999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

硬腦膜在顱骨/腦膜/腦組織系統生長發育中的作用機制研究進展

2024-12-31 00:00:00劉松李文斌邵國張春陽馮士軍
天津醫藥 2024年11期

摘要:硬腦膜是貼覆在顱骨內表面且包繞大腦的一層質韌的纖維結締組織膜,作為腦組織與顱骨間的緩沖性橋梁結構,其生理功能及在顱骨發育和修復中的作用一直是研究的熱點。近年來研究發現,硬腦膜在顱骨的生長過程中不僅直接參與顱骨的發育,還分泌多種控制中樞神經系統發育的細胞因子,兩者間有豐富的物質交換與細胞遷移。該文從硬腦膜在顱骨發育及修復中的作用進行綜述,為進一步發現硬腦膜在顱骨發育及修復中的相關機制提供線索。

關鍵詞:硬腦膜;顱骨發育;顱骨損傷修復

中圖分類號:R651.1+9 文獻標志碼:A DOI:10.11958/20240842

Research progress on the mechanism of dura mater in the growth and development of skull/meninges/brain tissue system

LIU Song1, LI Wenbin1, SHAO Guo2, ZHANG Chunyang2, FENG Shijun2△

1 The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology,

Baotou 014010, China; 2 Engineering Technology Center for Bone Tissue Regeneration and

Injury Repair in Inner Mongolia Autonomous Region

△Corresponding Author E-mail: fsj18047211139@126.com

Abstract:" Dura mater is a tough collagen connective tissue attached to inner surface of skull and wrapped around brain. As a buffer bridge between brain tissue and skull, its physiological function and role in skull development and repair have always been a focus of research. Recent studies have found that dura mater not only directly participates in skull development during skull growth, but also secretes a variety of cytokines that control the development of central nervous system. There are abundant material exchange and cell communication between the two. This article reviews the role of dura in development and repair of skull, and provides clues for further discovery of the relevant mechanisms of dura in development and repair of skull.

Key words: dura mater; skull development; skull injury repair

硬腦膜是貼覆在顱骨內表面且包繞大腦的一層質韌的纖維結締組織膜,在腦組織和顱骨的發育過程中發揮著重要的作用,尤其是未成熟的硬腦膜可分泌多種信號因子,促使成骨細胞轉化為骨細胞,調節顱骨發育與重塑[1-2]。硬腦膜生理結構完整性及血腦屏障功能性對維持顱骨、硬腦膜及顱腦組織之間的細胞遷移至關重要。顱骨缺損后會啟動缺損修復機制,誘導硬腦膜分泌、募集骨形態發生蛋白(bBMP)、成纖維細胞生長因子(FGF)、Runt相關轉錄因子2(Runx2)、骨鈣蛋白(osteocalcin,OCN)等成骨相關因子與成骨相關細胞加速骨再生,啟動炎癥防御反應及缺損區域血管再生,誘導缺損部位形成骨化中心以加速膜內成骨,實現顱骨缺損修復及骨重塑[3-4]。硬腦膜和顱骨在來源上高度相似,位置分布又極為緊密,因此兩者在生長發育及損傷修復的過程中必然有著密切的細胞遷移和廣泛的物質聯系,但目前對其中涉及的具體分子機制尚不明確。本文擬對現有的研究進行總結,為進一步了解硬腦膜在顱骨發育及修復中的作用提供線索。

1 腦膜的生理學概述

1.1 腦膜生理結構 成人腦膜為環繞大腦的3層具有不同生物學特性的膜性結構,由外及內為硬腦膜、蛛網膜和軟腦膜,在顱骨與腦組織之間起到重要緩沖作用。最外層的硬腦膜又分為兩部分,厚且致密與顱骨附著緊密的是外層硬腦膜,膜內富含血管,參與顱骨內表面骨膜發育與顱骨供血;貼近腦組織的硬腦膜稱為內層硬腦膜,參與顱骨靜脈引流與硬膜反射活動;兩者僅在矢狀竇等靜脈竇血管走行的位置分離成明顯的兩層,形成硬腦膜反折[5]。硬腦膜反折延伸向顱腔深處,在空間上將顱腔分隔為左右大腦半球、小腦幕上下4個隔室。蛛網膜是主要由膠原纖維和成纖維細胞組成的海綿狀結締組織,外層類似顆粒狀,內層是蛛網膜小梁。軟腦膜是緊密黏附在大腦表面的單細胞膜,最靠近腦組織的分化為軟腦膜基底部,其細胞外基質中富含層黏連蛋白、膠原蛋白Ⅳ[6-7]。腦膜的反折處形成硬膜外腔、硬膜下間隙與蛛網膜下腔,在蛛網膜下腔中有腦脊液穿行。硬腦膜包繞在中樞神經系統(CNS)的外表面,是3層腦膜結構中質地最堅韌的一層,在CNS中發揮了重要作用[8]。

