999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

柑橘不同倍性種質胚性愈傷組織誘導及無病毒植株再生

2024-12-31 00:00:00任家勤黃雪冰楊雯惠陳昊鄧家銳敖義俊解凱東郭文武伍小萌
果樹學報 2024年7期

摘要:【目的】通過離體培養敗育胚珠誘導柑橘二倍體和四倍體種質的胚性愈傷組織,為柑橘多倍體研究提供成對離體材料;繼續誘導胚性愈傷組織再生無毒種苗實現柑橘無核品種提純復壯。【方法】從柑橘成熟果實中挑取敗育胚珠,接種于3種愈傷誘導培養基中,在離體培養過程中誘導并馴化胚性愈傷組織;再誘導愈傷組織分化為胚狀體和不定芽,將不定芽嫁接到枳橙砧木形成完整植株;通過InDel標記和病毒檢測鑒定再生植株的遺傳來源和脫毒效果。【結果】離體培養誘導出13個柑橘種質的胚性愈傷組織,其中8個愈傷組織完成馴化,分別為紅橘二倍體/四倍體(2x/4x)、W.默科特橘橙2x/4x、鄂柑1號椪柑2x/4x、日輝橘2x和早紅臍橙。基因型影響柑橘胚性愈傷組織誘導效率,早紅臍橙誘導率高達74.73%,而紅橘誘導率僅6.85%;柑橘四倍體愈傷組織誘導率(0.56%~22.61%)低于對應二倍體(6.85%~37.75%)。3種不同培養基的胚性愈傷組織誘導效率不同,其中MGS培養基對溫州蜜柑在內的5個品種的誘導率較高(14.13%~63.01%),MK培養基對溫州蜜柑在內的4個品種的誘導率較低(21.62%~69.51%),但MK培養基對椪柑2x和紅橘2x的誘導率分別為70.21%和17.31%。分別獲得早紅臍橙、倫晚臍橙、國慶1號溫州蜜柑、大分4號溫州蜜柑和興津溫州蜜柑5個無核品種的愈傷組織再生苗23、22、20、10和15株;嫁接嵌合體早紅臍橙的愈傷組織再生苗經InDel標記鑒定實為羅伯遜臍橙;國慶1號溫州蜜柑、倫晚臍橙和早紅臍橙再生苗經PCR檢測證明未感染黃脈病和衰退病病毒。【結論】柑橘胚性愈傷組織誘導率受品種基因型和培養基影響;同一品種的不同倍性種質,二倍體愈傷組織誘導率和胚狀體發生率均較高;胚性愈傷組織再生植株實現了病毒完全脫除,是柑橘無核品種提純復壯的有效手段。

關鍵詞:柑橘;胚性愈傷組織;倍性種質;無核品種;離體再生

中圖分類號:S666文獻標志碼:A文章編號:1009-9980(2024)07-1332-10

Embryogenic callus induction and virus-free plantlet regeneration from seedless cultivars in citruses of different ploidy

REN Jiaqin1,HUANG Xuebing1,YANG Wenhui1,CHEN Hao1,DENG Jiarui2,AO Yijun2,XIE Kaidong1,GUO Wenwu1,WU Xiaomeng1*

(1National Key Laboratory for Germplasm Innovationamp;Utilization of Horticultural Crops,Wuhan 430070,Hubei,China;2Chenggu Fruit Technology Guidance Station,Chenggu 723200,Shaanxi,China)

