









摘要:【目的】研究外源褪黑素對高溫脅迫下枇杷果皮細胞結構的影響,探討外源褪黑素緩解高溫脅迫對枇杷果實日灼發生的影響,為防控技術研發提供依據。【方法】以4個濃度外源褪黑素噴施新白8號果實,觀察比較40℃高溫脅迫處理60min內果實日灼發生差異,篩選最佳外源褪黑素濃度;進一步觀察比較噴施清水(對照)和最佳濃度外源褪黑素在40℃高溫脅迫處理0、10、30 min時,果皮顯微結構與超微結構的差異變化。【結果】高溫脅迫30min時,150μmol·L-1外源褪黑素處理的果實開始出現日灼病斑,比噴施清水(對照)果實日灼病斑出現時間延遲20min,且日灼癥狀最輕、病果率及病害等級最低,是最佳濃度。顯微和超微結構觀察結果表明,高溫脅迫處理10min時,清水處理的枇杷果皮細胞角質層、表皮層、亞表皮層厚度均減小,角質層部分褶皺,表皮細胞部分斷裂、變形,亞表皮層細胞變為長橢圓形或紡錘形、細胞壁厚度增加了63.46%;150μmol·L-1外源褪黑素處理的果皮角質層平整、薄厚均勻,細胞形狀基本不變,亞表皮細胞壁厚度增加了42.60%;高溫脅迫處理30min時,清水處理的果皮細胞角質層變薄、褶皺明顯且數量變多,表皮細胞嚴重變形,亞表皮細胞呈不規則形、出現較大空腔、細胞壁厚度增加了84.62%,150μmol·L-1外源褪黑素處理的果皮細胞角質層個別區域變薄、褶皺變形,少數表皮細胞破裂,亞表皮層少數空腔、細胞壁厚度增加了65.74%。【結論】噴施濃度為150μmol·L-1外源褪黑素可降低枇杷果實日灼病果率及病害等級,延緩枇杷果實日灼的發生,緩解高溫脅迫對果皮組織結構的傷害。
關鍵詞:枇杷;褪黑素;日灼;果皮;解剖結構
中圖分類號:S667.3文獻標志碼:A文章編號:1009-9980(2024)07-1387
Effects of exogenous melatonin on the sunburn and peel anatomical struc-ture of Xinbai 8 loquat fruit
GAO Yuwei1,DENG Chaojun2#,XU Qizhi2,LI Haowei1,XIANG Yuqian1,MACuilan1*,JIANG Jimou2*
(1College of Horticulture,Fujian Aamp;F University,Fuzhou 350002,Fujian,China;2 Institute of Fruit Trees,Fujian Academy of Agricultur-al Sciences/Fujian Longan Loquat Breeding Engineering Technology Research Center,Fuzhou 350013,Fujian,China)
Abstract:【Objective】This study examined the effects of exogenous melatonin on the appearance qual-ity and cellular structure of loquat fruit after sunburn in order to provide reference for the development of technology to prevent sunburn in loquat.【Methods】Fruit of Xinbai 8 were used as the experimental material.Exogenous melatonin was sprayed at concentrations of 50,100,150,and 200μmol·L-1,and spraying clean water as the control.4 hours after spraying,a high temperature stress at 40℃was ap-plied.Sun burning symptoms in loquat fruit were recorded after 0-60 minutes of high temperature stress,and the incidence and degree of sunburn were statistically analyzed to screen for the optimal con-centration of exogenous melatonin and to determine the time when exogenous melatonin treatment de-layed the occurrence of fruit sunburn symptoms.Paraffin sections and scanning electron microscopy were used to observe and compare the microstructural and ultrastructural changes of fruit peels underhigh temperature stress at 0,10,and 30 minutes after exogenous melatonin treatments.【Results】Under high temperature stress,loquat fruit was severely sunburnt,with an incidence rate of more than 35%.The rate of grade 0 sunburn was only 63.33%,and the rate of gradeⅠsunburn was 36.67%.Melatonin treatment within 50-200μmol·L-1 delayed the occurrence of fruit sunburn.Among them,melatonin at 150μmol·L-1 showed the latest sunburn occurrence,the lightest symptoms,the lowest incidence rate.Compared with the control,exogenous melatonin treatment significantly reduced the incidence by 66.8%.The rate of grade 0 sunburn fruit treated with 150μmol·L-1 melatonin was the highest,at 87.80%,and the rate of gradeⅠsunburnt fruit was the lowest,both significantly lower than other con-centration treatments and the control.After 10 min of heat stress at 40℃,the control showed small brown spots on the sunny side and sunburn symptoms,while the melatonin treated groups did not show any sunburn symptoms.After 30 minutes,the sunburn area increased,the lesion became larger and be-came darker in the control fruit,and the fruit in melatonin treatment groups began to show small sun-burn lesions.Microscopic observation showed that after exposure to high temperature for 10 minutes,the thickness of the stratum corneum,epidermis,and subepidermal layer treated with water significant-ly decreased.Some areas of the stratum corneum began to wrinkle and became thinner;some epidermal cell walls ruptured;and the epidermis and subepidermal cells deformed,resulting in cavities in the low-er layer of the epidermis.The stratum corneum treated with melatonin was smooth,thin,and uniform,with visible deformation of the outer layer of subepidermal cells.After 30 minutes of high temperature stress,the stratum corneum in some areas in the control fruit became thinner,wrinkled and deformed significantly,and the number of cavities formed between the inner side of the stratum corneum and epi-dermal cells increased.Subepidermal cells showed significant deformation,forming larger cavities.Af-ter melatonin treatment,the stratum corneum occasionally became thinner,wrinkled and deformed,with intact epidermal cells and a few ruptured cells near the epidermal layer.There were also a few emp-ty spaces between cells in the subepidermal layer.After 10 minutes,the change in the ratio of epidermal cells in the control fruit was 2.17 times and the change in the ratio of subepidermal cells was 4.72 times that of exogenous melatonin treatments.After 30 minutes,the change in the ratio of epidermal cells was 1.37 times that of exogenous melatonin treatment,and the ratio of subepidermal cells was 8.58 times that of exogenous melatonin treatment.Observation and comparison of ultrastructure revealed that after 10 minutes of high temperature stress,the epidermal cells underwent severe deformation,and the sub-epidermal layer cells changed from nearly circular or elliptical to elongated or spindle shaped,with a 63.46%increase in cell wall thickness.After 30 minutes of high temperature stress,the stratum corne-um became noticeably thinner and deformed,with severe deformation of epidermal cells and irregular formation of subepidermal cells.The thickness of subepidermal cell walls significantly increased by 84.62%.After exogenous melatonin treatment,the cell shape of the epidermal layer and subepidermal layer of loquat fruit remained basically unchanged after 10 minutes of high temperature stress,and the thickness of the subepidermal cell wall increased by 42.60%.After 30 minutes of high temperature stress,the thickness of the subepidermal cell wall of loquat increased by 65.74%.【Conclusion】Under high temperature stress conditions,loquat fruit suffer from severe sunburn.Exogenous melatonin treat-ment can reduce the incidence and severity of fruit sunburn.Exogenous melatonin can alleviate the mor-phological changes of the epidermal stratum corneum,epidermal cells,and subepidermal cells in loquat fruit,and delay and reduce the occurrence of fruit sunburn.150μmol·L-1 melatonin treatment was the optimal concentration to alleviate the occurrence of sunburn in loquat fruits.
