential mechanisms leading to neurofibrillary tangle development [J]. Journal ofNeurotrauma, 2014, 31(13): 1129–1138. DOI: 10.1089/neu.2013.3303.

[19]GOLDSTEIN L E, FISHER A M, TAGGE C A, et al. Chronic traumatic encephalopathy in blast-exposed military veteransand a blast neurotrauma mouse model [J]. Science Translational Medicine, 2012, 4(134): 134ra60. DOI: 10.1126/scitranslmed.3003716.

[20]PRIEMER D S, IACONO D, RHODES C H, et al. Chronic traumatic encephalopathy in the brains of military personnel [J].New England Journal of Medicine, 2022, 386(23): 2169–2177. DOI: 10.1056/NEJMoa2203199.

[21]HENION A K, WANG C P, AMUAN M, et al. Role of deployment history on the association between epilepsy andtraumatic brain injury in post-9/11 era US veterans [J]. Neurology, 2023, 101(24): e2571–e2584. DOI: 10.1212/WNL.0000000000207943.

[22]康越, 馬天, 黃獻聰, 等. 顱腦爆炸傷數值模擬研究進展: 建模、力學機制及防護 [J]. 爆炸與沖擊, 2023, 43(6): 061101.DOI: 10.11883/bzycj-2022-0521.

KANG Y, MA T, HUANG X C, et al. Advances in numerical simulation of blast-induced traumatic brain injury: modeling,mechanical mechanism and protection [J]. Explosion and Shock Waves, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.

[23]FIEVISOHN E, BAILEY Z, GUETTLER A, et al. Primary blast brain injury mechanisms: current knowledge, limitations,and future directions [J]. Journal of Biomechanical Engineering, 2018, 140(2): 020806. DOI: 10.1115/1.4038710.

[24]DU Z B, LI Z J, WANG P, et al. Revealing the effect of skull deformation on intracranial pressure variation during the directinteraction between blast wave and surrogate head [J]. Annals of Biomedical Engineering, 2022, 50(9): 1038–1052. DOI:10.1007/s10439-022-02982-5.

[25]COURTNEY A C, COURTNEY M W. A thoracic mechanism of mild traumatic brain injury due to blast pressure waves [J].Medical Hypotheses, 2009, 72(1): 76–83. DOI: 10.1016/j.mehy.2008.08.015.

[26]柳占立, 杜智博, 張家瑞, 等. 顱腦爆炸傷致傷機制及防護研究進展 [J]. 爆炸與沖擊, 2022, 42(4): 041101. DOI:10.11883/bzycj-2021-0053.

LIU Z L, DU Z B, ZHANG J R, et al. Progress in the mechanism and protection of blast-induced traumatic brain injury [J].Explosion and Shock Waves, 2022, 42(4): 041101. DOI: 10.11883/bzycj-2021-0053.

[27]BAILEY Z S, HUBBARD W B, VANDEVORD P J. Cellular mechanisms and behavioral outcomes in blast-inducedneurotrauma: comparing experimental setups [M]//KOBEISSY F H, DIXON C E, HAYES R L, et al. Injury Models of theCentral Nervous System: Methods and Protocols. New York: Springer, 2016: 119–138. DOI: 10.1007/978-1-4939-3816-2_8.

[28]吳育壽, 柴家科. 腦沖擊傷致傷機制和臨床前治療的研究進展 [J]. 中華創傷雜志, 2020, 36(5): 470–474. DOI:10.3760/cma.j.issn.1001-8050.2020.05.014.WU Y S, CHAI J K. Research progress in mechanism and preclinical treatment for blast traumatic brain injury [J]. ChineseJournal of Trauma, 2020, 36(5): 470–474. DOI: 10.3760/cma.j.issn.1001-8050.2020.05.014.

[29]ZIEBELL J M, MORGANTI-KOSSMANN M C. Involvement of pro- and anti-inflammatory cytokines and chemokines inthe pathophysiology of traumatic brain injury [J]. Neurotherapeutics, 2010, 7(1): 22–30. DOI: 10.1016/j.nurt.2009.10.016.

[30]PITT J, PITT Y, LOCKWICH J. Clinical and cellular aspects of traumatic brain injury [M]//GUPTA R C. Handbook ofToxicology of Chemical Warfare Agents. 3rd ed. Amsterdam: Elsevier, 2020: 745–765. DOI: 10.1016/B978-0-12-819090-6.00044-1.

[31]NONAKA M, TAYLOR W W, BUKALO O, et al. Behavioral and myelin-related abnormalities after blast-induced mildtraumatic brain injury in mice [J]. Journal of Neurotrauma, 2021, 38(11): 1551–1571. DOI: 10.1089/neu.2020.7254.

[32]ARMSTRONG R C, SULLIVAN G M, PERL D P, et al. White matter damage and degeneration in traumatic brain injury [J].Trends in Neurosciences, 2024, 47(9): 677–692. DOI: 10.1016/j.tins.2024.07.003.

[33]GUEDES V A, KENNEY K, SHAHIM P, et al. Exosomal neurofilament light [J]. Neurology, 2020, 94(23): e2412–e2423.DOI: 10.1212/WNL.0000000000009577.

[34]HILL C S, COLEMAN M P, MENON D K. Traumatic axonal injury: mechanisms and translational opportunities [J]. Trendsin Neurosciences, 2016, 39(5): 311–324. DOI: 10.1016/j.tins.2016.03.002.

[35]JAGODA A, PRABHU A, RIGGIO S. Behavioral and neurocognitive sequelae of concussion in the emergency department [M]//ZUN L S, NORDSTROM K, WILSON M P. Behavioral Emergencies for Healthcare Providers. Cham: Springer, 2021: 341–355. DOI: 10.1007/978-3-030-52520-0_35.