Abstract:【Objective】Citrus is the biggest fruit industry in China and in the world.China is the origin center of citrus,owning abundant and diverse citrus germplasm resources,and it is important to proper-ly conserve and utilize the elite citrus germplasm.The embryogenic callus induced from the aborted ovules is genetically identical to the original explant and capable of regeneration,making it feasible for in vitro conservation of citrus germplasm.The embryogenic callus also provides in vitro materials for studies of important traits,such as somatic embryogenesis,fruit quality control and stress resistance. We have induced and preserved embryogenic callus germplasm of over 100 different genotypes.How-ever,the embryogenic calluses are all induced from the diploid germplasm,while induction of embryo-genic callus from polyploid germplasm has been rarely reported.The polyploid is characterized by giant organ,dwarf plant and stronger adaptability.The polyploid embryogenic callus would accelerate basic research and applications of citrus polyploidy,by providing in vitro materials with short growth cycle,stable status,and easily accessibility.In addition,the whole new plantlets regenerated from embryogen-ic callus are always virus-free,which are promising in resolving the problem of fruit yield and quality delineation in seedless cultivars caused by virus infection after many years propagation by grafting.In this study,the aborted ovules of diploid and tetraploid citrus germplasm were cultured to induce em-bryogenic callus,to provide in vitro materials for citrus ploidy research.Regeneration of virus-free plantlets from embryogenic callus achieves purification and rejuvenation of seedless cultivars like navel orange and Satsuma mandarin.【Methods】The aborted ovules from mature fruits were inoculated on three types of callus induction mediums(MES:MT+ME 0.5 g·L-1+SAD 40 mg·L-1;MGS:MT+ME 0.5 g·L-1+SAD 40 mg·L-1+GA3 1 mg·L-1;MK:MT+KT 0.5 mg·L-1)under sterile conditions to in-duce and train embryogenic callus,and the ploidy of embryogenic callus was determined by flow cy-tometry.Embryogenic callus was induced to differentiate into embryoids and adventitious buds.When the regenerated buds grew to the size of 2-3 cm,they were grafted to the yellowing rootstock in test tube to form a plantlet.SSR(Simple Sequence Repeats)analysis was used to identify the genetic origin of the regenerated plantlets,and PCR was used to detect Citrus tristeza virus(CTV)and Citrus yellow vein clearing virus(CYVCV)in the plantlets.【Results】The embryogenic calluses were induced from 13 citrus accessions,and eight of them have been trained for subculture,including red tangerine diploid and tetraploid(2x,4x),Nadorcott tangor(2x,4x),Egan No.1 Ponkan mandarin(2x,4x),Sunburst man-darin(2x)and Zaohong navel orange.The ploidy of the embryogenic calluses was consistent with the source materials from which they were induced,as detected by flow cytometry.The embryogenic callus induction efficiencies were different among accessions.The induction rate of Zaohong navel orange was the highest(74.73%),followed by Guoqing No.1 Satsuma mandarin,Okitsu Satsuma mandarin,Oita 4 Satsuma mandarin and Egan No.1 Ponkan mandarin,each with an induction rate over 37%.The induction rates of red tangerine 2x,Sunburst mandarin 2x,Lane Late navel orange and Nadorcott tangor 2x were lower than those of the other genotypes,with induction rates between 6.85%and 12.61%.Em-bryogenic calluses were induced from four pairs of ploidy materials,and the induction rate of diploid germplasm was 6.85%-37.75%.Among them,the callus induction rate of Egan No.1 Ponkan mandarin 2x was the highest,while that of red tangerine 2x was the lowest.The callus induction rates of the tetra-ploids(0.56%-22.61%)were lower than those of the diploids.Among them,the callus induction rate of Egan No.1 Ponkan mandarin 4x was also the highest,while that of Nadorcott tangor 4x was the lowest.As for the incidence of embryoids,they were 16.15%-58.28%for diploids and 1.13%-30.65%for tetra-ploids.In summary,the callus induction and embryoid incidence rates of Egan No.1 Ponkan mandarin 2x and 4x were the highest among the four pairs of 2x and 4x materials,while those of Nadorcott tangor 4x were the lowest among the tetraploid germplasm.Notably,the callus induction and embryoid inci-dence rates of the tetraploids were lower than those of the corresponding diploids.Besides,the induc-tion rate of embryogenic callus on different mediums was different.The embryogenic callus induction rates of Guoqing No.1 Satsuma mandarin,Okitsu Satsuma mandarin,Oita 4 Satsuma mandarin,Nador-cott tangor 2x and Sunburst mandarin 2x on MGS medium were higher than on MK and MES.The cal-lus induction rates of Egan No.1 Ponkan mandarin 2x and red tangerine 2x on MK medium were the highest,and significantly higher than on MES and MGS.A total of 23,22,20,10 and 15 plantlets were regenerated from five seedless cultivars,including Zaohong navel orange,Lane Late navel orange,Guo-qing No.1 Satsuma mandarin,Oita 4 Satsuma mandarin and Okitsu Satsuma mandarin,respectively.SSR analysis showed that the regenerated plantlets of the chimeric Zaohong navel orange were indeed Robertson navel orange.According to PCR,CTV and CYVCV were undetectable in the regenerated plantlets of Guoqing No.1 Satsuma mandarin,Lane Late navel orange and Zaohong navel orange,prov-ing them to be virus-free.【Conclusion】In this study,the aborted ovules of mature citrus fruits were cul-tured in vitro,and the diploid and tetraploid embryogenic callus of three varieties were obtained by in-duction and training,which provides stable and easily accessible in vitro materials for the research of citrus polyploidy.The embryogenic callus induction rates differed among different citrus germplasms and induction mediums.The embryogenic callus induction rate and somatic embryogenesis rate of the diploids were higher than the corresponding tetraploid for each cultivar.The regenerated virus-free plantlets provide materials for purification and rejuvenation of five polyembryonic and seedless citrus cultivars.The molecular marker analysis proved that the regenerated plantlets of the grafting chimera Zaohong navel orange were indeed Robertson navel orange.