1.2 腦淋巴系統 腦淋巴系統主要是指星形膠質細胞末端足包裹血管壁形成的環形血管周圍空間間隙(perivascular space,PVS),該系統對維持顱內穩態至關重要[9]。Louveau等[10]發現膠質淋巴系統(GS)和腦膜淋巴管(MLVs)共同形成一條顱腦向外周的腦脊液(CSF)循環引流通路,可以更高效地將顱內大分子代謝廢物由MLVs運輸到頸深部淋巴結(dCLNs)及頸淺部淋巴結(ssCLNs)。同時,硬腦膜含有大量長期駐留的免疫細胞,這些免疫細胞介導顱內免疫監測和防御[11-12]。MLVs的發現擴展了對顱腔內環境穩態的傳統認知。創傷性腦損傷、腦出血等誘發的急性炎癥反應會降低腦膜淋巴系統的清除效率,加重腦源性腦水腫的程度,隨后腦實質中膠質纖維酸性蛋白(GFAP)、星形膠質細胞、小膠質細胞等免疫細胞表達量會相應升高,分泌更多促淋巴管增生的mRNA、蛋白質等物質,促進MLVs新生和重塑,增強MLVs對顱內異源物質的清除能力[13]。另有研究表明,硬腦膜淋巴系統對α-突觸核蛋白" " " (α-syn)、β-淀粉樣蛋白(Aβ)和Tau蛋白等毒性蛋白有清除作用,這些毒性蛋白與阿爾茨海默病的發病機制密切相關[14]。由此可知硬腦膜淋巴系統在維持顱腔內環境穩態中發揮著至關重要的作用。

1.3 硬腦膜發育的分子學和細胞學機制 硬腦膜的發育是多細胞信號轉導通路共同調控的結果,其中叉頭盒C1(FOXC1)、黏著斑激酶(fFAK)、視黃酸(retinoic acid,RA)和轉化生長因子-β(TGF-β)等參與硬腦膜的發育過程,見表1。

2 硬腦膜參與顱骨形成和發育

2.1 硬腦膜與顱骨的形成 對顱骨-硬腦膜-大腦發育體系的發育過程已有諸多研究,在哺乳動物胚胎發育的第5周(E 5),MSCs由后腦枕葉大量增殖分化并向中腦和前腦擴展延伸,最后包繞整個大腦形成一層間充質鞘,這是顱骨及頭皮的原始形態,稱為初級腦膜。隨后,初級腦膜分化成硬腦膜、軟腦膜及蛛網膜,并在胚胎發育的第6周(E 6)逐漸形成神經血管叢、腦細胞及腦膜內淋巴管結構[30]。已有研究證實前腦的硬腦膜由神經嵴分化而來,而中腦和后腦的硬腦膜則由中胚層分化而來[1]。

通過小鼠胚胎發育模型觀察到,胚胎E 8.5和E 9.5,來自中后腦域的神經嵴細胞與近軸中胚層細胞在Wnt/β-catenin信號傳導通路和下游因子介導下一起遷移到眶上嵴,在眶上間充質(supraorbital mesenchyme,SOM)中形成顱骨祖細胞池,E 10.5和E 12.5時神經嵴細胞與近軸中胚層細胞衍生的OPC在SOM中凝結[31]。OPC經表面外胚層的經典Wnt信號轉導通路激活,增殖分化表達Twist1、堿性磷酸酶(alkaline phosphatase,ALP)和Runx2等細胞因子,促進顱骨形成[29-30]。同時β-catenin激活OPC中的Twist1,以解除Twist1對Runx2的活性抑制,且OPC以囊膜的形式緊密排列在發育中的硬腦膜表面[31]。外間充質層通過膜內骨化形式,由基底部逐步向上分化,在頂端以擴展延伸的方式覆蓋大腦,促進顱骨穹窿的發育和頂端擴張;顱基底部和頜面部以軟骨化成骨的形式向上發育[31-32]。顱骨縫線的發育融合過程主要是由硬腦膜調節,硬腦膜與顱骨穹窿上覆組織間相互作用并提供了諸多重要的生長調節因子、機械信號以及轉化遷移的細胞,任一環節異常均可導致發育異常。