[36]KRIEG J L, LEONARD A V, TURNER R J, et al. Identifying the phenotypes of diffuse axonal injury following traumaticbrain injury [J]. Brain Sciences, 2023, 13(11): 1607. DOI: 10.3390/brainsci13111607.

[37]JOHNSON V E, STEWART W, SMITH D H. Axonal pathology in traumatic brain injury [J]. Experimental Neurology,2013, 246: 35–43. DOI: 10.1016/j.expneurol.2012.01.013.

[38]FEHILY B, FITZGERALD M. Repeated mild traumatic brain injury: potential mechanisms of damage [J]. CellTransplantation, 2017, 26(7): 1131–1155. DOI: 10.1177/0963689717714092.

[39]POZO DEVOTO V M, LACOVICH V, FEOLE M, et al. Unraveling axonal mechanisms of traumatic brain injury [J]. ActaNeuropathologica Communications, 2022, 10(1): 140. DOI: 10.1186/s40478-022-01414-8.

[40]CHEN Y, GU M, PATTERSON J, et al. Temporal alterations in cerebrovascular glycocalyx and cerebral blood flow afterexposure to a high-intensity blast in rats [J]. International Journal of Molecular Sciences, 2024, 25(7): 3580. DOI: 10.3390/ijms25073580.

[41]MCKEE A C, ROBINSON M E. Military-related traumatic brain injury and neurodegeneration [J]. Alzheimer’s amp; Dementia,2014, 10(3S): S242–S253. DOI: 10.1016/j.jalz.2014.04.003.

[42]TAGGE C A, FISHER A M, MINAEVA O V, et al. Concussion, microvascular injury, and early tauopathy in young athletesafter impact head injury and an impact concussion mouse model [J]. Brain, 2018, 141(2): 422–458. DOI: 10.1093/brain/awx350.

[43]ELDER G A, GAMA SOSA M A, DE [43] GASPERI R, et al. The neurovascular unit as a locus of injury in low-level blast-induced neurotrauma [J]. International Journal of Molecular Sciences, 2024, 25(2): 1150. DOI: 10.3390/ijms25021150.

[44]ELDER G A, GAMA SOSA M A, DE GASPERI R, et al. Vascular and inflammatory factors in the pathophysiology of blastinducedbrain injury [J]. Frontiers in Neurology, 2015, 6: 48. DOI: 10.3389/fneur.2015.00048.

[45]GAMA SOSA M A, DE GASPERI R, PRYOR D, et al. Low-level blast exposure induces chronic vascular remodeling,perivascular astrocytic degeneration and vascular-associated neuroinflammation [J]. Acta Neuropathologica Communications,2021, 9(1): 167. DOI: 10.1186/s40478-021-01269-5.

[46]MEABON J S, COOK D G, YAGI M, et al. Chronic elevation of plasma vascular endothelial growth factor-a (VEGF-A) isassociated with a history of blast exposure [J]. Journal of the Neurological Sciences, 2020, 417: 117049. DOI: 10.1016/j.jns.2020.117049.

[47]WANG Y, WEI Y L, REN M, et al. Blast exposure alters synaptic connectivity in the mouse auditory cortex [J]. Journal ofNeurotrauma, 2024, 41(11/12): 1438–1449. DOI: 10.1089/neu.2023.0348.

[48]RATLIFF W A, MERVIS R F, CITRON B A, et al. Effect of mild blast-induced TBI on dendritic architecture of the cortexand hippocampus in the mouse [J]. Scientific Reports, 2020, 10(1): 2206. DOI: 10.1038/s41598-020-59252-4.

[49]KONAN L M, SONG H L, PENTECOST G, et al. Multi-focal neuronal ultrastructural abnormalities and synaptic alterationsin mice after low-intensity blast exposure [J]. Journal of Neurotrauma, 2019, 36(13): 2117–2128. DOI: 10.1089/neu.2018.6260.

[50]VOGEL Ⅲ E W, RWEMA S H, MEANEY D F, et al. Primary blast injury depressed hippocampal long-term potentiationthrough disruption of synaptic proteins [J]. Journal of Neurotrauma, 2017, 34(5): 1063–1073. DOI: 10.1089/neu.2016.4578.

[51]VOGEL E W, EFFGEN G B, PATEL T P, et al. Isolated primary blast inhibits long-term potentiation in organotypichippocampal slice cultures [J]. Journal of Neurotrauma, 2016, 33(7): 652–661. DOI: 10.1089/neu.2015.4045.

[52]ALMEIDA M F, PIEHLER T, CARSTENS K E, et al. Distinct and dementia-related synaptopathy in the hippocampus aftermilitary blast exposures [J]. Brain Pathology, 2021, 31(3): e12936. DOI: 10.1111/bpa.12936.

[53]JAMJOOM A A B, RHODES J, ANDREWS P J D, et al. The synapse in traumatic brain injury [J]. Brain, 2021, 144(1):18–31. DOI: 10.1093/brain/awaa321.

[54]KAPLAN G B, LEITE-MORRIS K A, WANG L, et al. Pathophysiological bases of comorbidity: traumatic brain injury andpost-traumatic stress disorder [J]. Journal of Neurotrauma, 2018, 35(2): 210–225. DOI: 10.1089/neu.2016.4953.

[55]CHEN S Y, SIEDHOFF H R, ZHANG H, et al. Low-intensity blast induces acute glutamatergic hyperexcitability in mousehippocampus leading to long-term learning deficits and altered expression of proteins involved in synaptic plasticity andserine protease inhibitors [J]. Neurobiology of Disease, 2022, 165: 105634. DOI: 10.1016/j.nbd.2022.105634.

[56]ORR T J, LESHA E, KRAMER A H, et al. Traumatic brain injury: a comprehensive review of biomechanics and molecularpathophysiology [J]. World Neurosurgery, 2024, 185: 74–88. DOI: 10.1016/j.wneu.2024.01.084.