Keywords:Citrus;Embryogenic callus;Ploidy germplasm;Seedless cultivars;In vitro regeneration

柑橘是世界和中國南方第一大水果。中國是柑橘起源中心[1],擁有豐富多樣的柑橘種質資源,合理保存和利用中國優異的柑橘種質具有重要意義。柑橘胚性愈傷組織由敗育胚珠誘導而來,其遺傳上與親本保持一致;且胚性愈傷組織具有細胞全能性,能通過體細胞胚發生途徑再生植株,是柑橘種質資源離體保存的主要方式。筆者課題組多年來誘導保存了100多個柑橘品種的胚性愈傷組織[2],為利用原生質體融合、基因編輯等生物技術改良柑橘提供了豐富的起始材料[3],為柑橘體細胞胚發生[4]、品質調控[5]和抗性研究[6]提供了離體體系。然而,柑橘胚性愈傷組織均從二倍體種質誘導獲得,柑橘多倍體種質胚性愈傷組織誘導未見報道。

多倍體普遍具有器官巨大型、植株矮化和適應性強等特征。柑橘同源四倍體相比二倍體對鹽脅迫、干旱、營養缺乏等非生物逆境抗性更強[7-9],柑橘四倍體相比二倍體果實品質也發生顯著變異[10-11],為柑橘倍性育種提供了優良親本。誘導柑橘多倍體的胚性愈傷組織,將為柑橘多倍體倍性和代謝等研究提供周期短、狀態穩定、易獲得的離體材料,加速柑橘多倍體基礎研究和利用。

無核是柑橘鮮食品種選育的重要目標性狀[12]。但無核品種常年通過嫁接繁殖,累積多種病毒,導致果實品質和產量下降。中國較常見且對柑橘生產危害較大的病毒和細菌性類病害主要有柑橘黃龍病、潰瘍病、裂皮病、衰退病和黃脈病等。柑橘無核品種沒有種子,無法通過珠心苗實生繁殖脫毒;柑橘莖尖培養難以生根,微芽嫁接操作要求高且成活率低,脫毒效率有待提高。胚性愈傷組織可通過體細胞胚發生途徑再生植株,在穩定遺傳親本性狀的同時,能培育無病毒植株,操作相對簡單,再生苗數量多,結構完整,尤其適合多胚無核柑橘品種提純復壯[13]。

筆者課題組利用柑橘多胚品種存在珠心細胞自然加倍的現象,從柑橘60多個接穗和砧木類型中發掘獲得了一大批同源四倍體植株[14-16],豐富了中國柑橘多倍體種質資源,為通過倍性雜交培育柑橘三倍體無核新種質提供了優良親本[17]。筆者在本研究中通過離體培養二倍體和四倍體柑橘的敗育胚珠,誘導胚性愈傷組織,將為多倍體抗性和代謝相關研究提供倍性成對的離體材料;無核品種誘導胚性愈傷組織并通過體細胞胚發生途徑再生不攜帶病毒的植株,將為中國主栽的臍橙和溫州蜜柑等無核品種提純復壯提供種苗。

1材料和方法

1.1試驗材料

用于誘導胚性愈傷組織的柑橘二倍體及其同源四倍體(2x/4x)成對倍性材料,包括紅橘(Citrus retic-ulata Blanco)2x/4x、W.默科特橘橙(C.reticulata Blanco×C.sinensis L.Osbeck)2x/4x、鄂柑1號椪柑(C.reticulata Blanco)2x/4x、日輝橘(C.reticulata Blanco)2x/4x;無核柑橘品種,包括早紅臍橙(C.si- nensis L.Osbeck)、倫晚臍橙(C.sinensis L.Osbeck)、國慶1號溫州蜜柑(C.unshiu Blanco)、大分4號溫州蜜柑(C.unshiu Blanco)和興津溫州蜜柑(C.unshiu Blanco)。

1.2柑橘胚性愈傷組織離體誘導

將成熟果實浸泡于75%乙醇20min后,超凈工作臺內用酒精燈灼燒果實表面消毒。在無菌濾紙上,將果實切開后,用鑷子將敗育胚珠挑出,接種于3種愈傷誘導培養基[18](MES:MT[19]+0.5 g·L-1 ME+40 mg·L-1 SAD;MGS:MT+0.5 g·L-1 ME+40 mg·L-1 SAD+1 mg·L-1 GA3;MK:MT+0.5 mg·L-1 KT)進行暗培養。離體培養約1個月后,待敗育胚珠萌發產生胚狀體或胚性愈傷組織后,將胚性愈傷組織挑出并繼代于MT培養基,光下培養至愈傷組織狀態穩定并持續增殖,即完成愈傷組織馴化。將馴化完成的愈傷組織保存在MT培養基中光照培養,每月繼代1次長期保存。胚性愈傷組織誘導率/%=形成胚性愈傷組織的敗育胚珠數/離體培養的敗育胚珠總數×100,胚狀體發生率/%=形成胚狀體的敗育胚珠數/離體培養敗育胚珠總數×100。

1.3胚性愈傷組織胚狀體增殖、生芽和試管嫁接

新誘導獲得的柑橘胚性愈傷組織在MT培養基上馴化和繼代培養過程中,會再生胚狀體,將胚狀體轉移至增殖培養基(MT+1.5 g·L-1 ME+50 g·L-1蔗糖),待胚狀體膨大后轉移至生芽培養基(MT+0.5 mg·L-1 6-BA+0.5 mg·L-1 KT+0.1 mg·L-1 NAA)誘導生芽。待叢生芽長至2~3 cm高時,采用試管嫁接技術將其嫁接至枳橙黃化砧木上;待嫁接苗成活并新長出3~4枚真葉后,將其轉移到生長室煉苗;待幼苗長至6~7枚葉片時轉移至溫室。