2.2 硬腦膜對顱骨發育的作用 顱骨與硬腦膜在結構上緊密并行排列,兩者在顱骨的形成和發育過程中存在廣泛的物質交換與細胞遷移。將胚胎期大鼠提取的硬腦膜細胞與OPC體外共培養發現,顱骨祖細胞的增殖較單獨培養時顯著增加[33]。小兒硬腦膜發育先于顱骨發育,嬰兒的后囟門、前外側囟門、后外側囟門、前囟門在出生后2、3、12、24個月依次閉合,額縫、失狀縫、冠狀縫和人字縫則在2、22、24、26個月依次閉合,顱縫的閉合時間稍遲于囟門,此時顱骨內外板間無板障結構[34];14~16歲所有顱縫閉合,顱縫停止發育[35]。這可能為兩者間的細胞遷移提供了結構基礎。寇正雄等[36]進一步證實,當硬腦膜人字縫與顱骨骨縫的位置對應關系被破壞后,骨縫會提前閉合,導致顱骨骨化遲緩甚至終止。這充分證明了硬腦膜生理結構和功能完整性,尤其是顱縫縫線下方的硬腦膜在維持顱縫開放狀態上起到了重要作用,是顱骨形成與發育、損傷與修復的必要條件。

2.3 硬腦膜參與顱骨發育的相關分子機制 顱骨祖細胞沒有特異性合成FOXC1、TGF-β和BMP等多種成骨細胞調節因子的潛力,上述細胞因子由硬腦膜分泌后遷移至顱骨,調控顱骨的形成(圖1),此過程經歷3個關鍵時期:(1)胚胎期(硬腦膜開始形成至胎兒分娩)。此時期成骨特點是“從無到有”,主要節點有OPC在SOM中凝結、膜內骨化形成顱蓋骨雛形、部分顱底骨軟骨化成骨、顱骨頂端化擴張和延伸[28-30]。(2)嬰兒期(0~3周歲):胎兒分娩后解除子宮容積限制至3周歲前各囟門和主要顱骨縫線未閉合期間,硬腦膜與顱骨間充分的物質交換和細胞遷移促進顱骨快速發育[17,33]。(3)青春期前(3~16周歲):16歲所有顱縫閉合,顱骨間板障結構形成,顱腔容積基本固定,為適應生存與發育的需要,顱骨生長表現形式為顱骨塑形和增強硬度[34-35]。3個時期描述見表2、3。

3 硬腦膜促進顱骨損傷修復

硬腦膜在創傷、腫瘤、先天性疾病等原因導致的顱骨缺損修復中發揮著重要的作用。在小鼠顱骨缺損模型發現,有硬腦膜貼附的骨缺損處修復效率遠高于硬腦膜缺失處[35]。將Gli-1作為MSCs的細胞譜系追蹤標志物,發現損傷發生后MSCs中Gli-1細胞調控Hh信號通路轉導靶基因和Hedgehog相互作用蛋白1(Hedgehog interacting protein-1,Hhip-1)結合、增殖分化,遷移到骨缺損區域分化為骨膜、硬腦膜和骨細胞[49-50]。可見消融小鼠MSCs中的Gli-1細胞后不會阻礙顱骨生長,而是阻礙顱骨損傷后修復的能力,由此可以推斷硬腦膜與顱骨存在密切的細胞遷移,硬腦膜促進顱骨損傷修復。張瑞欣等[53]發現,長鏈非編碼RNA(long non-coding RNA,lnc RNA)與miRNA結合形成內源競爭性RNA(competing endogenous RNA,ceRNA)調控下游靶基因,從而調控MSCs成骨分化過程。后續研究表明,顱骨損傷后會釋放多種炎性信號因子,其中腫瘤壞死因子α(TNF-α)與損傷修復關系密切,能夠刺激MSCs產生并釋放大量外泌體[54];外泌體攜帶大量功能性微小核糖核酸分子(microRNA,miR),如miR-23a-3p可加快小鼠缺損修復進程。這意味著硬腦膜與顱骨間的細胞遷移對促進顱骨缺損區域的損傷修復至關重要[55]。

