999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

平面幾何六大定理在解析幾何中的運用

2024-12-31 00:00:00唐宜鐘
數理化解題研究·高中版 2024年8期

摘" 要:以例證的形式給出了圓冪定理、梅涅勞斯定理、塞瓦定理、蝴蝶定理、帕斯卡定理、托勒密定理在解析幾何中的應用.通過相關定理的應用,就能知來路,尋通途,覓幽徑,至大道.

關鍵詞:圓冪定理;梅涅勞斯定理;塞瓦定理;蝴蝶定理;帕斯卡定理

中圖分類號:G632""" 文獻標識碼:A""" 文章編號:1008-0333(2024)22-0041-06

收稿日期:2024-05-05

作者簡介:唐宜鐘(1988.2—),男,陜西省漢中人,本科,中學一級教師,從事高中數學教學研究.

解析幾何問題的常規解決思路是:建系,點和曲線坐標化,代數運算得出結果.但許多解析幾何問題,若能恰當使用平面幾何的相關定理,往往能使題目條件清晰,計算簡化,本質凸顯.這是因為,一方面解析幾何中包含著直線、三角形和圓等平面幾何的基本圖形,可以直接使用平面幾何定理;另一方面,通過仿射變換,可以把解析幾何中的圖形轉化為直線、圓等平面幾何圖形,而不會影響線共點、點共線、線段平行、線段成比例等關系.

1" 圓冪定理

一點P對半徑為R的圓O的冪ρ(A)=OP2-R2.圓冪定理是一個總結性的定理,是對相交弦定理、切割線定理及割線定理(切割線定理推論)以及它們推論的統一與歸納.根據兩條與圓有相交關系的線的位置不同,有以下定理:

相交弦定理" 圓內的兩條相交弦,被交點分成的兩條線段長的積相等.

切割線定理" 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項.

割線定理" 從圓外一點P引兩條割線與圓分別交于A,B,C,D,則有PA·PB=PC·PD[1].

例1" 如圖1,已知拋物線x2=y.點A(-12,14),B(32,94),拋物線上的點P(x,y)(-12lt;xlt;32),過點B作直線AP的垂線,垂足為點Q,求

|PA|·|PQ|的最大值.

圖1" 例1題圖

解析" 因為AQ⊥BQ,則點Q在以AB為直徑的圓上.

記圓心為T,則T(12,54),|AB|=22.

故|PA|·|PQ|=R2-TP2

=(12AB)2-TP2

=2-[(x-

12)2+(y-54)2].

將y換為x2并化簡,得

|PA|·|PQ|=-x4+32x2+x+316.

結合函數的相關知識可得,當x=1時,|PA|·|PQ|的最大值為2716.

評析" 本題通過圓冪定理,將常規算法中表達式較為復雜的|PA|·|PQ|,轉化為(12AB)2-TP2,大大地減少了運算量,使解答變得簡單.

例2" 在平面直角坐標系xOy中,已知點F1(-17,0),F2(17,0),|MF1|-|MF2|=2,點M的軌跡為C.

(1)求C的方程;

(2)設點T在直線x=12上,過點T的兩條直線分別交C于A,B兩點和P,Q兩點,且|TA|·|TB|=|TP|·|TQ|,求直線AB的斜率與直線PQ的斜率之和.

解析" (1)x2-y216=1(x≥1).

(2)由|TA|·|TB|=|TP|·|TQ|,可得A,B,P,Q四點共圓,記為圓ω.

設圓ω的方程為x2+y2+Dx+Ey+F=0,與雙曲線方程作差并化簡,得

15x2-2y2-Dx-Ey-F-16=0.①

設lAB:k1x-y+b1=0,lPQ:k2x-y+b2=0,

記A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),因為(xi,yi)(i=1,2,3,4)既在雙曲線上,又在圓上,故而(xi,yi)(i=1,2,3,4)是方程①的解.

方程①可分解為

(k1x-y+b1)·(k2x-y+b2)=0.

展開對比xy項系數,得

k1+k2=0.

評析" 本題利用圓冪定理,得出A,B,P,Q四點共圓,進而通過二次曲線系簡化了運算,且通過上述論證,不難得到更多的結論:kAP+kBQ=0,kAQ+kBP=0,點在直線x=12上不是必需的.

2" 梅涅勞斯定理

梅涅勞斯定理" 如圖2,設A′,B′,C′分別為△ABC的三邊BC,CA,AB所在直線上的點,若A′,B′,C′三點共線,則BA′A′C·CB′B′A·AC′C′B=1[2].