[57]BUTLER T R, SELF R L, SMITH K J, et al. Selective vulnerability of hippocampal cornu ammonis 1 pyramidal cells toexcitotoxic insult is associated with the expression of polyamine-sensitive N-methyl-d-asparate-type glutamate receptors [J].Neuroscience, 2010, 165(2): 525–534. DOI: 10.1016/j.neuroscience.2009.10.018.

[58]劉子華, 胡博玄. 顱腦損傷后血腦屏障的損傷機制與檢測方法新進展 [J]. 中國臨床神經外科雜志, 2022, 27(3): 214–217.DOI: 10.13798/j.issn.1009-153X.2022.03.021.

[59]BHOWMICK S, D’MELLO V, CARUSO D, et al. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrierdysfunction following traumatic brain injury [J]. Experimental Neurology, 2019, 317: 260–270. DOI: 10.1016/j.expneurol.2019.03.014.

[60]MICHINAGA S, KOYAMA Y. Pathophysiological responses and roles of astrocytes in traumatic brain injury [J].International Journal of Molecular Sciences, 2021, 22(12): 6418. DOI: 10.3390/ijms22126418.

[61]READNOWER R D, CHAVKO M, ADEEB S, et al. Increase in blood-brain barrier permeability, oxidative stress, andactivated microglia in a rat model of blast-induced traumatic brain injury [J]. Journal of Neuroscience Research, 2010,88(16): 3530–3539. DOI: 10.1002/jnr.22510.

[62]DADGOSTAR E, RAHIMI S, NIKMANZAR S, et al. Aquaporin 4 in traumatic brain injury: from molecular pathways totherapeutic target [J]. Neurochemical Research, 2022, 47(4): 860–871. DOI: 10.1007/s11064-021-03512-w.

[63]PUHAKKA N, DAS GUPTA S, LESKINEN S, et al. Proteomics of deep cervical lymph nodes after experimental traumaticbrain injury [J]. Neurotrauma Reports, 2023, 4(1): 359–366. DOI: 10.1089/neur.2023.0008.

[64]BOLTE [64] A C, DUTTA A B, HURT M E, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis [J]. Nature Communications, 2020, 11(1): 4524. DOI: 10.1038/s41467-020-18113-4.

[65]FREEDMAN M S, GNANAPAVAN S, BOOTH R A, et al. Guidance for use of neurofilament light chain as a cerebrospinalfluid and blood biomarker in multiple sclerosis management [J]. eBioMedicine, 2024, 101: 104970. DOI: 10.1016/j.ebiom.2024.104970.

[66]LIAO J W, ZHANG M C, SHI Z C, et al. Improving the function of meningeal lymphatic vessels to promote brain edemaabsorption after traumatic brain injury [J]. Journal of Neurotrauma, 2023, 40(3/4): 383–394. DOI: 10.1089/neu.2022.0150.

[67]BRAUN M, SEVAO M, KEIL S A, et al. Macroscopic changes in aquaporin-4 underlie blast traumatic brain injury-relatedimpairment in glymphatic function [J]. Brain, 2024, 147(6): 2214–2229. DOI: 10.1093/brain/awae065.

[68]TARASOFF-CONWAY J M, CARARE R O, OSORIO R S, et al. Clearance systems in the brain: implications for alzheimerdisease [J]. Nature Reviews Neurology, 2015, 11(8): 457–470. DOI: 10.1038/nrneurol.2015.119.

[69]LEVITES Y, DAMMER E B, RAN Y, et al. Integrative proteomics identifies a conserved Aβ amyloid responsome, novelplaque proteins, and pathology modifiers in Alzheimer’s disease [J]. Cell Reports Medicine, 2024, 5(8): 101669. DOI:10.1016/j.xcrm.2024.101669.

[70]SIMON D W, MCGEACHY M J, BAYIR H, et al. The far-reaching scope of neuroinflammation after traumatic braininjury [J]. Nature Reviews Neurology, 2017, 13(3): 171–191. DOI: 10.1038/nrneurol.2017.13.

[71]MCKEE C A, LUKENS J R. Emerging roles for the immune system in traumatic brain injury [J]. Frontiers in Immunology,2016, 7: 556. DOI: 10.3389/fimmu.2016.00556.

[72]CORPS K N, ROTH T L, MCGAVERN D B. Inflammation and neuroprotection in traumatic brain injury [J]. JAMANeurology, 2015, 72(3): 355–362. DOI: 10.1001/jamaneurol.2014.3558.

[73]GUILHAUME-CORREA F, PICKRELL A M, VANDEVORD P J. The imbalance of astrocytic mitochondrial dynamicsfollowing blast-induced traumatic brain injury [J]. Biomedicines, 2023, 11(2): 329. DOI: 10.3390/biomedicines11020329.

[74]SHIVELY S B, HORKAYNE-SZAKALY I, JONES R V, et al. Characterisation of interface astroglial scarring in the humanbrain after blast exposure: a post-mortem case series [J]. The Lancet Neurology, 2016, 15(9): 944–953. DOI: 10.1016/S1474-4422(16)30057-6.

[75]LIER J, ONDRUSCHKA B, BECHMANN I, et al. Fast microglial activation after severe traumatic brain injuries [J].International Journal of Legal Medicine, 2020, 134(6): 2187–2193. DOI: 10.1007/s00414-020-02308-x.

[76]RAMLACKHANSINGH A F, BROOKS D J, GREENWOOD R J, et al. Inflammation after trauma: microglial activation andtraumatic brain injury [J]. Annals of Neurology, 2011, 70(3): 374–383. DOI: 10.1002/ana.22455.

[77]JOHNSON V E, STEWART J E, BEGBIE F D, et al. Inflammation and white matter degeneration persist for years after asingle traumatic brain injury [J]. Brain, 2013, 136(1): 28–42. DOI: 10.1093/brain/aws322.