4 硬腦膜對顱腦發育的影響

顱骨-硬腦膜-大腦在生理結構上的并行排列構成了一個整體結構單元,腦組織的正常發育依賴于硬腦膜發育速率、顱骨發育速率、顱縫閉合速率、顱底和穹窿部融合速率之間協調同步的結果。在0~3歲的顱骨骨折患兒中,由于患兒顱腦發育較快,大腦的快速發育以及顱腔內外壓力差共同導致顱骨缺損局部一直存在向外的擴張力;與此同時,顱腔內壓與外界大氣壓壓力差變化激活顱蓋骨局部的FAK-磷脂酰肌醇3-激酶/絲氨酸蘇氨酸蛋白激酶(PI3K/AKT)信號通路,增加下游相關因子的表達和質膜通透性[56-57]。硬腦膜除了分泌細胞因子促進顱骨發育外,似乎也與神經元發育有關。BMP除前文提到的可以促進皮質形成和皮質神經元的遷移外,高表達的BMP結構亞型BMP-2和BMP-4還可促進大腦靜脈血管的形成和側支循環的建立[58]。最后,對硬腦膜細胞譜系追蹤與單細胞DNA測序發現,硬腦膜參與皮質神經元干細胞庫的建立,深入影響了顱內血管化與神經系統的發育[59]。顱骨-硬腦膜-大腦體系三者間的物質交換與細胞遷移協調著其整體的發育,當這種協調性失去,會導致三者的發育異常。

5 總結與展望

硬腦膜分泌的細胞因子不僅直接參與調控與維持顱骨發育的整個過程,還參與顱腦的神經元建立、局部血管化修復受損的神經系統以及向顱骨缺損局部遷移,促進缺損區域的骨再生與骨重塑,并對胚胎腦膜的功能表征——調節蛛網膜屏障細胞的發育、分泌大腦發育的因子以及產生構成軟腦膜BM的細胞外基質蛋白,強調了顱骨-硬腦膜-大腦體系同步協調發育的重要性。隨著單細胞DNA測序、細胞譜系追蹤、腦成像工具、基因編碼傳感器和細胞特異性標記相結合技術的進步,顱骨-硬腦膜-大腦體系的新特征會逐步被發現。今后尚需深入探索硬腦膜與顱骨、顱腦間涉及的物質信息傳遞與細胞遷移的方式,明確硬腦膜分泌的不同細胞因子靶點作用的信號轉導通路的分子機制,針對性地應用分子靶向藥物,定向作用于腦卒中、創傷性腦損傷及阿爾茲海默病等神經系統常見疾病的神經功能修復,為相關臨床診治提供新方向。

參考文獻

[1] ZHAO F N,ZHU J L,DONG X H,et al. The influence of extracellular vesicles secreted by dural cells on osteoblasts[J]. Mol Biotechnol,2023. doi:10.1007/s12033-023-00974-x. [Online ahead of print].

[2] KO F C,SUMNER D R. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development?[J]. Dev Dyn,2021,250(3):377-392. doi:10.1002/dvdy.240.

[3] YAPIJAKIS C,PACHIS N,SOTIRIADOU T,et al. Molecular mechanisms involved in craniosynostosis[J]. In Vivo,2023,37(1):36-46. doi:10.21873/invivo.13052.

[4] DESISTO J,O'ROURKE R,JONES H E,et al. Single-cell transcriptomic analyses of the developing meninges reveal meningeal fibroblast diversity and function[J]. Dev Cell,2020,54(1):43-59.e4. doi:10.1016/j.devcel.2020.06.009.

[5] SMYTH L C D,XU D,OKAR S V,et al. Identification of direct connections between the dura and the brain[J]. Nature,2024,627(8002):165-173. doi:10.1038/s41586-023-06993-7.

[6] AHN J H,CHO H,KIM J H,et al. Meningeal lymphatic vessels at the skull base brain cerebrospinal fluid[J]. Nature,2019,572(7767):62-66. doi:10.1038/s41586-019-1419-5.