Keywords:Loquat;Melatonin;Loquat;Sunburn;Peel;Anatomical structure
枇杷[Eriobotrya japonica(Thunb.)Lindl.]是薔薇科蘋果亞科枇杷屬的常綠喬木植物,果實春末夏初成熟,正值鮮果淡季,果肉柔軟多汁,風味鮮美,頗受廣大消費者歡迎。生產枇杷的國家主要有中國、西班牙、日本、巴基斯坦等,目前中國枇杷栽培總面積近13.3萬hm2,年產量超90萬t,在全球枇杷產量中的比重超80%,是全球最大的枇杷生產國。近年來,全球氣候變暖和極端天氣頻發[1],導致果實日灼發生日趨嚴重。枇杷果實日灼常發生在果實轉色期,與品種、樹姿、果實著生部位及著生方向有關,發病程度也與高溫和持續時間有關,光照可促進日灼發生[2]。枇杷果實發生日灼時,枇杷果面產生黑褐色或凹陷斑塊,鮮果失去商品價值,影響枇杷產業的可持續發展[3]。
日灼是環境中過度的光合有效輻射(PAR)、紫外線輻射以及高溫共同造成的,而其他脅迫因素(如缺水)會加劇日灼的發生,導致果實表皮層蠟質結構降解等組織結構特異性變化,果實表現為更強的透水性[4]。日灼導致葡萄品種霞多麗果實細胞結構變化,生理代謝紊亂,隨著日灼程度加重,果皮細胞損傷會更嚴重,最終導致果皮細胞死亡[5]。蘋果果實日灼的發病部位主要為表皮及亞表皮[6],高溫脅迫后的蘋果果皮葉綠體膨脹、類囊體結構部分解體,線粒體周緣模糊,細胞質中含大量的空泡,靠近上表皮幾層細胞解體,細胞壁加厚[7],破壞了照射部位的果實細胞組織結構,影響了生理生化代謝[8],使果實的抗氧化系統失衡,產生大量活性氧破壞細胞膜透性,細胞質大量外溢,多酚氧化酶(PPO)與表皮細胞液泡酚類化合物聚合,多酚物質被氧化,表現為果實褐變,而褐變也可能是外果皮細胞死亡所導致的[4,7]。褪黑素(melatonin,MT)是植物體內一種普遍存在的非生物脅迫調節劑[9],作為一種多效應信號分子參與各種非生物脅迫反應[10]。已有研究表明,褪黑素可提高果樹的抗高溫脅迫能力[11],適當濃度的褪黑素可有效緩解低溫脅迫,褪黑素可以保持細胞組織不被破壞和降解[12];葡萄、西瓜幼苗葉面噴施褪黑素均能減輕高溫脅迫下果實的膜脂過氧化程度,提高保護酶活性,對高溫脅迫具有緩解效應[13-14];外源褪黑素處理高溫脅迫下的蘋果葉片,可維持葉肉細胞排列緊密,使其表皮細胞厚度增加且提高了葉片的保水能力[15]。筆者在本試驗中研究了高溫脅迫不同持續時間下,噴施外源褪黑素對新白8號枇杷果皮解剖結構的影響,探討枇杷日灼發生的果皮細胞結構變化,旨在為應用褪黑素防控果實日灼發生提供參考依據。
1材料和方法
1.1試驗材料
試驗于2022—2023年在福建省農業科學院果樹研究所進行,供試品種為筆者團隊選育的白肉枇杷新品種新白8號[E.japonica(Thunb.)Lindl.‘Xin-bai No.8’],樹齡17 a(年),株行距3 m×4 m。選擇4株樹冠外圍西南向充分暴露的果穗99個掛牌標記,疏除非轉色期果實及病蟲果備用。褪黑素(分子質量:232.28)購自上海麥克林生化科技股份有限公司。
1.2試驗處理
1.2.1外源褪黑素濃度篩選在果實轉色期,根據天氣預報,選擇符合試驗條件的晴朗天氣,于早晨07:00用手持噴壺分別向果面噴施50、100、150、200μmol·L-1的褪黑素(MT),以噴施清水為對照(Control),果面噴施均勻且以滴水為度,共設5個處理,每個處理3穗,3次重復。噴施4h后,在光照度達1100μmol·m-2·s-1以上時段,參照鄧朝軍等[2]的方法,將噴施褪黑素和清水的枇杷果穗放置到高溫脅迫誘導箱中,進行枇杷果實高溫脅迫誘導日灼防控試驗(圖1[2]),誘導溫度設置為40℃。在脅迫0、10、30和60min時,觀察各處理果實日灼發生情況并拍照,根據枇杷果實日灼的病果率和病害等級篩選褪黑素最優濃度。
枇杷果實日灼調查方法、日灼病果率、病斑的等級劃分參照《枇杷種質資源描述規范和數據標準》[16]并稍加調整。采用目測法觀察每個枇杷果實表面日灼情況(圖2),計算日灼病果率,再依據枇杷果面日灼病斑面積占總果面的比重,對果實日灼情況進行分級。枇杷果實日灼癥狀如圖2-B。日灼病果率的計算方法及病害等級劃分依據標準如下:
日灼果率的計算公式為:DR/%=ni/N×100。
式中:DR為日灼果率(%),ni為日灼果數,N為調查總果數。
果皮日灼分級:按日灼果面占總果面的比率分4級,0級無病斑;1級病斑面積=25.00%;2級病斑面積>25.00%~50.00%;3級病斑面積>50.00%。
1.2.2外源褪黑素處理枇杷果皮解剖結構觀察樣品的采集根據預選出的最優褪黑素濃度,于晴朗天氣的早晨07:00,用手持噴壺噴施150μmol·L-1的褪黑素(MT),以噴施清水為對照(Control),進行驗證試驗。共設6個處理,每個處理3穗,3次重復。噴施處理4h后,進行高溫脅迫誘導試驗,誘導溫度設置為40℃。
于脅迫0、10、30 min時,觀察高溫誘導時間內果面日灼病斑的發生情況并拍照,分別選取代表性果實3粒,用雙面刀片切取枇杷果實向陽面果皮0.5 cm×0.5 cm,立即放入FAA固定液中,用于果皮顯微結構及超微結構觀察。
1.3果皮顯微結構觀察