[78]SONG H L, CHEN M, CHEN C, et al. Proteomic analysis and biochemical correlates of mitochondrial dysfunction after lowintensityprimary blast exposure [J]. Journal of Neurotrauma, 2019, 36(10): 1591–1605. DOI: 10.1089/neu.2018.6114.

[79]FRATI A, CERRETANI D, FIASCHI A I, et al. Diffuse axonal injury and oxidative stress: a comprehensive review [J].International Journal of Molecular Sciences, 2017, 18(12): 2600. DOI: 10.3390/ijms18122600.

[80]FESHARAKI-ZADEH A, DATTA D. An overview of preclinical models of traumatic brain injury (TBI): relevance topathophysiological mechanisms [J]. Frontiers in Cellular Neuroscience, 2024, 18: 1371213. DOI: 10.3389/fncel.2024.1371213.

[81]KURIAKOSE M, YOUNGER D, RAVULA A R, et al. Synergistic role of oxidative stress and blood-brain barrierpermeability as injury mechanisms in the acute pathophysiology of blast-induced neurotrauma [J]. Scientific Reports, 2019,9(1): 7717. DOI: 10.1038/s41598-019-44147-w.

[82]FESHARAKI-ZADEH A. Oxidative stress in traumatic brain injury [J]. International Journal of Molecular Sciences, 2022,23(21): 13000. DOI: 10.3390/ijms232113000.

[83]ZHANG C N, LIU C, LI F J, et al. Extracellular mitochondria activate microglia and contribute to neuroinflammation intraumatic brain injury [J]. Neurotoxicity Research, 2022, 40(6): 2264–2277. DOI: 10.1007/s12640-022-00566-8.

[84]ALONSO A D, COHEN L S, CORBO C, et al. Hyperphosphorylation of tau associates with changes in its function beyondmicrotubule stability [J]. Frontiers in Cellular Neuroscience, 2018, 12: 338. DOI: 10.3389/fncel.2018.00338.

[85]CHEN M, SONG H L, CUI J K, et al. Proteomic profiling of mouse brains exposed to blast-induced mild traumatic braininjury reveals changes in axonal proteins and phosphorylated tau [J]. Journal of Alzheimer’s Disease, 2018, 66(2): 751–773.DOI: 10.3233/JAD-180726.

[86]DICKSTEIN D L, DE GASPERI R, GAMA SOSA M A, et al. Brain and blood biomarkers of tauopathy and neuronal injuryin humans and rats with neurobehavioral syndromes following blast exposure [J]. Molecular Psychiatry, 2021, 26(10):5940–5954. DOI: 10.1038/s41380-020-0674-z.

[87]BUTLER M L M D, DIXON E, STEIN T D, et al. Tau pathology in chronic traumatic encephalopathy is primarilyneuronal [J]. Journal of Neuropathology amp; Experimental Neurology, 2022, 81(10): 773–780. DOI: 10.1093/jnen/nlac065.

[88]KONDO A, SHAHPASAND K, MANNIX R, et al. Antibody against early driver of neurodegeneration cis p-tau blocks braininjury and tauopathy [J]. Nature, 2015, 523(7561): 431–436. DOI: 10.1038/nature14658.

[89]FALCON B, ZIVANOV J, ZHANG W J, et al. Novel tau filament fold in chronic traumatic encephalopathy encloseshydrophobic molecules [J]. Nature, 2019, 568(7752): 420–423. DOI: 10.1038/s41586-019-1026-5.

[90]BOUTTé A M, THANGAVELU B, NEMES J, et al. Neurotrauma biomarker levels and adverse symptoms among militaryand law enforcement personnel exposed to occupational overpressure without diagnosed traumatic brain injury [J]. JAMANetwork Open, 2021, 4(4): e216445. DOI: 10.1001/jamanetworkopen.2021.6445.

[91]LEIVA-SALINAS C, SINGH A, LAYFIELD E, et al. Early brain amyloid accumulation at PET in military instructorsexposed to subconcussive blast injuries [J]. Radiology, 2023, 307(5): e221608. DOI: 10.1148/radiol.221608.

[92]DEKOSKY S T, BLENNOW K, IKONOMOVIC M D, et al. Acute and chronic traumatic encephalopathies: pathogenesisand biomarkers [J]. Nature Reviews Neurology, 2013, 9(4): 192–200. DOI: 10.1038/nrneurol.2013.36.

[93]MCKEE A C, STEIN T D, NOWINSKI C J, et al. The spectrum of disease in chronic traumatic encephalopathy [J]. Brain,2013, 136(1): 43–64. DOI: 10.1093/brain/aws307.

[94]PEREZ GARCIA G, DE GASPERI R, TSCHIFFELY A E, et al. Repetitive low-level blast exposure improves behavioraldeficits and chronically lowers Aβ42 in an Alzheimer disease transgenic mouse model [J]. Journal of Neurotrauma, 2021,38(22): 3146–3173. DOI: 10.1089/neu.2021.0184.

[95]DE GASPERI R, GAMA SOSA M A, KIM S H, et al. Acute blast injury reduces brain abeta in two rodent species [J].Frontiers in Neurology, 2012, 3: 177. DOI: 10.3389/fneur.2012.00177.

[96]LI G, ILIFF J, SHOFER J, et al. CSF β-amyloid and tau biomarker changes in veterans with mild traumatic brain injury [J].Neurology, 2024, 102(7): e209197. DOI: 10.1212/WNL.0000000000209197.

[97]TURK K W, GEADA A, ALVAREZ V E, et al. A comparison between tau and amyloid-β cerebrospinal fluid biomarkers inchronic traumatic encephalopathy and Alzheimer disease [J]. Alzheimer’s Research amp; Therapy, 2022, 14(1): 28. DOI:10.1186/s13195-022-00976-y.

[98]SUGARMAN M A, MCKEE A C, STEIN T D, et al. Failure to detect an association between self-reported traumatic braininjury and Alzheimer’s disease neuropathology and dementia [J]. Alzheimer’s amp; Dementia, 2019, 15(5): 686–698. DOI:10.1016/j.jalz.2018.12.015.