[7] LIAO J G,HUANG Y P,WANG Q,et al. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development[J]. Cell Mol Life Sci,2022,79(3):158. doi:10.1007/s00018-022-04208-2.

[8] LI B,WANG Y G,FAN Y,et al. Cranial suture mesenchymal stem cells:insights and advances[J]. Biomolecules,2021,11(8):1129. doi:10.3390/biom11081129.

[9] PATRICK E E,FLEETING C R,PATEL D R,et al. Corrigendum:modeling the volume of tissue activated in deep brain stimulation and its clinical influence:a review[J]. Front Hum Neurosci,2024,18:1434402. doi:10.3389/fnhum.2024.1434402.

[10] LOUVEAU A,SMIRNOV I,KEYES T J,et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature,2015,523(7560):337-341. doi:10.1038/nature14432.

[11] AGARWAL N,LEWIS L D,HIRSCHLER L,et al. Current understanding of the anatomy,physiology,and magnetic resonance imaging of neurofluids:update from the 2022 \"ISMRM imaging neurofluids study group\" workshop in rome[J]. J Magn Reson Imaging,2024,59(2):431-449. doi:10.1002/jmri.28759.

[12] AKKAYA B,SHEVACH E M. Regulatory T cells:master thieves of the immune system[J]. Cell Immunol,2020,355:104160. doi:10.1016/j.cellimm.2020.104160.

[13] LIU X H,GAO C,YUAN J Y,et al. Subdural haematomas drain into the extracranial lymphatic system through the meningeal lymphatic vessels[J]. Acta Neuropathol Commun,2020,8(1):16. doi:10.1186/s40478-020-0888-y.

[14] DA MESQUITA S,PAPADOPOULOS Z,DYKSTRA T,et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy[J]. Nature,2021,593(7858):255-260. doi:10.1038/s41586-021-03489-0.

[15] GILLN?S S,GALLINI R,HE L,et al. Severe cerebellar malformations in mutant mice demonstrate a role for PDGF-C/PDGFRα signalling in cerebellar development[J]. Biol Open,2022,11(8):bio059431. doi:10.1242/bio.059431.

[16] ZHANG P G M,FENG B,DAI G,et al. FOXC1 promotes osteoblastic differentiation of bone marrow mesenchymal stem cells via the Dnmt3b/CXCL12 Axis[J]. Biochem Genet,2024,62(1):176-192. doi:10.1007/s10528-023-10403-y.

[17] ANG P S,MATRONGOLO M J,ZIETOWSKI M L,et al. Cranium growth,patterning and homeostasis[J]. Development,2022,149(22):dev201017. doi:10.1242/dev.201017.

[18] SHROFF N P,XU P,KIM S,et al. Proliferation-driven mechanical compression induces signalling centre formation during mammalian organ development[J]. Nat Cell Biol,2024,26(4):519-529. doi:10.1038/s41556-024-01380-4.

[19] HE W G,DENG Y X,KE K X,et al. Matricellular protein SMOC2 potentiates BMP9-Ⅰnduced osteogenic differentiation in mesenchymal stem cells through the enhancement of FAK/PI3K/AKT signaling[J]. Stem Cells Int,2023,2023:5915988. doi:10.1155/2023/5915988.

[20] ROWE C J,NWAOLU U,SALINAS D,et al. Inhibition of focal adhesion kinase 2 results in a macrophage polarization shift to M2 which attenuates local and systemic inflammation and reduces heterotopic ossification after polysystem extremity trauma[J]. Front Immunol,2023,14:1280884. doi:10.3389/fimmu.2023.1280884.

[21] ZHU L W,LIU Y Z,WANG A,et al. Application of BMP in bone tissue engineering[J]. Front Bioeng Biotechnol,2022,10:810880. doi:10.3389/fbioe.2022.810880.

[22] TIAN X,VATER C,RAINA D B,et al. Co-delivery of rhBMP-2 and zoledronic acid using calcium sulfate/hydroxyapatite carrier as a bioactive bone substitute to enhance and accelerate spinal fusion[J]. Bioact Mater,2024,36:256-271. doi:10.1016/j.bioactmat.2024.02.034.