石蠟切片參照杜倩等[17]的方法稍作修改,乙醇梯度(50%、70%、80%、90%、100%)脫水1 h;乙醇-二甲苯溶液梯度(30%、50%、70%、100%)透明15min;二甲苯-石蠟梯度(25%、50%、70%、100%)浸蠟30 min,純蠟浸透過夜(恒溫60℃);60℃環境下,每隔24h更換一次純蠟,共更換4次;使用浙江金華科迪公司生產的KB-BMⅢ型包埋機進行包埋,將枇杷果皮材料放置在包埋盒中并浸泡在40℃的石蠟中待用,用鑷子快速夾取組織塊,選擇需要切取的方位,放置于包埋槽中并滴蠟至組織塊完全浸沒;使用科迪公司生產的KD-BLⅢ型冷凍臺并設置-20℃,將包埋槽快速放置于冷凍臺使其快速凝固;使用德國Leica公司生產的Leica rm2245半自動輪轉式切片機切片,厚7μm;在40℃恒溫水浴鍋攤片;洗干凈的載玻片上用玻璃棒蘸取蛋清甘油黏附劑,并快速撈片;將載玻片置于烘箱(60℃)過夜;將烘干的載玻片置于純二甲苯中脫蠟30min,純二甲苯脫蠟兩次后,乙醇-二甲苯梯度(70%、50%、20%)脫蠟10 min;乙醇梯度(100%、90%、80%、70%、50%)醇化10 min;番紅染色12 h;乙醇梯度(50%、70%、80%、90%)洗脫5 min;固綠染色15~60 s;90%乙醇洗脫2次5 min,95%乙醇洗脫5min,無水乙醇洗脫10min;乙醇-二甲苯梯度(25%、50%、70%)透明5min,純二甲苯透明2次10min;中性樹膠封片;使用日本Nikon公司生產的ECLIPSE ci-L正置光學顯微鏡觀察果皮結構變化。用Image J軟件測量枇杷果皮角質層、表皮層、亞表皮層厚度及細胞大小等參數。
1.4果皮超微結構觀察
采用Formvar膜制作方法[18]:選取各處理組的石蠟切片3片。將聚乙烯醇縮甲醛溶于0.2%~0.5%的三氯甲烷中,即得Formvar膜溶液。用玻璃棒將制作好待觀察的石蠟切片以少許蛋清甘油黏附劑平展地粘貼在1/4蓋玻片上,45℃在恒溫箱中烘干過夜。將烘好的蓋薄片置于Formvar膜溶液中,過9 s后用鑷子提起,讓膜液滴盡并立即對薄片表面呵氣數口,霧滴越小,膜孔越小。再靜置晾干,使切片上緊緊包裹一層多孔膜,包被著細胞內的非骨架性結構。再將蓋玻片轉入二甲苯溶液中60℃恒溫條件下放置3 d,期間更換3次二甲苯,浸泡脫蠟。后將蓋玻片晾干,用雙面碳導電膠帶粘在樣品臺上,使用離子濺射儀噴金,用Hitachi TM 3030 PLUS型臺式掃描電鏡觀測。用Image J軟件測量枇杷表皮細胞、亞表皮層細胞壁厚度。
1.5數據分析
將獲得的細胞形態學參數用Excel 2013軟件進行整理、Image J軟件測量,用SPSS 23.0軟件對數據進行方差分析。
2結果與分析
2.1不同濃度外源褪黑素對高溫脅迫下枇杷果實日灼發生的影響
2.1.1不同濃度外源褪黑素對高溫脅迫下枇杷果實日灼發生時間的影響由表1可知,高溫脅迫下,清水處理的果實,不到10 min時就出現了日灼癥狀;濃度為50μmol·L-1褪黑素處理的果實,在10min時出現日灼癥狀;而濃度為100、200μmol·L-1褪黑素處理在20min時出現日灼癥狀,150μmol·L-1褪黑素處理的果實在30min時出現日灼現象,癥狀最輕,病斑小,日灼傷害程度最輕(圖3)。可知,50~200μmol·L-1褪黑素處理可延緩果實日灼的發生,其中150μmol·L-1褪黑素處理可最大程度地延緩日灼的發生。
2.1.2不同濃度外源褪黑素對枇杷果實日灼病果率的影響由圖4可以看出,在高溫脅迫下對照(Con-trol)的病果率為36.8%。褪黑素濃度50、100、150和200μmol·L-1的病果率分別為26.4%、21.8%、12.2%和17.0%,與對照相比,褪黑素處理的病果率分別顯著降低28.3%、40.8%、66.8%和53.8%,其中150μmol·L-1處理的枇杷果實日灼病果率最低。
2.1.3不同濃度外源褪黑素處理對枇杷果實日灼病害等級的影響由表2可知,高溫脅迫誘導60 min后,對照處理枇杷果實日灼0級病害為63.33%,日灼1級病害為36.67%;噴施50~200μmol·L-1褪黑素處理對枇杷果實日灼的發生均有不同程度的緩解,其中150μmol·L-1褪黑素處理的0級果實日灼率最高,為87.80%,比50μmol·L-1褪黑素處理高14.13個百分點,比100μmol·L-1褪黑素處理高9.60個百分點,150μmol·L-1處理的1級病果率最低,均顯著低于其他濃度處理和對照。可見,150μmol·L-1外源褪黑素可緩解枇杷果實日灼癥狀。
2.2 150μmol·L-1外源褪黑素對高溫脅迫下枇杷果實日灼發生的影響
進一步試驗驗證發現,高溫誘導前(0min)枇杷果實飽滿圓潤,果皮光潔、皮色均勻(圖5-Control 0、P0)。高溫脅迫10min時,清水對照的枇杷果皮局部出現褐色小斑點,出現灼傷癥狀(圖5-Control 1);150μmol·L-1褪黑素處理組未出現灼傷癥狀(圖5-P1)。高溫脅迫30 min時,對照組果皮灼傷部位數量增多且病斑變大,病斑顏色變深(圖5-Control 2);150μmol·L-1褪黑素處理的果實開始出現日灼病斑,呈淺棕色小斑點(圖5-P2)。進一步證實,在同一光照和高溫脅迫條件下,150μmol·L-1外源褪黑素處理可延緩日灼發生,且減輕病害癥狀。