[99]WEINER M W, HARVEY D, LANDAU S M, et al. Traumatic brain injury and post-traumatic stress disorder are notassociated with Alzheimer’s disease pathology measured with biomarkers [J]. Alzheimer’s amp; Dementia, 2023, 19(3): 884–895. DOI: 10.1002/alz.12712.

[100]ASHWORTH E R, BAXTER D, GIBB I E. Blast traumatic brain injury [M]//BULL A M J, CLASPER J, MAHONEY P F.Blast Injury Science and Engineering. Cham: Springer, 2022: 231-236. DOI: 10.1007/978-3-031-10355-1_22.

[101]GAVETT B E, CANTU R C, SHENTON M, et al. Clinical appraisal of chronic traumatic encephalopathy: currentperspectives and future directions [J]. Current Opinion in Neurology, 2011, 24(6): 525–531. DOI: 10.1097/WCO.0b013e32834cd477.

[102]RANZENBERGER L R, DAS J M, SNYDER T. Diffusion tensor imaging [M/OL]//StatPearls. Treasure Island (FL):StatPearls Publishing, 2024[2024-05-21]. http://www.ncbi.nlm.nih.gov/books/NBK537361/.

[103]GRANT M, LIU J J, WINTERMARK M, et al. Current state of diffusion-weighted imaging and diffusion tensor imaging fortraumatic brain injury prognostication [J]. Neuroimaging Clinics of North America, 2023, 33(2): 279–297. DOI: 10.1016/j.nic.2023.01.004.

[104]JORGE R E, ACION L, WHITE T, et al. White matter abnormalities in veterans with mild traumatic brain injury [J].American Journal of Psychiatry, 2012, 169(12): 1284–1291. DOI: 10.1176/appi.ajp.2012.12050600.

[105]STONE J R, AVANTS B B, TUSTISON N J, et al. Functional and structural neuroimaging correlates of repetitive low-levelblast exposure in career breachers [J]. Journal of Neurotrauma, 2020, 37(23): 2468–2481. DOI: 10.1089/neu.2020.7141.

[106]PINTO [106] M S, WINZECK S, KORNAROPOULOS E N, et al. Use of support vector machines approach via combat harmonized diffusion tensor imaging for the diagnosis and prognosis of mild traumatic brain injury: a CENTER-TBIstudy [J]. Journal of Neurotrauma, 2023, 40(13/14): 1317–1338. DOI: 10.1089/neu.2022.0365.

[107]GRAHAM N S N, JOLLY A, ZIMMERMAN K, et al. Diffuse axonal injury predicts neurodegeneration aftermoderate–severe traumatic brain injury [J]. Brain, 2020, 143(12): 3685–3698. DOI: 10.1093/brain/awaa316.

[108]AGOSTON D V, KAMNAKSH A. Modeling the neurobehavioral consequences of blast-induced traumatic brain injuryspectrum disorder and identifying related biomarkers [M]//KOBEISSY F H. Brain Neurotrauma: Molecular,Neuropsychological, and Rehabilitation Aspects. Boca Raton: CRC Press, 2015.

[109]ZETTERBERG H, BLENNOW K. Fluid biomarkers for mild traumatic brain injury and related conditions [J]. NatureReviews Neurology, 2016, 12(10): 563–574. DOI: 10.1038/nrneurol.2016.127.

[110]ZETTERBERG H, SMITH D H, BLENNOW K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid andblood [J]. Nature Reviews Neurology, 2013, 9(4): 201–210. DOI: 10.1038/nrneurol.2013.9.

[111]GHAITH H S, NAWAR A A, GABRA M D, et al. A literature review of traumatic brain injury biomarkers [J]. MolecularNeurobiology, 2022, 59(7): 4141–4158. DOI: 10.1007/s12035-022-02822-6.

[112]SVETLOV S I, LARNER S F, KIRK D R, et al. Biomarkers of blast-induced neurotrauma: profiling molecular and cellularmechanisms of blast brain injury [J]. Journal of Neurotrauma, 2009, 26(6): 913–921. DOI: 10.1089/neu.2008.0609.

[113]AGOSTON D V, ELSAYED M. Serum-based protein biomarkers in blast-induced traumatic brain injury spectrum disorder [J].Frontiers in Neurology, 2012, 3: 107. DOI: 10.3389/fneur.2012.00107.

[114]BAZARIAN J J, BIBERTHALER P, WELCH R D, et al. Serum GFAP and UCH-L1 for prediction of absence of intracranialinjuries on head CT (ALERT-TBI): a multicentre observational study [J]. The Lancet Neurology, 2018, 17(9): 782–789. DOI:10.1016/S1474-4422(18)30231-X.

[115]TRIVEDI D, FORSSTEN M P, CAO Y, et al. Screening performance of S100 calcium-binding protein B, glial fibrillaryacidic protein, and ubiquitin C-terminal hydrolase L1 for intracranial injury within six hours of injury and beyond [J]. Journalof Neurotrauma, 2024, 41(3/4): 349–358. DOI: 10.1089/neu.2023.0322.

[116]CARR W, YARNELL A M, ONG R, et al. Ubiquitin carboxy-terminal hydrolase-L1 as a serum neurotrauma biomarker forexposure to occupational low-level blast [J]. Frontiers in Neurology, 2015, 6: 49. DOI: 10.3389/fneur.2015.00049.

[117]BOUTTé A M, THANGAVELU B, LAVALLE C R, et al. Brain-related proteins as serum biomarkers of acute,subconcussive blast overpressure exposure: a cohort study of military personnel [J]. PLoS One, 2019, 14(8): e0221036. DOI:10.1371/journal.pone.0221036.

[118]KOCIK V I, DENGLER B A, RIZZO J A, et al. A narrative review of existing and developing biomarkers in acute traumaticbrain injury for potential military deployed use [J]. Military Medicine, 2024, 189(5/6): e1374–e1380. DOI: 10.1093/milmed/usad433.