[23] BALL J R,SHELBY T,HERNANDEZ F,et al. Delivery of growth factors to enhance bone repair[J]. Bioengineering (Basel),2023,10(11):1252. doi:10.3390/bioengineering10111252.

[24] CUNHA F B,POMINI K T,PLEPIS A,et al. In vivo biological behavior of polymer scaffolds of natural origin in the bone repair process[J]. Molecules,2021,26(6):1598. doi:10.3390/molecules26061598.

[25] MOFFATT P,BORASCHI-DIAZ I,MARULANDA J,et al. Calvaria bone transcriptome in mouse models of osteogenesis imperfecta[J]. Int J Mol Sci,2021,22(10):5290. doi:10.3390/ijms22105290.

[26] XIE B C,ZHOU H,LIU H Y,et al. Salidroside alleviates dexamethasone-induced inhibition of bone formation via transforming growth factor-beta/Smad2/3 signaling pathway[J]. Phytother Res,2023,37(5):1938-1950. doi:10.1002/ptr.7711.

[27] CHEN H R,CUI Y J,ZHANG D M,et al. The role of fibroblast growth factor 8 in cartilage development and disease[J]. J Cell Mol Med,2022,26(4):990-999. doi:10.1111/jcmm.17174.

[28] KOMORI T. Molecular mechanism of Runx2-dependent bone development[J]. Mol Cells,2020,43(2):168-175. doi:10.14348/molcells.2019.0244.

[29] LI Y,JIE W,QI Y L,et al. Inhibition of RIPK1 alleviating vascular smooth muscle cells osteogenic transdifferentiation via Runx2[J]. iScience,2024,27(2):108766. doi:10.1016/j.isci.2023.108766.

[30] COMO C N,KIM S,SIEGENTHALER J. Stuck on you:meninges cellular crosstalk in development[J]. Curr Opin Neurobiol,2023,79:102676. doi:10.1016/j.conb.2023.102676.

[31] CABRERA PEREIRA A,DASGUPTA K,HO T V,et al. Lineage-specific mutation of lmx1b provides new insights into distinct regulation of suture development in different areas of the calvaria[J]. Front Physiol,2023,14:1225118. doi:10.3389/fphys.2023.1225118.

[32] KOMORI T. Whole aspect of Runx2 functions in skeletal development[J]. Int J Mol Sci,2022,23(10):5776. doi:10.3390/ijms23105776.

[33] SCHAEFFER S,IADECOLA C. Revisiting the neurovascular unit[J]. Nat Neurosci,2021,24(9):1198-1209. doi:10.1038/s41593-021-00904-7.

[34] FURTADO L,FILHO J,FREITAS L S,et al. Anterior fontanelle closure and diagnosis of non-syndromic craniosynostosis:a comparative study using computed tomography[J]. J Pediatr (Rio J),2022,98(4):413-418. doi:10.1016/j.jped.2021.10.004.

[35] FARMER D T,MLCOCHOVA H,ZHOU Y,et al. The developing mouse coronal suture at single-cell resolution[J]. Nat Commun,2021,12(1):4797. doi:10.1038/s41467-021-24917-9.

[36] 寇正雄,張海燕,邵國,等. fak/twist1信號通路在顱縫閉合過程中的作用機制研究[J].安徽醫科大學學報,2023,58(1):60-66. KOU Z X,ZHANG H Y,SHAO G,et al. The mechanism of FAK/Twist1 signal pathway in the closure of cranial suture[J]. Acta Universitatis Medicinalis Anhui,2023,58(1):60-66. doi:10.19405/j.cnki.issn1000-1492.2023.01.011.

[37] GUO J Q,YU S T,ZHANG H S,et al. Klf4 haploinsufficiency in Sp7+ lineage leads to underdeveloped mandibles and insufficient elongation of mandibular incisor[J]. Biochim Biophys Acta Mol Basis Dis,2023,1869(3):166636. doi:10.1016/j.bbadis.2022.166636.

[38] EA C,HENNOCQ Q,PICARD A,et al. Growth charts in FGFR2- and FGFR3-related faciocraniosynostoses[J]. Bone Rep,2022,16:101524. doi:10.1016/j.bonr.2022.101524.