2.3 150μmol·L-1外源褪黑素對高溫脅迫下枇杷果皮顯微結構的影響
如圖6-Control 0、P0所示,高溫脅迫處理前(0min)的枇杷果皮角質層光滑完整、薄厚均勻;表皮、亞表皮細胞形狀完整,大小均勻,排列整齊,層次分明;角質層與表皮細胞結合緊密。經高溫脅迫處理10min時,清水處理(對照)的角質層部分區域開始出現褶皺、變薄,但未斷裂,角質層內側與表皮細胞間形成小空腔,部分區域的表皮細胞壁斷裂,細胞變形,亞表皮層細胞明顯變形,出現空腔(圖6-Con-trol 1);高溫脅迫處理10 min時,150μmol·L-1褪黑素處理(MT)的角質層平整、薄厚均勻,與表皮細胞結合緊密,外層亞表皮細胞部分發生可見變形,但表皮細胞形狀仍完整、排列緊密(圖6-P1)。高溫脅迫30 min時,清水處理(Control)的部分區域角質層變薄、褶皺變形明顯且數量變多,角質層內側與表皮細胞間形成空腔數量增多,亞表皮細胞均出現明顯變形,排列疏松,部分細胞間的連接斷裂,形成較大空腔(圖6-Control 2);而150μmol·L-1褪黑素處理(MT)的角質層僅個別區域變薄、褶皺變形,表皮細胞形狀仍完整,靠近表皮層的部分細胞有少數破裂,亞表皮層細胞間出現少數空腔,但未發現細胞多層斷裂、形成較大空腔的情況(圖6-P2)。
由圖7-A~C可知,高溫脅迫10min時,清水處理(Control)的角質層厚度、表皮層厚度、亞表皮層厚度分別減少32.96%、47.62%、15.06%;高溫脅迫30 min時,角質層厚度、表皮層厚度、亞表皮層厚度分別減少57.99%、61.07%、26.78%。150μmol·L-1外源褪黑素處理(MT),高溫脅迫10min時,角質層與表皮層厚度分別減少7.65%和37.24%,亞表皮層厚度減少5.03%;高溫脅迫30min時角質層與表皮層厚度分別減少31.93%和57.02%,亞表皮層厚度減少16.76%。可見,高溫脅迫后枇杷果皮的角質層、表皮層和亞表皮層厚度均減小,150μmol·L-1外源褪黑素處理可減小角質層、表皮層及亞表皮層厚度變化的幅度。
進一步對比發現(圖7-D~J),高溫脅迫10min時,清水處理(Control)的亞表皮細胞長度增加30.25%、寬度減少47.62%,表皮及亞表皮細胞面積分別減少了48.92%和41.30%;高溫脅迫30min時,亞表皮細胞長度增加了52.23%,寬度減少了60.61%,表皮及亞表皮細胞面積分別減少51.22%和73.14%。150μmol·L-1外源褪黑素處理高溫脅迫10min時,亞表皮細胞長度增加了16.31%,表皮及亞表皮細胞面積分別減少了18.60%和29.62%;高溫脅迫30 min時,亞表皮細胞長度增加了39.25%,表皮及亞表皮細胞面積分別減少46.06%和23.99%,其下降幅度分別較清水處理下高溫脅迫30 min時低5.16和49.15個百分點。表皮及亞表皮細胞長寬比均呈增加趨勢,清水處理下高溫脅迫10 min時表皮細胞長寬比變化幅度是外源褪黑素處理的2.17倍,亞表皮細胞長寬比變化幅度是150μmol·L-1外源褪黑素處理的4.72倍,高溫脅迫30 min時表皮細胞長寬比變化幅度是外源褪黑素處理的1.37倍,亞表皮細胞長寬比是外源褪黑素處理的8.58倍。由此可見,噴施150μmol·L-1外源褪黑素,可增強高溫脅迫下枇杷果皮表皮層、亞表皮層細胞的抗變形能力。
2.4 150μmol·L-1外源褪黑素對高溫脅迫下枇杷果皮超微結構的影響
從超微結構圖8-Control 0、P0可以更清晰地看出,高溫脅迫之前(0min),枇杷果皮解剖結構清晰、完整,角質層完整、平滑、厚度基本一致,表皮細胞、亞表皮細胞結構完整、結合緊密。高溫脅迫10min時,清水處理(Control)的角質層部分位置變薄(圖8-Control 1),部分表皮細胞嚴重變形,表皮層細胞由近圓形變為不規則狀,亞表皮層細胞由扁圓形或橢圓形變為長橢圓形或紡錘形(表3),表皮及亞表皮細胞壁厚度均呈顯著增加趨勢(圖9),表皮細胞壁厚度增加了85.00%,亞表皮細胞壁厚度增加了83.53%;高溫脅迫30 min時(圖8-Control 2),角質層更明顯變薄、變形,表皮細胞嚴重變形,表皮細胞壁厚度是正常果皮細胞壁厚度的2.00倍(圖9-A),亞表皮細胞呈不規則形,亞表皮細胞壁厚度是正常果皮細胞壁厚度的2.00倍(圖9-B)。150μmol·L-1外源褪黑素處理,高溫脅迫10 min時枇杷表皮層、亞表皮層細胞形狀基本不變(圖8-P1),表皮細胞壁厚度增加了44.44%,亞表皮細胞壁厚度增加了44.90%;高溫脅迫30 min時(圖8-P2)的表皮細胞壁厚度是正常果皮細胞壁厚度的1.94倍,亞表皮細胞壁厚度是正常果皮細胞壁厚度的1.95倍。
3討論
3.1外源褪黑素對果實抗高溫脅迫的作用