1.4倍性測定和InDel標記鑒定

利用流式細胞儀(Cyflowspace,Sysmex,Japan)檢測胚性愈傷組織及再生植株的染色體倍性,詳情參考解凱東等[17]的方法。制備待測愈傷組織或植株葉片混合液,比較待測樣品與二倍體,參照峰值橫坐標位置關系,確定待測樣品倍性。分子鑒定參考謝善鵬等[14]的方法,InDel標記引物[20](表1)由生工生物工程(上海)股份有限公司合成。用ProFlex PCR儀(ABI,USA)進行PCR反應,PCR擴增體系為10μL:2×Rapid Taq Master Mix 5μL,ddH2O 3.5μL,DNA 1μL,Primer F、R各0.25μL(10μmol·L-1)。擴增程序:95℃預變性5 min,95℃變性30 s,55℃退火30 s,72℃延伸10 s,35個循環,72℃延伸5 min,4℃保存。

1.5病毒PCR檢測

取嫁接苗植株葉片,使用液氮冷凍后磨樣。葉片RNA提取方法參照HiPure HP Plant RNA Mini Kit(Magen)說明書;反轉錄方法參照HiScripteⅡQ RT SuperMix for qPCR(+gDNA wiper)(Vazyme)說明書。PCR反應體系和程序同InDel標記鑒定,設置陰性(ddH2O模板)和陽性對照(感染黃脈病和衰退病的夏橙葉片DNA)。衰退病[21]和黃脈病檢測引物[22](表2)由生工生物工程(上海)股份有限公司合成。

2結果與分析

2.1柑橘胚性愈傷組織誘導和馴化

從柑橘成熟果實中挑出敗育胚離體培養,暗培養0.7~3.0個月后在敗育胚珠附近形成胚性愈傷組織。將胚性愈傷組織轉移至MT培養基多次繼代培養進行馴化,耗時5~9個月。13個材料均誘導出胚性愈傷組織,經過多次繼代培養,其中8個材料的胚性愈傷組織狀態穩定并能持續增殖,包括紅橘2x/4x、W.默科特橘橙2x/4x、鄂柑1號椪柑2x/4x、日輝橘2x和早紅臍橙,說明這些胚性愈傷組織已完成馴化,可常規繼代培養;其余5個材料包括日輝橘4x、倫晚臍橙、國慶1號溫州蜜柑、大分4號溫州蜜柑和興津溫州蜜柑誘導出的愈傷組織胚性較強,經多次繼代逐漸分化形成胚狀體,雖未能獲得穩定增殖的胚性愈傷組織,但通過體細胞胚發生途徑可能再生植株。采用流式細胞儀對8份2x/4x胚性愈傷組織進行檢測,其倍性均與其敗育胚珠外植體來源母本植株一致(圖1)。

不同于其2x能直接從敗育胚珠中長出胚性愈傷組織,W.默科特橘橙4x接種的敗育胚珠均未長出愈傷組織或胚狀體;而是從較大的癟種子中長出胚狀體,再從胚狀體下胚軸長出胚性愈傷組織(圖1-H)。相比W.默科特橘橙2x胚性愈傷組織誘導和馴化分別耗時0.7和5.5個月,W.默科特橘橙4x的愈傷組織誘導和馴化耗時較長,分別為3和5.5個月。紅橘4x愈傷組織誘導和馴化均相比對應的2x耗時也較長,但鄂柑1號椪柑4x愈傷組織誘導耗時較2x更短。

2.2基因型和培養基影響胚性愈傷組織誘導效率

柑橘不同基因型的胚性愈傷組織誘導效率不同(表3)。早紅臍橙誘導率最高,達74.73%;其次為國慶1號溫州蜜柑、興津溫州蜜柑、大分4號溫州蜜柑和鄂柑1號椪柑2x,誘導率均>37%;紅橘2x、日輝橘2x、倫晚臍橙和W.默科特橘橙2x的誘導率較低,在6.85%~12.61%之間。4對倍性材料均誘導出胚性愈傷組織(其中日輝橘4x愈傷組織未能完成馴化獲得穩定增殖的胚性愈傷組織),二倍體愈傷組織誘導率為6.85%~37.75%,其中鄂柑1號椪柑2x愈傷組織誘導率最高(37.75%),紅橘2x的愈傷組織誘導率最低(6.85%)。四倍體愈傷組織誘導率相比二倍體較低,僅為0.56%~22.61%,其中鄂柑1號椪柑4x愈傷組織誘導率仍最高,達22.61%,而W.默科特橘橙4x的愈傷組織誘導率最低,僅為0.56%。2x/4x成對倍性材料中,二倍體的胚狀體發生率為16.15%~58.28%,椪柑的胚狀體發生率最高,為58.28%。四倍體的胚狀體發生率為1.13%~30.65%,椪柑仍為最高,為30.65%,W.默科特橘橙最低,僅為1.13%。總結可知,椪柑2x和4x的愈傷組織誘導率和胚狀體發生率均為4個品種2x和4x材料中最高,W.默科特橘橙4x的愈傷組織誘導率和胚狀體發生率均為4個四倍體品種中最低;同品種二倍體的愈傷組織誘導率和胚狀體發生率均比對應的四倍體更高。