[39] MA L,CHANG Q,PEI F,et al. Skull progenitor cell-driven meningeal lymphatic restoration improves neurocognitive functions in craniosynostosis[J]. Cell Stem Cell,2023,30(11):1472-1485. doi:10.1016/j.stem.2023.09.012.

[40] SONG C,LI T,ZHANG C,et al. RA-induced prominence-specific response resulted in distinctive regulation of wnt and osteogenesis[J]. Life Sci Alliance,2023,6(10):e202302013. doi:10.26508/lsa.202302013.

[41] KHALID A B,PENCE J,SUTHON S,et al. GATA4 regulates mesenchymal stem cells via direct transcriptional regulation of the WNT signalosome[J]. Bone,2021,144:115819. doi:10.1016/j.bone.2020.115819.

[42] KOMORI T. What is the function of osteocalcin?[J]. J Oral Biosci,2020,62(3):223-227. doi:10.1016/j.job.2020.05.004.

[43] HASAN M R,TAKATALO M,MA H,et al. RAB23 coordinates early osteogenesis by repressing FGF10-pERK1/2 and GLI1[J]. Elife,2020,9:e55829. doi:10.7554/eLife.55829.

[44] LEE S B,LEE H J,PARK J B. Bone morphogenetic protein-9 promotes osteogenic differentiation and mineralization in human stem-cell-derived spheroids[J]. Medicina (Kaunas),2023,59(7):1315. doi:10.3390/medicina59071315.

[45] WANG H,QI L L,SHEMA C,et al. Advances in the role and mechanism of fibroblasts in fracture healing[J]. Front Endocrinol (Lausanne),2024,15:1350958. doi:10.3389/fendo.2024.1350958.

[46] LIU J Q,XIAO Q,XIAO J N,et al. Wnt/β-catenin signalling:function,biological mechanisms,and therapeutic opportunities[J]. Signal Transduct Target Ther,2022,7(1):3. doi:10.1038/s41392-021-00762-6.

[47] ALDAWOOD Z A,MANCINELLI L,GENG X,et al. Expansion of the sagittal suture induces proliferation of skeletal stem cells and sustains endogenous calvarial bone regeneration[J]. Proc Natl Acad Sci U S A,2023,120(16):e2120826120. doi:10.1073/pnas.2120826120.

[48] FAN X,WAARDENBERG A J,DEMUTH M,et al. TWIST1 homodimers and heterodimers orchestrate lineage-specific differentiation[J]. Mol Cell Biol,2020,40(11):e00663-00619. doi:10.1128/MCB.00663-19.

[49] DI PIETRO L,BARBA M,PRAMPOLINI C,et al. GLI1 and AXIN2 are distinctive markers of human calvarial mesenchymal stromal cells in nonsyndromic craniosynostosis[J]. Int J Mol Sci,2020,21(12):4356. doi:10.3390/ijms21124356.

[50] WU L D,LIU Z X,XIAO L,et al. The role of Gli1(+) mesenchymal stem cells in osteogenesis of craniofacial bone[J]. Biomolecules,2023,13(9):1351. doi:10.3390/biom13091351.

[51] SHIN H R,KIM B S,KIM H J,et al. Excessive osteoclast activation by osteoblast paracrine factor RANKL is a major cause of the abnormal long bone phenotype in apert syndrome model mice[J]. J Cell Physiol,2022,237(4):2155-2168. doi:10.1002/jcp.30682.

[52] DEBNATH S,YALLOWITZ A R,MCCORMICK J,et al. Discovery of a periosteal stem cell mediating intramembranous bone formation[J]. Nature,2018,562(7725):133-139. doi:10.1038/s41586-018-0554-8.

[53] 張瑞欣,董語迪,肖建輝. lncRNA調控間充質干細胞向成骨細胞分化的研究進展[J]. 天津醫藥,2021,49(6):662-667. ZHANG R X,DONG Y D,XIAO J H. Research progress on lncRNA regulation of mesenchymal stem cell differentiation into osteoblasts[J]. Tianjin Med J,2021,49(6):662-667. doi:10.11958/20203229.

[54] NESPOLI E,HAKANI M,HEIN T M,et al. Glial cells react to closed head injury in a distinct and spatiotemporally orchestrated manner[J]. Sci Rep,2024,14(1):2441. doi:10.1038/s41598-024-52337-4.