果實日灼是因高溫及強光引起植物光能吸收和利用之間的不平衡,損害電子傳遞活性,果實果皮超氧陰離子增加,活性氧積累,保護酶活性下降,細胞膜脂過氧化程度加重,細胞膜結構受到破壞,蛋白質變性和果實果皮細胞死亡[4,19-20],高溫脅迫使果實的細胞死亡時間提前了約9d[21],施用外源抗氧化劑可誘導果實抗氧化保護酶活性和內源抗氧化劑含量上升,促進蘋果果實細胞膜抗性增強,緩解高溫脅迫對果實造成的傷害[22]。已有研究表明,褪黑素也可平衡活性氧(ROS)和活性氮(RNS)的產生和清除,降低丙二醛含量、電解質滲透率和過氧化氫含量[23],有效緩解氧化應激對植物的氧化損傷[10],外源褪黑素會提高植物的酚類、類黃酮、脯氨酸、內源性褪黑素、水楊酸和多胺(精胺、亞精胺和腐胺)的含量,抑制非生物脅迫產生過量的過氧化氫、超氧化物和丙二醛,還可調節抗氧化劑參與滲透調節以及增強抗氧化酶活性[24],褪黑素還可通過積累次生代謝物來提高植物抗逆性,通過激素串擾增強枇杷對干旱脅迫的耐受性[25]。在植物敏感階段施用外源褪黑素會增強非生物脅迫耐受性,提高植物抗高溫脅迫能力[26],而且外源褪黑素的應用不具有基因型特異性,易適用于大規模作物生產[24],在非生物脅迫發生前施用褪黑素是一種相對有效的解決方案,可最大限度地減少因非生物脅迫造成的產量損失[27]。在本試驗中,濃度為50~200μmol·L-1外源褪黑素處理枇杷果實,均可降低枇杷果實日灼的病果率及日灼病害等級,提高果實對日灼的抗性,其中150μmol·L-1處理效果最好,肉眼可見日灼癥狀比噴清水對照處理推遲20 min發生,而且褐變癥狀更輕,說明果實噴施150μmol·L-1外源褪黑素對果實日灼癥狀有明顯緩解作用。
3.2外源褪黑素對果皮結構的保護作用
植物角質層主要由角質基體和可溶性蠟構成,其主要功能之一是保護植物免受有害輻射、高溫等環境脅迫,以及機械損傷和水分流失的影響[28]。蠟合成基因(CER1)、角質單體基因(GPAT4/8)和水通道蛋白基因(PIP14、PIP27和PIP22)可調控角質層生物合成,影響角質層的表面屏障能力[29]。研究表明,番茄果實角質層通過酚類物質的積累和角質層膜厚度的改變來保護果皮細胞免受有害紫外線的傷害;在果實發育期酚類化合物含量較少,阻擋紫外線的能力主要取決于角質層的厚度[30];角質層較薄且果皮細胞層數較少的葡萄品種更容易受到非生物脅迫的影響[31]。高溫強光照條件會導致果皮角質層蠟質發生變化,果皮細胞酚類物質氧化,角質層失去彈性;蠟質熔化,角質層膜框架填充物減少,整體框架松弛,多糖分解,從而影響果皮細胞水分平衡,引起果實日灼病發生[32-34]。不同外源物質處理,對植物細胞的影響不同,噴施外源Ca可增加果皮角質層、表皮細胞及亞表皮細胞厚度,使果皮角質層保持完整,減少龜裂的發生[35],噴施20 mmol·L-1 Ca和0.1μmol·L-1 EBR耦合可促進果實對Ca的吸收和利用,增強細胞延展性,增加果實硬度[36],噴施外源激素氨基乙酰丙酸(ALA)、茉莉酸甲酯(MeJA)能使葉片角質層中蠟質含量增加,蠟質組分改變[37]。枇杷果皮由角質層及其附屬絨毛和數層表皮細胞構成,角質層是果皮的最外層區域,在枇杷果實的發育中作為果肉與外界環境之間的重要物理屏障[38]。筆者在本研究中發現,枇杷果皮的角質層厚度隨高溫脅迫時間的延長出現角質層皺縮、凹陷或部分變薄現象,施用外源褪黑素可使角質層變薄或褶皺現象出現的時間推遲、癥狀減輕,推測在高溫脅迫條件下,外源褪黑素通過促進植物蠟合成基因的表達,從而增加植物角質層蠟的積累[39],提高對高溫脅迫的抗性。
在高溫脅迫條件下植物產生大量活性氧(ROS),使其充當信號分子,觸發植物細胞壁組織中的木質素和木栓素合成,以維持細胞壁結構[40]。在高溫脅迫條件下,細胞壁相關蛋白酶活性降低,細胞壁木質化(半纖維素和木質素沉積)使細胞壁增厚,細胞壁聚合物結構發生變化[41]。外源褪黑素處理通過抑制細胞壁裂解相關基因的相對表達,降低相關酶活性,從而抑制果膠、纖維素降解和細胞壁松弛[42-43]。筆者在本研究中發現,在高溫脅迫條件下,枇杷果皮的細胞壁厚度顯著增加,這與Pinski等[41]的研究結果一致;在高溫脅迫條件下,未施用外源褪黑素的枇杷果實高溫脅迫10 min時就出現外表皮細胞變形且向下塌陷,亞表皮層細胞多數破裂、皺縮,多層細胞斷裂變形,隨著脅迫程度的加重,枇杷果皮細胞形變幅度顯著增大,這與Kim等[44]和謝兆森等[5]的研究結果一致,經褪黑素處理后的枇杷果皮細胞形變程度顯著低于對照組,說明褪黑素可減輕細胞的形變程度,保護細胞結構完整穩定[45]。
4結論
噴施濃度為150μmol·L-1外源褪黑素處理可降低果實日灼病果率及病害等級,延緩枇杷果實日灼的發生,緩解高溫脅迫對枇杷果皮細胞角質層、表皮細胞、亞表皮細胞形態結構的傷害,提高果實抗日灼能力。
致謝:筆者在本試驗設計和實施過程中得到了陳秀萍研究員、蘇文炳博士、鄭文松等團隊成員的大力幫忙,在此一并表示感謝。
參考文獻References:
[1]DEBAEKE P,PELLERIN S,SCOPEL E.Climate-smart crop-ping systems for temperate and tropical agriculture:Mitigation,adaptation and trade-offs[J].Cahiers Agricultures,2017,26(3):34002.