圖2" 梅涅勞斯定理

例3" 如圖3,已知橢圓Γ:x2a2+y2b2=1(agt;bgt;0)的兩頂點為A(-2,0),B(2,0),離心率為12.點P(不同于A,B)在橢圓Γ上,點D的坐標為(-4,0),DE=35DP,直線AP與BE交于點Q .求點Q的軌跡方程.

圖3" 例3題圖

解析" 易得橢圓Γ:x24+y23=1.

對△ADP及截線BQE,由梅涅勞斯定理有

ABBD·DEEP·PQQA=1.

由題意,得ABBD=23,DEEP=32.

故PQQA=1,Q為PA的中點.

易得點Q的軌跡為(x+1)2+43y2=1(y≠0)(此處解答略).

評析" 本題雖以橢圓為背景,但其基本圖形是三角形.在處理與比例有關的問題時,若能選取適當的三角形和截線,利用梅涅勞斯定理,可快速轉化條件.

梅涅勞斯逆定理" 設A′,B′,C′分別為△ABC的三邊BC,CA,AB所在直線上的點,若BA′A′C·CB′B′A·AC′C′B=1,則A′,B′,C′三點共線.

例4" 已知曲線C:(5-m)x2+(m-2)y2=8(m∈R),設m=4,曲線C與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線C交于不同的兩點M,N,直線y=1與直線BM交于點F.求證:A,F,N三點共線.

解析" 由題意,橢圓C:x2+2y2=8,A(0,2),B(0,-2),記D(0,4),如圖4,若A,F,N三點共線,由梅涅勞斯逆定理,對△BMD,只需證明BFFM·MNND·DAAB=1(AFN為截線).圖4" 例4題圖

設M(x1,y1),N(x2,y2),

故只需證1-(-2)y1-1·y1-y24-y2·4-22-(-2)=1.

聯立直線與橢圓,由韋達定理即可證.

3" 塞瓦定理

塞瓦定理" 如圖5,在△ABC的三邊BC,CA,AB所在直線上取點A′,B′,C′,若AA′,BB′,CC′三直線平行或共點,則BA′A′C·CB′B′A·AC′C′B=1.

圖5" 塞瓦定理

例5" 已知A,B分別為橢圓E:x2a2+y2=1(agt;1)的左、右頂點,G為E的上頂點,AG·GB=8,P為直線x=6上的動點,PA與E的另一交點為C,PB與E的另一交點為D.

(1)求E的方程;

(2)證明:直線CD過定點.

解析" (1)x29+y2=1.

(2)如圖6,P為直線l上一點.連接AD,CB交于點Q.由對稱性,易得點Q在直線l上.

圖6" 例5題圖

設CD交x軸于點M,l交x軸于點N,對△ABQ及截線DMC,由梅涅勞斯定理,得 AMMB·BCCQ·QDDA=1.

對△ABQ,由于AC,BD,QN交于點P,由塞瓦定理,得

ANNB·BCCQ·QDDA=1.

兩式相除,得AMMB=ANNB.

進而可得直線CD過定點M(32,0).

評析" 本題通過合理構圖,選取適當的三角形,分別使用梅涅勞斯定理和塞瓦定理,通過線段的比例式得出了AMMB=ANNB,進而得出定點.當然,能找到如此“奇妙”的比例式,是基于對極點極線和對完全四邊形知識的理解.至于點Q在直線l上的嚴密證明,可參考后文帕斯卡定理.

塞瓦定理逆定理" 在△ABC的三邊BC,CA,AB所在直線上取點A′,B′,C′,若BA′A′C·CB′B′A·AC′C′B=1,則AA′,BB′,CC′三直線平行或共點.

例6" 如圖7,橢圓Γ:x24+y2=1,A(-2,0),B(0,-1)是橢圓Γ上兩點.直線l1:x=-2,l2:y=-1,P(x0,y0)(x0gt;0,y0gt;0)是Γ上的一個動點,l3是過點P且與Γ相切的直線.C,D,E分別是l1與l2,l2與l3,l3與l1的交點.求證:三條直線AD,BE和CP共點.

圖7" 例6題圖

證明" 直線l3:x0x4+y0y=1,C(-2,-1),易得D(4(y0+1)x0,-1),E(-2,x0+22y0).

結合橢圓方程x204+y20=1,易計算得

EAAC·CBBD·DPPE=1.

故三條直線AD,BE和CP共點.

4" 蝴蝶定理

蝴蝶定理" 如圖8,設M是⊙O中弦EF的中點,過點M任作兩條弦AB,CD,連接AC,BD交EF于G,H兩點,則M是線段GH的中點.這一定理在圓錐曲線中依然成立.

圖8" 蝴蝶定理

例7" 橢圓的長軸A1A2(=2a)與x軸平行,短軸B1B2在y軸上,中心為M(0,r)(bgt;rgt;0).