[55] HU H X,ZHANG H,BU Z H,et al. Small extracellular vesicles released from bioglass/hydrogel scaffold promote vascularized bone regeneration by transferring miR-23a-3p[J]. Int J Nanomedicine,2022,17:6201-6220. doi:10.2147/ⅠJN.S389471.

[56] SUN Y T,LI Y X,ZHANG Y,et al. A Polydopamine-assisted strontium-substituted apatite coating for titanium promotes osteogenesis and angiogenesis via FAK/MAPK and PI3K/AKT signaling pathways[J]. Mater Sci Eng C Mater Biol Appl,2021,131:112482. doi:10.1016/j.msec.2021.112482.

[57] 曹志威,邵國,張春陽. 硬腦膜對顱骨生長發育影響的研究現狀[J]. 中華神經外科雜志,2022,38(5):537-540. CAO Z W,SHAO G,ZHANG C Y. Research status of the influence of dura mater on skull growth and development[J]. Chinese Journal of Neurosurgery,2022,38(5):537-540. doi:10.3760/cma.j.cn112050-20210617-00290.

[58] PIBOUIN-FRAGNER L,EICHMANN A,PARDANAUD L. Environmental and intrinsic modulations of venous differentiation[J]. Cell Mol Life Sci,2022,79(9):491. doi:10.1007/s00018-022-04470-4.

[59] DECIMO I,DOLCI S,PANUCCIO G,et al. Meninges:A widespread niche of neural progenitors for the brain[J]. Neuroscientist,2021,27(5):506-528. doi:10.1177/1073858420954826.

(2024-06-27收稿 2024-08-10修回)

(本文編輯 胡小寧)

主站蜘蛛池模板: 丁香亚洲综合五月天婷婷| 国产精品亚洲va在线观看| 亚洲最新地址| 亚洲香蕉伊综合在人在线| 国产久操视频| 欧美国产视频| 美女视频黄又黄又免费高清| 亚洲中文字幕在线一区播放| 亚洲国产精品人久久电影| 99久久国产综合精品2023| 欧美一级黄色影院| 日本免费一级视频| 久久99蜜桃精品久久久久小说| 伊人久久久大香线蕉综合直播| www.亚洲一区| 国产一区成人| 亚洲精品国产精品乱码不卞| 亚洲女同欧美在线| 一边摸一边做爽的视频17国产 | 91久久大香线蕉| 午夜国产大片免费观看| 天天色天天综合| 精品国产网| 精品一区二区三区无码视频无码| 99久久国产自偷自偷免费一区| 黄色成年视频| 国产人前露出系列视频| 国产好痛疼轻点好爽的视频| 91久久精品国产| 久久国产拍爱| 婷婷亚洲天堂| 无码网站免费观看| 亚洲αv毛片| 亚洲,国产,日韩,综合一区| 国产成人精品视频一区二区电影 | 欧美日韩另类国产| 国产福利小视频在线播放观看| 波多野结衣一区二区三视频| 无码免费试看| 老司机久久99久久精品播放| 好吊妞欧美视频免费| 国产精品亚洲片在线va| a毛片免费在线观看| 婷婷六月天激情| 欧美日韩中文国产| AV熟女乱| 国产精品蜜芽在线观看| 欧美日韩在线亚洲国产人| 亚洲美女一区| 丁香综合在线| 国产精品30p| 成人另类稀缺在线观看| 最近最新中文字幕免费的一页| 97国产在线观看| 亚洲综合狠狠| 狠狠ⅴ日韩v欧美v天堂| 欧美精品在线看| 又大又硬又爽免费视频| 91精品在线视频观看| 少妇精品网站| 中文字幕伦视频| 日韩美女福利视频| av免费在线观看美女叉开腿| 国产精品免费露脸视频| 国产91在线|日本| 在线观看无码a∨| 久久99热66这里只有精品一| 国产精品免费福利久久播放| 国产精品女主播| av在线5g无码天天| 精品国产一二三区| 青青操视频在线| 爽爽影院十八禁在线观看| 免费看a毛片| 人与鲁专区| 爽爽影院十八禁在线观看| 国产成人综合久久精品下载| 中文字幕av一区二区三区欲色| 美女高潮全身流白浆福利区| 秘书高跟黑色丝袜国产91在线| 国产99热| 午夜无码一区二区三区在线app|