[2]鄧朝軍,蔣際謀,張小艷,許奇志,章希娟,魏秀清,鄭少泉.枇杷果皮熱傷害發生影響因子研究[J].福建農業學報,2012,27(10):1081-1086.
DENG Chaojun,JIANG Jimou,ZHANG Xiaoyan,XU Qizhi,ZHANG Xijuan,WEI Xiuqing,ZHENG Shaoquan.Research on influence factors in heat injury of loquat peel[J].Fujian Jour-nal of Agricultural Sciences,2012,27(10):1081-1086.
[3]桑榮生,吳寶玉.枇杷果實日灼等非侵染性病害調查與分析[J].農業科技通訊,2020(2):173-177.
SANG Rongsheng,WU Baoyu.Investigation and analysis of non-infectious diseases such as loquat fruit sunburn[J].Bulletin of Agricultural Science and Technology,2020(2):173-177.
[4]GAMBETTA J M,HOLZAPFEL B P,STOLL M,FRIEDEL M.Sunburn in grapes:A review[J].Frontiers in Plant Science,2020,11:604691.
[5]謝兆森,BHASKAR.日灼對釀酒葡萄‘霞多麗’果實品質與解剖結構的影響[J].西北植物學報,2018,38(1):68-76.
XIE Zhaosen,BHASKAR.Impacts of sunburn on the anatomi-cal structure and quality of chardonnay grape berry[J].Acta Bo-tanica Boreali-Occidentalia Sinica,2018,38(1):68-76.
[6]郝燕燕.蘋果果實日燒發生機理及果皮抗光氧化特性的研究[D].北京:中國農業大學,2004.
HAO Yanyan.Study on the mechanism of sunburn development and the resistance to photo-oxidation in apple peel[D].Beijing:China Agricultural University,2004.
[7]OLIVARES-SOTO H,BASTíAS R M,CALDERóN-ORELLA-NA A,LóPEZ M D.Sunburn control by nets differentially af-fects the antioxidant properties of fruit peel in‘Gala’and‘Fu-ji’apples[J].Horticulture,Environment,and Biotechnology,2020,61(2):241-254.
[8]FELICETTI DA,SCHRADER L E.Changes in pigment concen-trations associated with sunburn browning of five apple culti-vars.II.Phenolics[J].Plant Science,2009,176(1):84-89.
[9]WANG Y P,REITER R J,CHAN Z L.Phytomelatonin:A uni-versal abiotic stress regulator[J].Journal of Experimental Bota-ny,2018,69(5):963-974.
[10]ZENG W,MOSTAFA S,LU Z G,JIN B.Melatonin-mediated abiotic stress tolerance in plants[J].Frontiers in Plant Science,2022,13:847175.
[11]楊建幫,楊麗,姚文孔,馮美.果樹中褪黑素的合成及其調控作用研究進展[J].中國果樹,2024(3):13-20.
YANG Jianbang,YANG Li,YAO Wenkong,FENG Mei.Re-search progress on synthesis and regulation of melatonin in fruit trees[J].China Fruits,2024(3):13-20.
[12]汪卉.褪黑素提高枇杷幼苗響應寒冷脅迫能力的機理研究[D].重慶:西南大學,2020.
WANG Hui.Response of melatonin at different concentrationsto loquat seedlings under cold stress[D].Chongqing:Southwest University,2020.
[13]李元生,徐珊珊,李強,杜海燕.外源褪黑素對高溫脅迫下葡萄幼苗生理特性的影響[J].林業科技通訊,2021(4):66-69.