(1)寫出橢圓的方程,求橢圓焦點坐標及離心率;

(2)如圖9,直線y=k1x交橢圓于兩點C(x1,y1),D(x2,y2)(y2gt;0),直線y=k2x交橢圓于G(x3,y3),H(x4,y4)(y4gt;0),求證:k1x1x2x1+x2=k2x3x4x3+x4.

圖9" 例7題圖

(3)對于(2)中的C,D,G,H,設CH交x軸于點P,GD交x軸于點Q,求證:|OP|=|OQ|(證明過程不考慮CH或GD垂直于x軸的情形).

解析" (1)橢圓方程為x2a2+(y-r)2b2=1.

焦點坐標為F1(-a2-b2,r),F2(a2-b2,r)

離心率e=a2-b2a;

(2)將直線CD的方程y=k1x代入橢圓方程,得(b2+a2k21)x2=2k1a2rx+(a2r2-a2b2)=0.

由韋達定理,得

x1+x2=2k1a2rb2+a2k21,

x1x2=a2r2-a2b2b2+a2k21.

所以

x1x2x1+x2

=r2-b22k1r.②

將直線GH的方程y=k2x代入橢圓方程,同理可得

x3x4x3+x4=

r2-b22k2r.③

由②③,得

k1x1x2x1+x2=r2-b22r=k2x3x4x3+x4

(3)過C,G,D,H四點的二次曲線系方程設

x2a2+(y-r)2b2-1+λ(k1x-y)(k2x-y)=0,

令y=0,得

(1a2+λk1k2)x2+r2b2-1=0.

則xP+xQ=0,

故有|OP|=|OQ|.

評析" 本題為蝴蝶定理的直接結論,第(3)問的證明即為蝴蝶定理的解析法證明.

坎迪定理" 如圖10,11,設M是⊙O 中弦 EF上一點,過 點M 的兩條弦AB,CD,連接AC,BD交EF于G,H兩點,若G,H位于點M的兩側,則1EM-1FM=1GM-1HM.若G,H位于點M的同側且EMlt;FM,則1EM-1FM=1GM+1HM.

此定理在圓錐曲線中依然適用.

圖10" 坎迪定理""""" 圖11" 坎迪定理

例8" 如圖12,已知橢圓Γ:x24+y23=1,A′,A″為左右頂點,F為其左焦點.直線y=k1(x+5)與橢圓交于A,B兩點,直線AF交橢圓于另一點為C,直線BF交橢圓于另一點為D,直線CD的斜率為k2,求k1k2的值.

圖12" 例8題圖

解析" 設AB與x軸交于點P,CD與x軸交于點Q.由圓錐曲線坎迪定理,得1A′F-1A″F=1PF+1QF.

所以QF=125.

故直線CD過定點(-175,0).

由極點極線定義可得AB與CD的交點T在點F關于Γ的極線-x4+0·y3=1上.

設T(-4,t),故k1k2=kPTkQT=-35.

評析" 使用坎迪定理,能夠快速發掘本題的隱藏條件:Q為定點,從而為本題打開了思路.

5" 帕斯卡定理

帕斯卡定理" 對于任意一個內接于非退化的二次曲線的簡單六點形,它的三對對邊交點共線,這條直線稱為帕斯卡線.

帕斯卡定理逆定理" 若簡單六點形的三對對邊交點在一條直線上,則此六點形必內接于一條二次曲線.

在高中數學中,我們更多地使用其極限形式,所謂極限形式,是指簡單六點形有某些相鄰頂點重合,則內接簡單六點形實際上成為簡單五點形、四點形、三點形.此時連接重合的相鄰頂點的邊為切線,將切線視為邊,套用帕斯卡定理即可[3].

例9" 如圖13,已知橢圓C:x2a2+y2b2=1(agt;bgt;0)的離心率為23,且(7,103)為C上的一點.

圖13" 例9題圖

(1)求C的標準方程;

(2)點A,B分別為C的左、右頂點,M,N為C上異于A,B的兩點,直線MN不與坐標軸平行且不過坐標原點O,點M關于原點O的對稱點為M′,若直線AM′與直線BN相交于點P,直線OP與直線MN相交于點Q.證明:點Q在定直線上.

解析" (1)橢圓C的方程為x29+y25=1.

(2)AB∩MM′=O,AM′∩BN=P,O,P,Q三點共線,由帕斯卡定理逆定理可知,點Q為直線MN與橢圓在點A處的切線的交點,即點Q在直線x=-3上.

6" 托勒密定理

托勒密定理" 圓的內接凸四邊形兩對對邊乘積的和等于兩條對角線的乘積.