不同培養基的胚性愈傷組織誘導效率不同(表3)。國慶1號溫州蜜柑、興津溫州蜜柑、大分4號溫州蜜柑、W.默科特橘橙2x和日輝橘2x共5個品種在MGS培養基的胚性愈傷組織誘導率均高于MK和MES培養基。早紅臍橙、國慶1號溫州蜜柑、大分4號溫州蜜柑和興津溫州蜜柑這4個品種在MK培養基的愈傷組織誘導率最低;但MK培養基對鄂柑1號椪柑2x和紅橘2x的愈傷組織誘導率最高,且明顯高于MES和MGS培養基的誘導率。椪柑2x在MK培養基的愈傷組織誘導率高達70.21%,約為MES、MGS培養基的3倍;紅橘2x在MK培養基的愈傷組織誘導率高達17.31%,約為MGS培養基的15倍。

2.3柑橘無核品種胚性愈傷組織再生植株及其來源和病毒檢測

早紅臍橙、倫晚臍橙、國慶1號溫州蜜柑、大分4號溫州蜜柑、興津溫州蜜柑5個無核品種誘導出的胚性愈傷組織胚性較強,誘導過程產生大量胚狀體;挑選胚狀體進行增殖培養,胚狀體膨大后轉移至生芽培養基誘導生芽。約2個月后再生大量叢生芽,將再生芽切下進行試管嫁接,待嫁接苗長出3~4枚真葉移栽至基質煉苗,1~2個月后移栽至溫室(圖2)。早紅臍橙愈傷組織再生苗經流式細胞儀鑒定均為二倍體。分別獲得無核品種早紅臍橙、倫晚臍橙、國慶1號溫州蜜柑、大分4號溫州蜜柑和興津溫州蜜柑的離體再生苗23、22、20、10、15株。

早紅臍橙是羅伯遜臍橙(Robertson navel or-ange)高接于溫州蜜柑產生的嫁接嵌合體[23]。利用前人篩選的4對InDel標記引物[20]鑒定早紅臍橙胚性愈傷組織再生苗的遺傳組成。結果(圖3)表明,早紅臍橙23株嫁接苗與其親本羅伯遜臍橙帶型相同,認為嵌合突變體早紅臍橙胚性愈傷組織再生苗實為羅伯遜臍橙。

柑橘衰退病(Citrus tristeza virus,CTV)和黃脈病(Citrus yellow vein clearing virus,CYVCV)是柑橘果園最常見的兩種病毒。對國慶1號溫州蜜柑、倫晚臍橙和早紅臍橙再生苗進行PCR病毒檢測,結果(圖4)顯示陽性樣本(帶有衰退病和黃脈病的夏橙葉片)泳道有明顯條帶,3個品種的再生苗與陰性對照(水模板)均未擴增出目的條帶,證明國慶1號溫州蜜柑、倫晚臍橙和早紅臍橙再生苗均不含可檢出量的衰退病和黃脈病病毒,無毒率達100%。

3討論

柑橘胚性愈傷組織誘導效率受基因型影響,9個二倍體品種的胚性愈傷組織誘導率為6.85%~74.73%。由柑橘基本種雜交而來的橙類(臍橙)和柑類(溫州蜜柑)的胚性愈傷組織誘導率較古老的橘類(椪柑、紅橘)更高;其中紅橘的胚性愈傷組織誘導率最低,且誘導時間長,敗育胚珠離體接種3個月后才長出少量愈傷組織。這可能是由于較古老的橘類次生代謝更豐富,影響了胚性愈傷組織誘導。桃野生近緣種光核桃大量積累次生代謝物,其子葉外植體的愈傷組織誘導率相比一般品種也較低[24],與本研究結果相似。

筆者在本研究中發現二倍體品種的胚性愈傷組織誘導率和胚狀體發生率均高于其對應的同源四倍體,如W.默科特橘橙2x的愈傷組織誘導率是其4x的25倍。以敗育胚珠為外植體誘導獲得的胚性愈傷組織由胚性珠心組織增殖而來,而柑橘二倍體加倍成四倍體后果實種子數減少[10],且種子的珠心胚數減少(數據未發表),可能是四倍體胚性愈傷組織誘導率及體細胞胚發生率均低于二倍體的原因。

筆者在本研究中采用3種不同培養基對柑橘敗育胚珠進行離體培養,培養基類型影響不同品種的愈傷組織誘導率。前人研究中表明柑橘MGS培養基廣泛適用于柑橘品種的胚性愈傷組織誘導[18,25],本研究中同樣發現MGS培養基誘導7個柑橘品種的胚性愈傷組織誘導率均為最高。除溫州蜜柑外,利用MK培養基不經過胚狀體發生途徑直接誘導出胚性愈傷組織的誘導率高于其他兩種培養基,并且愈傷組織狀態更為松軟,顏色偏白,可能0.5 mg·L-1 KT更有利于誘導柑橘形成疏松的胚性愈傷組織。對于3個溫州蜜柑品種,MK培養基誘導的愈傷組織結構較為致密、顏色偏黃,而MGS培養基誘導的愈傷組織質地疏松、顏色偏白、增殖旺盛。前人研究發現溫州蜜柑愈傷組織生長狀態與植物生長調節劑有密切關系,添加GA3和麥芽提取物(ME)有利于溫州蜜柑愈傷組織生長[26],本研究在添加了GA3和ME的MGS培養基中誘導出的溫州蜜柑的愈傷組織的狀態良好,與前人報道結果相似。