LI Yuansheng,XU Shanshan,LI Qiang,DU Haiyan.Effects of exogenous melatonin on physiological characteristics of grape seedlings under high temperature stress[J].Forest Science and Technology,2021(4):66-69.
[14]劉若溪,曹歌,王琪,張涵洋,李愛.外源褪黑素對高溫脅迫下西瓜幼苗生理特性的影響[J].天津農業科學,2023,29(6):7-12.
LIU Ruoxi,CAO Ge,WANG Qi,ZHANG Hanyang,LI Ai.Ef-fects of exogenous melatonin on physiological characteristics of watermelon seedlings under elevated temperature stress[J].Tian-jin Agricultural Sciences,2023,29(6):7-12.
[15]姚富文.蘋果耐高溫基因的鑒定及褪黑素對高溫脅迫的緩解效應[D].鄭州:河南農業大學,2021.
YAO Fuwen.Identification the genes related to high tempera-ture tolerance in apple and the alleviating effect of melatonin on high temperature stress[D].Zhengzhou:Henan Agricultural Uni-versity,2021.
[16]鄭少泉.枇杷種質資源描述規范和數據標準[M].北京:中國農業出版社,2006:82-83.
ZHENG Shaoquan.Descriptors and data standard for loquat(Er-iobotrya spp.)[M].Beijing:China Agriculture Press,2006:82-83.
[17]杜倩,李昌穎,宋貞富,鐘思玲,周奎,文曉鵬.無籽刺梨果實生長發育的解剖結構觀察[J].中國南方果樹,2023,52(6):171-177.
DU Qian,LI Changying,SONG Zhenfu,ZHONG Siling,ZHOU Kui,WEN Xiaopeng.Observation of anatomical struc-ture of growth and development of Rosa sterilis fruits[J].South China Fruits,2023,52(6):171-177.
[18]徐珍秀,胡春奎,蘭盛銀.植物組織石蠟切片的掃描電鏡觀察方法研究[J].武漢植物學研究,1992,10(4):377-380.
XU Zhenxiu,HU Chunkui,LAN Shengyin.A technique of ob-servation on paraffin sections with scanning electron micro-scope[J].Journal of Wuhan Botanical Research,1992,10(4):377-380.
[19]鄧朝軍,許奇志,蔣際謀,魏秀清,章希娟,鄭少泉.高溫脅迫對枇杷果皮熱傷害的抗氧化特性影響[J].熱帶亞熱帶植物學報,2012,20(5):439-444.
DENG Chaojun,XU Qizhi,JIANG Jimou,WEI Xiuqing,ZHANG Xijuan,ZHENG Shaoquan.Changes in antioxidant properties induced by heat injury in loquat peel under high tem-perature stress[J].Journal of Tropical and Subtropical Botany,2012,20(5):439-444.
[20]蒯傳化,楊朝選,劉三軍,吳國良,陳漢杰,鄭先波.落葉果樹果實日灼病研究進展[J].果樹學報,2008,25(6):901-907.
KUAI Chuanhua,YANG Chaoxuan,LIU Sanjun,WU Guoliang,CHEN Hanjie,ZHENG Xianbo.Advances in research on fruit sunburn of deciduous fruit crops[J].Journal of Fruit Science,2008,25(6):901-907.
[21]BONADA M,SADRAS V O,FUENTES S.Effect of elevated temperature on the onset and rate of mesocarp cell death in ber-ries of Shiraz and Chardonnay and its relationship with berry shrivel[J].Australian Journal of Grape and Wine Research,2013,19(1):87-94.
[22]陳少春.高溫、強光脅迫對蘋果果實表皮組織抗氧化特性的影響[D].保定:河北農業大學,2006.
CHEN Shaochun.Effect of high-temperature and intense-light stresses on antioxidative properties in apple peel tissues[D].Ba-oding:Hebei Agricultural University,2006.
[23]陳楠,張維,張曉明.褪黑素調控辣椒幼苗響應鹽脅迫下的葉片生理特性[J].中國瓜菜,2023,36(5):84-90.
CHEN Nan,ZHANG Wei,ZHANG Xiaoming.Melatonin regu-lates physiological characteristics of pepper seedlings in re-sponse to salt stress[J].China Cucurbits and Vegetables,2023,36(5):84-90.
[24]COLOMBAGE R,SINGH M B,BHALLA P L.Melatonin and abiotic stress tolerance in crop plants[J].International Journal of Molecular Sciences,2023,24(8):7447.
[25]王丹.外源褪黑素對干旱脅迫下枇杷葉片的生理及其分子調控研究[D].重慶:西南大學,2021.
WANG Dan.Physiological and molecular regulation of exoge-nous melatonin treatment in loquat(Eriobotrya japonica Lindl.)leaves under drought stress[D].Chongqing:Southwest Universi-ty,2021.
[26]徐向東,孫艷,郭曉芹,孫波,張堅.褪黑素對高溫脅迫下黃瓜幼苗抗壞血酸代謝系統的影響[J].應用生態學報,2010,21(10):2580-2586.
XU Xiangdong,SUNYan,GUO Xiaoqin,SUN Bo,ZHANG Jian.Effects of exogenous melatonin on ascorbate metabolism system in cucumber seedlings under high temperature stress[J].Chinese Journal of Applied Ecology,2010,21(10):2580-2586.
[27]WANG K X,XING Q F,AHAMMED G J,ZHOU J.Functions and prospects of melatonin in plant growth,yield,and quality[J].Journal of Experimental Botany,2022,73(17):5928-5946.
[28]HEREDIA-GUERRERO J A,GUZMAN-PUYOL S,BENíTEZ J J,ATHANASSIOU A,HEREDIA A,DOMíNGUEZ E.Plant cuticle under global change:Biophysical implications[J].Global Change Biology,2018,24(7):2749-2751.