[119]KORLEY F K, JAIN S, SUN X Y, et al. Prognostic value of day-of-injury plasma GFAP and UCH-L1 concentrations forpredicting functional recovery after traumatic brain injury in patients from the US TRACK-TBI cohort: an observationalcohort study [J]. The Lancet Neurology, 2022, 21(9): 803–813. DOI: 10.1016/S1474-4422(22)00256-3.

[120]HELMRICH I R A R, CZEITER E, AMREIN K, et al. Incremental prognostic value of acute serum biomarkers forfunctional outcome after traumatic brain injury (CENTER-TBI): an observational cohort study [J]. The Lancet Neurology,2022, 21(9): 792–802. DOI: 10.1016/S1474-4422(22)00218-6.

[121]PUCCIO A M, YUE J K, KORLEY F K, et al. Diagnostic utility of glial fibrillary acidic protein beyond 12 hours aftertraumatic brain injury: a TRACK-TBI study [J]. Journal of Neurotrauma, 2024, 41(11/12): 1353–1363. DOI: 10.1089/neu.2023.0186.

[122]B?HMER A E, OSES J P, SCHMIDT A P, et al. Neuron-specific enolase, S100B, and glial fibrillary acidic protein levels asoutcome predictors in patients with severe traumatic brain injury [J]. Neurosurgery, 2011, 68(6): 1624–1631. DOI: 10.1227/NEU.0b013e318214a81f.

[123]POWELL J R, BOLTZ A J, DECICCO J P, et al. Neuroinflammatory biomarkers associated with mild traumatic brain injuryhistory in special operations forces combat soldiers [J]. Journal of Head Trauma Rehabilitation, 2020, 35(5): 300–307. DOI:10.1097/HTR.0000000000000598.

[124]MERCIER E, TARDIF P A, CAMERON P A, et al. Prognostic value of neuron-specific enolase (NSE) for prediction ofpost-concussion symptoms following a mild traumatic brain injury: a systematic review [J]. Brain Injury, 2018, 32(1): 29–40.DOI: 10.1080/02699052.2017.1385097.

[125]MERCIER E, BOUTIN A, SHEMILT M, et al. Predictive value of neuron-specific enolase for prognosis in patients withmoderate or severe traumatic brain injury: a systematic review and meta-analysis [J]. Canadian Medical Association OpenAccess Journal, 2016, 4(3): E371–E382. DOI: 10.9778/cmajo.20150061.

[126]RICHTER S, WINZECK S, CZEITER E, et al. Serum biomarkers identify critically ill traumatic brain injury patients forMRI [J]. Critical Care, 2022, 26(1): 369. DOI: 10.1186/s13054-022-04250-3.

[127]CLARKE G J B, FOLLESTAD T, SKANDSEN T, et al. Chronic immunosuppression across 12 months and high ability ofacute and subacute CNS-injury biomarker concentrations to identify individuals with complicated mTBI on acute CT andMRI [J]. Journal of Neuroinflammation, 2024, 21(1): 109. DOI: 10.1186/s12974-024-03094-8.

[128]SHAHIM P, POLITIS A, VAN DER MERWE A, et al. Neurofilament light as a biomarker in traumatic brain injury [J].Neurology, 2020, 95(6): e610–e622. DOI: 10.1212/WNL.0000000000009983.

[129]VORN R, NAUNHEIM R, LAI C, et al. Elevated axonal protein markers following repetitive blast exposure in militarypersonnel [J]. Frontiers in Neuroscience, 2022, 16: 853616. DOI: 10.3389/fnins.2022.853616.

[130]GRAHAM N S N, ZIMMERMAN K A, MORO F, et al. Axonal marker neurofilament light predicts long-term outcomes andprogressive neurodegeneration after traumatic brain injury [J]. Science Translational Medicine, 2021, 13(613): eabg9922.DOI: 10.1126/scitranslmed.abg9922.

[131]SHAHIM P, PHAM D L, VAN DER MERWE A J, et al. Serum NFL and GFAP as biomarkers of progressiveneurodegeneration in TBI [J]. Alzheimer’s amp; Dementia, 2024, 20(7): 4663–4676. DOI: 10.1002/alz.13898.

[132]HALICKI M J, HIND K, CHAZOT P L. Blood-based biomarkers in the diagnosis of chronic traumatic encephalopathy:research to date and future directions [J]. International Journal of Molecular Sciences, 2023, 24(16): 12556. DOI: 10.3390/ijms241612556.

[133]RUBENSTEIN R, CHANG B G, YUE J K, et al. Comparing plasma phospho tau, total tau, and phospho tau-total tau ratioas acute and chronic traumatic brain injury biomarkers [J]. JAMA Neurology, 2017, 74(9): 1063–1072. DOI: 10.1001/jamaneurol.2017.0655.

[134]LANGE R T, LIPPA S, BRICKELL T A, et al. Serum tau, neurofilament light chain, glial fibrillary acidic protein, andubiquitin carboxyl-terminal hydrolase L1 are associated with the chronic deterioration of neurobehavioral symptoms aftertraumatic brain injury [J]. Journal of Neurotrauma, 2023, 40(5/6): 482–492. DOI: 10.1089/neu.2022.0249.

[135]SHI H, HU X M, LEAK R K, et al. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury [J].Experimental Neurology, 2015, 272: 17–25. DOI: 10.1016/j.expneurol.2015.03.017.

[136]MEHTA T, FAYYAZ M, GILER G E, et al. Current trends in biomarkers for traumatic brain injury [J]. Open Access Journalof Neurology amp; Neurosurgery, 2020, 12(4): 86–94.

[137]KIM H J, TSAO J W, STANFILL A G. The current state of biomarkers of mild traumatic brain injury [J]. JCI Insight, 2018,3(1): e97105. DOI: 10.1172/jci.insight.97105.