柑橘無核品種由于長期嫁接繁殖累積多種病害。無核品種沒有種子,不能利用珠心胚實生苗脫毒,而莖尖微芽嫁接操作要求高,脫毒可能不完全[27]。筆者在本研究中通過誘導胚性愈傷組織并再生國慶1號溫州蜜柑、倫晚臍橙和早紅臍橙植株均未檢測出果園最常見的衰退病和黃脈病病毒,說明胚性愈傷組織通過體細胞胚發生途徑再生植株能達到無毒的效果,為無核品種提純復壯的無毒種苗。早紅臍橙是由羅伯遜臍橙和溫州蜜柑構成的周緣嵌合體,其L1層來源于溫州蜜柑(果肉),L2/L3層來源于羅伯遜臍橙(果皮和生殖細胞)[23]。根據“原套-原體”學說,果實的生殖細胞由L2層細胞衍生而來,可遺傳給后代;早紅臍橙愈傷組織再生苗由多胚的珠心組織發育而來,屬于L2層,因此其再生植株應為羅伯遜臍橙。InDel標記檢測證明早紅臍橙胚性愈傷組織再生植株確為羅伯遜臍橙。

4結論

筆者在本研究中通過離體培養柑橘成熟果實的敗育胚珠,經誘導和馴化獲得3個品種的二倍體/四倍體的胚性愈傷組織,為柑橘多倍體研究提供了穩定易獲得的離體材料;二倍體的胚性愈傷組織誘導率和胚狀體發生率均高于對應品種的四倍體。利用體細胞胚發生誘導獲得5個多胚無核品種的愈傷組織再生苗,經鑒定不攜帶果園常見的黃脈病和衰退病,為品種提純復壯提供種苗。嫁接嵌合體早紅臍橙的愈傷組織再生苗經過InDel標記鑒定為羅伯遜臍橙。

參考文獻References:

[1]郭文武,葉俊麗,鄧秀新.新中國果樹科學研究70年:柑橘[J].果樹學報,2019,36(10):1264-1272.

GUO Wenwu,YE Junli,DENG Xiuxin.Fruit scientific research in New China in the past 70 years:Citrus[J].Journal of Fruit Sci-ence,2019,36(10):1264-1272.

[2]鄧秀新.中國柑橘育種60年回顧與展望[J].園藝學報,2022,49(10):2063-2074.

DENG Xiuxin.A review and perspective for citrus breeding in China during the last six decades[J].Acta Horticulturae Sinica,2022,49(10):2063-2074.

[3]GUO W W,XIE K D,WU X M,XIE Z Z,XU Q,DENG X X.Ploidy manipulation via cell engineering for citrus improvement facilitated by application of molecular markers[J].Acta Horticul-turae,2018(1203):105-110.

[4]FENG M Q,LU M D,LONG J M,YIN Z P,JIANG N,WANG P B,LIU Y,GUO W W,WU X M.miR156 regulates somatic embryogenesis by modulating starch accumulation in citrus[J].Journal of Experimental Botany,2022,73(18):6170-6185.

[5]SUN Q,HE Z C,WEI R R,ZHANG Y,YE J L,CHAI L J,XIE Z Z,GUO W W,XU J,CHENG Y J,XU Q,DENG X X.The transcriptional regulatory module CsHB5-CsbZIP44 positively regulates abscisic acid-mediated carotenoid biosynthesis in cit-rus(Citrus spp.)[J].Plant Biotechnology Journal,2024,22(3):722-737.

[6]SONG X,DUAN Y Y,TAN F Q,REN J,CAO H X,XIE K D,WU X M,GUO W W.Comparative transcriptome analysis of salt tolerance of roots in diploid and autotetraploid citrus root-stock(C.junos cv.Ziyang Xiangcheng)and identification of salt tolerance-related genes[J].Scientia Horticulturae,2023,317:112083.

[7]TAN F Q,TU H,WANG R,WU X M,XIE K D,CHEN J J,ZHANG H Y,XU J,GUO W W.Metabolic adaptation follow-ing genome doubling in citrus doubled diploids revealed by non-targeted metabolomics[J].Metabolomics,2017,13(11):143.

[8]WEI T L,WANG Y,XIE Z Z,GUO D Y,CHEN C W,FAN Q J,DENG X D,LIU J H.Enhanced ROS scavenging and sugar accumulation contribute to drought tolerance of naturally occur-ring autotetraploids in Poncirus trifoliata[J].Plant Biotechnolo-gy Journal,2019,17(7):1394-1407.