托勒密定理逆定理" 若一個凸四邊形兩對對邊乘積的和等于兩條對角線的乘積,則這個凸四邊形外接一圓.

例10" 如圖14,設橢圓C的兩焦點為F1,F2,兩準線為l1,l2,過橢圓上的一點P,作平行于F1F2的直線,分別交l1,l2于點M1,M2,直線M1F1與

M2F2交于點Q.證明:P,F1,Q,F2四點共圓.圖14" 例10題圖

證明" 設橢圓的方程為x2a2+y2b2=1.欲證P,F1,Q,F2四點共圓,由托勒密定理,只需證

PF1·QF2+QF1·PF2=PQ·F1F2.

由圖形的對稱性可知QF1=QF2.

即證2a·QF1=2c·PQ.

即證QF1QP=e.

又QF1QM1=ca2/c=e2,

在△PM1Q中,PF1=e·PM1.

利用cos∠M1F1P+cos∠QF1P=0及相關等量關系即可證(此處略).

7" 結束語

上述例證表明,在解析幾何題目的求解中,若熟練掌握了相關的平面幾何定理,就能知來路,因為一些題目的命制就是以某個定理為題根,把其一般情形演變到具體、特殊、極端、退化的情形;能尋通途,許多解析幾何題目的條件和結論之間隱藏的“中間結論”就是解題的“卡殼點”,知晰定理,方向自明;能覓幽徑,平面幾何與解析幾何互相解釋,雙向生發,其交匯的中間地帶一向鮮有探索,還有諸多幽僻處;能至大道,在更高的角度,用更廣的視野,秉持更深的思維看待問題,問題會變得更加簡潔通達.

參考文獻:

[1]

朱成萬.圓冪定理與著名幾何問題的聯系及解題妙用[J].中學數學研究(華南師范大學版),2021(19):43-46.

[2] 沈文選.幾何問題解題思維方法與典型技巧[M].長沙:湖南科學技術出版社,2020.

[3] 何青.Pascal和Brianchon定理證明的另一種表述及其極限形式研究[J].長江大學學報(自然科學版),2010,7(01):142-144.

[責任編輯:李" 璟]

主站蜘蛛池模板: 欧美亚洲日韩不卡在线在线观看| 婷婷六月激情综合一区| 激情亚洲天堂| 欧美日韩资源| 国产91视频免费| 夜夜高潮夜夜爽国产伦精品| 亚洲欧洲日韩综合色天使| 制服丝袜在线视频香蕉| 91精品免费久久久| 成人在线综合| 97视频在线精品国自产拍| 中文天堂在线视频| 尤物精品视频一区二区三区| 无码AV日韩一二三区| 91精品人妻互换| 在线播放91| 999国内精品视频免费| 国产在线专区| 国产精品第一区在线观看| 97视频免费在线观看| 欧美日韩在线成人| 国产91无毒不卡在线观看| 日韩欧美国产综合| 91麻豆国产视频| 国产福利一区在线| a级毛片免费网站| 91九色国产porny| 亚洲中文字幕在线精品一区| 日韩无码一二三区| 国产三级国产精品国产普男人 | 内射人妻无套中出无码| 亚洲国产成人自拍| A级毛片高清免费视频就| 国产玖玖视频| 大香伊人久久| 久久免费精品琪琪| 欧美激情伊人| 亚洲婷婷丁香| 国产视频一区二区在线观看 | 美女免费精品高清毛片在线视| 中美日韩在线网免费毛片视频| 亚洲人成人伊人成综合网无码| 国产男女XX00免费观看| 国产女人在线观看| 99资源在线| a级毛片网| www.亚洲色图.com| 青青国产视频| 亚洲成aⅴ人在线观看| 久久国产精品夜色| 亚洲视频色图| 日本国产在线| 先锋资源久久| 国产门事件在线| 国产白浆一区二区三区视频在线| 亚洲国产一区在线观看| 日韩在线永久免费播放| 色偷偷综合网| 伊人久久大香线蕉影院| 无码国产伊人| 国产色网站| 国产无码高清视频不卡| 亚洲国产成人无码AV在线影院L| 亚洲欧洲日产国产无码AV| 99视频精品全国免费品| 日韩在线欧美在线| 亚洲天堂首页| 国产麻豆另类AV| 国产亚洲欧美另类一区二区| 特黄日韩免费一区二区三区| 国产又粗又猛又爽视频| 最新精品国偷自产在线| 日韩久久精品无码aV| 国产精品成人观看视频国产 | 国产精品主播| 91欧美亚洲国产五月天| 亚洲国产亚综合在线区| 国产国产人成免费视频77777 | 欧美日韩v| 国产成人免费| 亚洲精品自在线拍| 少妇高潮惨叫久久久久久|