[138]JETER C B, HERGENROEDER G W, HYLIN M J, et al. Biomarkers for the diagnosis and prognosis of mild traumatic braininjury/concussion [J]. Journal of Neurotrauma, 2013, 30(8): 657–670. DOI: 10.1089/neu.2012.2439.

[139]SHANG Y J, WANG Y X, GUO Y D, et al. Analysis of the risk of traumatic brain injury and evaluation neurogranin andmyelin basic protein as potential biomarkers of traumatic brain injury in postmortem examination [J]. Forensic Science,Medicine and Pathology, 2022, 18(3): 288–298. DOI: 10.1007/s12024-022-00459-4.

[140]BOHNERT S, WIRTH C, SCHMITZ W, et al. Myelin basic protein and neurofilament h in postmortem cerebrospinal fluidas surrogate markers of fatal traumatic brain injury [J]. International Journal of Legal Medicine, 2021, 135(4): 1525–1535.DOI: 10.1007/s00414-021-02606-y.

[141]LIU Z T, LIU C W, MA K G. Retrospective study on the correlation between serum MIF level and the condition andprognosis of patients with traumatic head injury [J]. PeerJ, 2023, 11: e15933. DOI: 10.7717/peerj.15933.

[142]ABDELHAK A, FOSCHI M, ABU-RUMEILEH S, et al. Blood GFAP as an emerging biomarker in brain and spinal corddisorders [J]. Nature Reviews Neurology, 2022, 18(3): 158–172. DOI: 10.1038/s41582-021-00616-3.

[143]MENDITTO V G, MORETTI M, BABINI L, et al. Minor head injury in anticoagulated patients: performance of biomarkersS100B, NSE, GFAP, UCH-L1 and alinity TBI in the detection of intracranial injury. a prospective observational study [J].Clinical Chemistry and Laboratory Medicine, 2024, 62(7): 1376–1382. DOI: 10.1515/cclm-2023-1169.

[144]GIL-JARDINé C, PAYEN J F, BERNARD R, et al. Management of patients suffering from mild traumatic brain injury2023 [J]. Anaesthesia Critical Care amp; Pain Medicine, 2023, 42(4): 101260. DOI: 10.1016/j.accpm.2023.101260.

[145]TSCHIFFELY A E, STATZ J K, EDWARDS K A, et al. Assessing a blast-related biomarker in an operational community:glial fibrillary acidic protein in experienced breachers [J]. Journal of Neurotrauma, 2020, 37(8): 1091–1096. DOI: 10.1089/neu.2019.6512.

[146]THANGAVELU B, LAVALLE C R, EGNOTO M J, et al. Overpressure exposure from 50-caliber rifle training is associatedwith increased amyloid beta peptides in serum [J]. Frontiers in Neurology, 2020, 11: 620. DOI: 10.3389/fneur.2020.00620.

[147]PIERCE M E, HAYES J, HUBER B R, et al. Plasma biomarkers associated with deployment trauma and its consequences inpost-9/11 era veterans: initial findings from the TRACTS longitudinal cohort [J]. Translational Psychiatry, 2022, 12(1): 80.DOI: 10.1038/s41398-022-01853-w.

[148]TOMPKINS P, TESIRAM Y, LERNER M, et al. Brain injury: neuro-inflammation, cognitive deficit, and magneticresonance imaging in a model of blast induced traumatic brain injury [J]. Journal of Neurotrauma, 2013, 30(22): 1888–1897.DOI: 10.1089/neu.2012.2674.

[149]KAWAUCHI S, KONO A, MURAMATSU Y, et al. Meningeal damage and interface astroglial scarring in the rat brainexposed to a laser-induced shock wave(s) [J]. Journal of Neurotrauma, 2024, 41(15/16): e2039–e2053. DOI: 10.1089/neu.2023.0572.

[150]SAJJA V S S S, HUBBARD W B, HALL C S, et al. Enduring deficits in memory and neuronal pathology after blast-inducedtraumatic brain injury [J]. Scientific Reports, 2015, 5(1): 15075. DOI: 10.1038/srep15075.

[151]UNDéN J, INGEBRIGTSEN T, ROMNER B, et al. Scandinavian guidelines for initial management of minimal, mild andmoderate head injuries in adults: an evidence and consensus-based update [J]. BMC Medicine, 2013, 11: 50. DOI: 10.1186/1741-7015-11-50.

[152]ORIS C, KAHOUADJI S, BOUVIER D, et al. Blood biomarkers for the management of mild traumatic brain injury inclinical practice [J]. Clinical Chemistry, 2024, 70(8): 1023–1036. DOI: 10.1093/clinchem/hvae049.

[153]UNDéN J, ROMNER B. A new objective method for CT triage after minor head injury-serum S100B [J]. ScandinavianJournal of Clinical and Laboratory Investigation, 2009, 69(1): 13–17. DOI: 10.1080/00365510802651833.

[154]劉宇晨. 細胞外囊泡的生物學功能及其作為體內小核糖核酸藥物遞送載體的研究 [D]. 南京: 南京大學, 2016: 10–16.

LIU Y C. The biological functions of extracellular vesicle and its utilization as small RNA carrier in vivo [D]. Nanjing:Nanjing University, 2016: 10–16.

[155]FLYNN S, LEETE J, SHAHIM P, et al. Extracellular vesicle concentrations of glial fibrillary acidic protein andneurofilament light measured 1 year after traumatic brain injury [J]. Scientific Reports, 2021, 11(1): 3896. DOI: 10.1038/s41598-021-82875-0.

[156]SCHINDLER C R, H?RAUF J A, WEBER B, et al. Identification of novel blood-based extracellular vesicles biomarkercandidates with potential specificity for traumatic brain injury in polytrauma patients [J]. Frontiers in Immunology, 2024, 15:1347767. DOI: 10.3389/fimmu.2024.1347767.