[9]OUSTRIC J,HERBETTE S,QUILICHINI Y,MORILLON R,GIANNETTINI J,BERTI L,SANTINI J.Tetraploid Citrumelo 4475 rootstocks improve diploid common clementine tolerance to long-term nutrient deficiency[J].Scientific Reports,2021,11(1):8902.

[10]TAN F Q,ZHANG M,XIE K D,FAN Y J,SONG X,WANG R,WU X M,ZHANG H Y,GUO W W.Polyploidy remodels fruit metabolism by modifying carbon source utilization and metabol-ic flux in Ponkan mandarin(Citrus reticulata Blanco)[J].Plant Science,2019,289:110276.

[11]ZHANG M,TAN F Q,FAN Y J,WANG T T,SONG X,XIE KD,WU X M,ZHANG F,DENG X X,GROSSER J W,GUO WW.Acetylome reprograming participates in the establishment of fruit metabolism during polyploidization in citrus[J].Plant Phys-iology,2022,190(4):2519-2538.

[12]鄧秀新,王力榮,李紹華,張紹鈴,張志宏,叢佩華,易干軍,陳學森,陳厚彬,鐘彩虹.果樹育種40年回顧與展望[J].果樹學報,2019,36(4):514-520.

DENG Xiuxin,WANG Lirong,LI Shaohua,ZHANG Shaoling,ZHANG Zhihong,CONG Peihua,YI Ganjun,CHEN Xuesen,CHEN Houbin,ZHONG Caihong.Retrospection and prospectof fruit breeding for last four decades in China[J].Journal of Fruit Science,2019,36(4):514-520.

[13]CARDOSO J C,CURTOLO M,LATADO R R,MARTINELLI A P.Somatic embryogenesis of a seedless sweet orange[Citrus sinensis(L.)Osbeck][J].In Vitro Cellularamp;Developmental Bi-ology-Plant,2017,53(6):619-623.

[14]謝善鵬,解凱東,夏強明,周銳,張成磊,鄭浩,伍小萌,郭文武.柑橘6個地方品種資源四倍體高效發掘及分子鑒定[J].果樹學報,2022,39(1):1-9.

XIE Shanpeng,XIE Kaidong,XIA Qiangming,ZHOU Rui,ZHANG Chenglei,ZHENG Hao,WU Xiaomeng,GUO Wen-wu.Efficient exploration and SSR identification of 53 doubled diploid seedlings from six local citrus cultivars and germplasm resources[J].Journal of Fruit Science,2022,39(1):1-9.

[15]陳昊,謝善鵬,解凱東,肖公傲,周銳,伍小萌,吳群,鄧家銳,敖義俊,劉高平,郭文武.柑橘13個多胚品種同源四倍體高效發掘與分子鑒定[J].果樹學報,2023,40(11):2297-2306.

CHEN Hao,XIE Shanpeng,XIE Kaidong,XIAO Gongao,ZHOU Rui,WU Xiaomeng,WU Qun,DENG Jiarui,AO Yijun,LIU Gaoping,GUO Wenwu.Efficient exploration and SSR iden-tification of autotetraploids from the seedlings of thirteen apo-mictic Citrus genotypes[J].Journal of Fruit Science,2023,40(11):2297-2306.

[16]GUO W W,LIANG W J,XIE K D,XIA Q M,FU J,GUO D Y,XIE Z Z,WU X M,XU Q,YI H L,DENG X X.Exploitation of polyploids from 39 citrus seedling populations[J].Acta Horticul-turae,2016(1135):11-16.

[17]解凱東,彭珺,袁東亞,強瑞瑞,謝善鵬,周銳,夏強明,伍小萌,柯甫志,劉高平,GROSSER J W,郭文武.以本地早橘和槾橘為母本倍性雜交創制柑橘三倍體[J].中國農業科學,2020,53(23):4961-4968.

XIE Kaidong,PENG Jun,YUAN Dongya,QIANG Ruirui,XIE Shanpeng,ZHOU Rui,XIA Qiangming,WU Xiaomeng,KE Fu-zhi,LIU Gaoping,GROSSER J W,GUO Wenwu.Production of Citrus triploids based on interploidy crossing with bendizao and man tangerines as female parents[J].Scientia Agricultura Sinica,2020,53(23):4961-4968.

[18]朱世平.柑橘胚性愈傷組織誘導和LEAFY COTYLEDON 1-LIKE(CsL1L)基因的克隆和分析[D].武漢:華中農業大學,2009.

ZHU Shiping.Embryogenic callus induction and the cloning and analysis of LEAFY COTYLEDON 1-LIKE(CsL1L)gene in citrus[D].Wuhan:Huazhong Agricultural University,2009.

[19]楊雯惠,解凱東,郭文武.柑橘組織培養常用培養基配制方法[DB].(2018-07-10).Bio-101:e1010184.DOI:10.21769/BioPro-toc.1010184.

YANG Wenhui,XIE Kaidong,GUO Wenwu.Medium prepara-tion for citrus tissue culture[DB].(2018-07-10).Bio-101:e1010184.DOI:10.21769/BioProtoc.1010184.