[157]XU X J, GE Q Q, YANG M S, et al. Neutrophil-derived interleukin-17A participates in neuroinflammation induced bytraumatic brain injury [J]. Neural Regeneration Research, 2023, 18(5): 1046–1051. DOI: 10.4103/1673-5374.355767.

[158]HUANG X T, XU X J, WANG C, et al. Using bioinformatics technology to mine the expression of serum exosomal miRNAin patients with traumatic brain injury [J]. Frontiers in Neuroscience, 2023, 17: 1145307. DOI: 10.3389/fnins.2023.1145307.

[159]REDELL J B, MOORE A N, WARD N H, et al. Human traumatic brain injury alters plasma microrna levels [J]. Journal ofNeurotrauma, 2010, 27(12): 2147–2156. DOI: 10.1089/neu.2010.1481.

[160]DI PIETRO V, RAGUSA M, DAVIES D, et al. MicroRNAs as novel biomarkers for the diagnosis and prognosis of mild andsevere traumatic brain injury [J]. Journal of Neurotrauma, 2017, 34(11): 1948–1956. DOI: 10.1089/neu.2016.4857.

[161]YANG Y J, WANG Y, LI P P, et al. Serum exosomes miR-206 and miR-549a-3p as potential biomarkers of traumatic braininjury [J]. Scientific Reports, 2024, 14(1): 10082. DOI: 10.1038/s41598-024-60827-8.

[162]JOHNSON J J, LOEFFERT A C, STOKES J, et al. Association of salivary microrna changes with prolonged concussionsymptoms [J]. JAMA Pediatrics, 2018, 172(1): 65–73. DOI: 10.1001/jamapediatrics.2017.3884.

[163]BHOMIA M, BALAKATHIRESAN N S, WANG K K, et al. A panel of serum miRNA biomarkers for the diagnosis ofsevere to mild traumatic brain injury in humans [J]. Scientific Reports, 2016, 6(1): 28148. DOI: 10.1038/srep28148.

[164]TAHERI S, TANRIVERDI F, ZARARSIZ G, et al. Circulating microRNAs as potential biomarkers for traumatic braininjury-induced hypopituitarism [J]. Journal of Neurotrauma, 2016, 33(20): 1818–1825. DOI: 10.1089/neu.2015.4281.

(責任編輯 張凌云)

基金項目: 軍隊高層次科技創新人才自主科研項目

猜你喜歡
生物標志物
腦缺血再灌注損傷后小膠質細胞異常活化的生物標志物研究進展
阿爾茲海默癥血清多肽組生物標志物研究
分析化學(2017年7期)2017-07-12 17:28:05
MicroRNAs在胃癌中的研究進展
特發性肺纖維化預后相關生物標志物的研究進展
copeptin在心力衰竭中的臨床應用價值
膿毒癥急性腎損傷早期預警指標的研究進展
水環境中木質素光降解及其對有機物相關指示參數影響研究進展
基于UPLC—Q—TOF—MS技術的牛血清白蛋白誘導過敏反應的代謝組學研究
基于UPLC—Q—TOF—MS技術的牛血清白蛋白誘導過敏反應的代謝組學研究
一種基于宏基因組模擬數據的生物標志物篩選方法
主站蜘蛛池模板: 欧美高清三区| 久久精品一品道久久精品| 超碰aⅴ人人做人人爽欧美| 91精品综合| 一本大道AV人久久综合| 在线观看亚洲天堂| 久久a毛片| 亚洲va欧美va国产综合下载| 欧美日韩高清| 成人国产精品视频频| 在线va视频| 午夜高清国产拍精品| 国产激爽爽爽大片在线观看| 日韩中文字幕免费在线观看| 99热这里都是国产精品| 亚洲天堂免费观看| 青青草欧美| 国产一国产一有一级毛片视频| 久久国产精品77777| 久热中文字幕在线观看| 亚洲色图欧美激情| 亚洲A∨无码精品午夜在线观看| 在线观看免费黄色网址| 日本高清成本人视频一区| 欧美69视频在线| 国产无码网站在线观看| 亚洲天堂久久久| 日韩一级二级三级| 欧美激情视频一区| 午夜免费小视频| 国外欧美一区另类中文字幕| 免费又爽又刺激高潮网址| 婷婷午夜天| 亚洲国产精品久久久久秋霞影院 | 激情综合网址| 污网站在线观看视频| 日韩在线视频网站| 精品成人免费自拍视频| 亚洲一区二区三区在线视频| 亚洲成人精品在线| 久久综合婷婷| 日韩东京热无码人妻| 丁香婷婷激情综合激情| 亚洲成人精品久久| 国产亚洲精品97在线观看| 在线观看网站国产| 米奇精品一区二区三区| 久996视频精品免费观看| 亚洲一区波多野结衣二区三区| 中字无码av在线电影| 99热线精品大全在线观看| 亚洲AⅤ永久无码精品毛片| 久久国产精品波多野结衣| 毛片在线看网站| 国产91在线免费视频| 亚洲欧美一级一级a| 黑人巨大精品欧美一区二区区| 精品在线免费播放| 71pao成人国产永久免费视频 | 丁香亚洲综合五月天婷婷| 亚洲成人黄色网址| 亚洲成A人V欧美综合天堂| 免费无遮挡AV| 理论片一区| 久久国产V一级毛多内射| 久久国产精品嫖妓| 国产乱子伦精品视频| 日韩精品毛片| 久久国产精品嫖妓| 亚洲水蜜桃久久综合网站| 国产一级视频在线观看网站| 日韩av电影一区二区三区四区| 中文无码毛片又爽又刺激| 国产微拍一区二区三区四区| 亚洲人网站| 麻豆AV网站免费进入| 先锋资源久久| 在线免费a视频| 亚洲高清无码久久久| 欧美色99| 欧洲免费精品视频在线| 精品国产www|