[20]徐遠濤.柑橘無融合生殖和嫁接嵌合的分子基礎研究[D].武漢:華中農業大學,2019.

XU Yuantao.Molecular basis of apomixis and grafting chime-rism in citrus[D].Wuhan:Huazhong Agricultural University,2019.

[21]SAMBADE A,LóPEZ C,RUBIO L,FLORES R,GUERRI J,MORENO P.Polymorphism of a specific region in gene p23 of citrus tristeza virus allows discrimination between mild and se-vere isolates[J].Archives of Virology,2003,148(12):2325-2340.

[22]CHEN H M,LI Z A,WANG X F,ZHOU Y,TANG K Z,ZHOU C Y,ZHAO X Y,YUE J Q.First Report of citrus yellow vein clearing virus on lemon in Yunnan,China[J].Plant Disease,2014,98(12):1747.

[23]張敏.柑橘果實扇形嵌合體的分離及兩組嫁接嵌合體的遺傳研究[D].武漢:華中農業大學,2006.

ZHANG Min.Separation of citrus fruit sector chimeras and ge-netic analysis of two graft chimeras[D].Wuhan:Huazhong Agri-cultural University,2006.

[24]GAO L L,LIU J J,LIAO L,GAO A Q,NJUGUNA B N,ZHAO C P,ZHENG B B,HAN Y P.Callus induction and adventitious root regeneration of cotyledon explants in peach trees[J].Horti-culturae,2023,9(8):850.

[25]霍合強,郝玉金,鄧秀新.寬皮柑橘品種的胚性愈傷組織誘導[J].實驗生物學報,1999,32(3):289-295.

HUO Heqiang,HAO Yujin,DENG Xiuxin.Induction of embryo-genic callus of loose skin mandarins[J].Acta Biologiae Experi-mentalis Sinica,1999,32(3):289-295.

[26]LING J T,NITO N,IWAMASA M,KUNITAKE H.Plant regen-eration from protoplasts isolated from embryogenic callus of Sat-suma[J].HortScience,1990,25(8):970-972.

[27]祁鵬志.柑橘莖尖微芽嫁接脫毒及黃龍病和衰退病分子檢測的研究[D].武漢:華中農業大學,2007.

QI Pengzhi.Studies on elimination of pathogen of citrus huang-longbing and citrus tristeza virus with shoot-tip grafting and mo-lecular determination[D].Wuhan:Huazhong Agricultural Uni-versity,2007.

主站蜘蛛池模板: 欧美日韩专区| 久久国产香蕉| 亚洲日韩精品欧美中文字幕| 国产人人射| 极品av一区二区| 亚洲国产高清精品线久久| 五月天香蕉视频国产亚| 亚洲中文字幕久久精品无码一区| 88国产经典欧美一区二区三区| 538精品在线观看| 国产女同自拍视频| 日本成人精品视频| 午夜福利视频一区| 在线观看免费黄色网址| 日本午夜网站| 在线观看免费黄色网址| 亚洲精品制服丝袜二区| 亚洲九九视频| 啪啪国产视频| 亚洲综合网在线观看| 婷婷色狠狠干| 国产成人精品在线1区| 婷婷色狠狠干| 亚洲人视频在线观看| 精品国产Ⅴ无码大片在线观看81| 国产啪在线91| 国产JIZzJIzz视频全部免费| 国产精品自在线天天看片| 精品综合久久久久久97超人| 欧美专区在线观看| 午夜啪啪网| av在线无码浏览| 欧美综合区自拍亚洲综合绿色| 偷拍久久网| 毛片大全免费观看| 亚洲国产高清精品线久久| 国产亚洲精久久久久久久91| 午夜毛片免费观看视频 | 99re视频在线| 欧美日韩国产精品va| 亚洲无码37.| 久久综合色播五月男人的天堂| 99爱视频精品免视看| 97se亚洲综合在线韩国专区福利| 女人一级毛片| 国产91蝌蚪窝| 国产精品亚洲欧美日韩久久| 狠狠干综合| 国产日韩欧美在线视频免费观看| 欧美亚洲国产精品久久蜜芽| 黄色网站不卡无码| 国产欧美日韩综合在线第一| 网友自拍视频精品区| 伊人网址在线| 国产原创演绎剧情有字幕的| 99精品国产自在现线观看| 欧美在线三级| 免费xxxxx在线观看网站| 久久久久久久蜜桃| 午夜色综合| 亚洲欧美日韩综合二区三区| 国产www网站| 日韩在线视频网站| 国产精品私拍99pans大尺度| 国产在线91在线电影| 成色7777精品在线| 国产成人免费手机在线观看视频| 99久久精品国产精品亚洲| 免费一级毛片在线观看| 久久中文字幕2021精品| 亚洲首页国产精品丝袜| 性做久久久久久久免费看| 国产69囗曝护士吞精在线视频| a免费毛片在线播放| 热99精品视频| 欧美亚洲另类在线观看| 亚洲Aⅴ无码专区在线观看q| 91精品国产丝袜| 国产主播福利在线观看| 色呦呦手机在线精品| 欧美一区二区精品久久久| 喷潮白浆直流在线播放|