[29]MIRANDA S,VILCHES P,SUAZO M,PAVEZ L,GARCíAK,MéNDEZ M A,GONZáLEZ M,MEISEL L A,DEFILIPPI BG,DEL POZO T.Melatonin triggers metabolic and gene expres-sion changes leading to improved quality traits of two sweet cherry cultivars during cold storage[J].Food Chemistry,2020,319:126360.
[30]BENíTEZ J J,MORENO AG,GUZMáN-PUYOL S,HEREDIA-GUERRERO J A,HEREDIA A,DOMíNGUEZ E.The response of tomato fruit cuticle membranes against heat and light[J].Fron-tiers in Plant Science,2022,12:807723.
[31]姜寒玉,雷天翔,李唯,何百鋆.低溫脅迫下‘貝達’和‘赤霞珠’葡萄不同組織糖含量及細胞結構的變化[J].果樹學報,2015,32(4):604-611.
JIANG Hanyu,LEI Tianxiang,LI Wei,HE Baijun.Changes of sugar contents in different tissues and cell structure in two grape(Vitis vinifera L.)varieties under low temperature stress[J].Jour-nal of Fruit Science,2015,32(4):604-611.
[32]MAKEREDZA B,SCHMEISSER M,L?TZE E,STEYN W J.Water stress increases sunburn in‘Cripps’pink’apple[J].Hort-Science,2013,48(4):444-447.
[33]WOOLF A B,FERGUSON I B.Postharvest responses to high fruit temperatures in the field[J].Postharvest Biology and Tech-nology,2000,21(1):7-20.
[34]MATAS A J,CUARTERO J,HEREDIA A.Phase transitions in the biopolyester cutin isolated from tomato fruit cuticles[J].Thermochimica Acta,2004,409(2):165-168.
[35]寸麗芳,房立媛,林敏娟,王振磊.噴施外源鈣對駿棗裂果和相關生理特性及顯微結構的影響[J].果樹學報,2023,40(9):1894-1903.
CUN Lifang,FANG Liyuan,LIN Minjuan,WANG Zhenlei.Ef-fects of spraying calcium on fruit cracking and related physiolog-ical characteristics and microstructure of Junzao jujube[J].Jour-nal of Fruit Science,2023,40(9):1894-1903.
[36]姚棋,韓天云,梁祎,石玉,侯雷平,張毅.外源鈣和EBR處理對番茄果實品質特性的影響[J].中國瓜菜,2021,34(10):74-79.
YAO Qi,HAN Tianyun,LIANG Yi,SHI Yu,HOU Leiping,ZHANG Yi.Effects of exogenous calcium and EBR on fruit quality characteristics of tomato[J].China Cucurbits and Vegeta-bles,2021,34(10):74-79.
[37]吳瀟,陳楊楊,石新杰,齊開杰,曹鵬,殷豪,張紹鈴.噴施外源激素對‘玉露香’梨葉片表皮蠟質組分、結構及滲透性的影響[J].南京農業大學學報,2018,41(4):647-654.
WU Xiao,CHEN Yangyang,SHI Xinjie,QI Kaijie,CAO Peng,YIN Hao,ZHANG Shaoling.Effects of spraying exogenous hor-mones on cuticular wax composition,structure and permeability of the leaves in‘Yuluxiang’pear[J].Journal of Nanjing Agricul-tural University,2018,41(4):647-654.
[38]林建城,林河通,郭振國,陳素英,梁杰.枇杷不同品種果實形態結構的比較及其與耐貯藏性的關系[J].熱帶作物學報,2009,30(1):53-58.
LIN Jiancheng,LIN Hetong,GUO Zhenguo,CHEN Suying,LIANG Jie.Morphology and structure and their relationships to storabilityofloquatfruits(EriobotryajaponicaLindl.)[J].Chinese Journal of Tropical Crops,2009,30(1):53-58.
[39]DING F,WANG G,WANG M L,ZHANG S X.Exogenous mel-atonin improves tolerance to water deficit by promoting cuticle formation in tomato plants[J].Molecules,2018,23(7):1605.
[40]TORRES C A,SEPULVEDA A,GONZALEZ-TALICE J,YURI J A,RAZMILIC I.Fruit water relations and osmoregula-tion on apples(Malus domestica Borkh.)with different Sun ex-posures and Sun-injury levels on the tree[J].Scientia Horticul-turae,2013,161:143-152.
[41]PINSKI A,BETEKHTIN A,SKUPIEN-RABIAN B,JANKOWSKA U,JAMET E,HASTEROK R.Changes in the cell wall proteome of leaves in response to high temperature stress in Brachypodium distachyon[J].International Journal of Molecular Sciences,2021,22(13):6750.
[42]趙朋飛,駱世超,許佩軒,孫曉峰,徐偉敏,馬輝,許建鋒,張海霞.褪黑素處理對采后梨果實品質及相關生理指標的影響[J].華北農學報,2023,38(增刊):211-218.
ZHAO Pengfei,LUO Shichao,XU Peixuan,SUN Xiaofeng,XU Weimin,MA Hui,XU Jianfeng,ZHANG Haixia.Effects of mel-atonin treatments on the fruit quality and related physiological indexes of postharvest pears[J].Acta Agriculturae Boreali-Sini-ca,2023,38(Suppl.1):211-218.
[43]千春錄,羅迎秋,張云,孫琰,邵豫陽,張蓓,齊曉花.外源褪黑素對采后冷藏番茄硬度變化的影響及調控機制[J].美食研究,2023,40(3):92-98.
QIAN Chunlu,LUO Yingqiu,ZHANG Yun,SUN Yan,SHAO Yuyang,ZHANG Bei,QI Xiaohua.Effects of exogenous melato-nin on firmness of postharvest tomato during cold storage and its regulatory mechanism[J].Journal of Researches on Dietetic Science and Culture,2023,40(3):92-98.
[44]KIM M,PARK Y,YUN S K,KIM S S,JOA J,MOON Y E,DO G R.The anatomical differences and physiological responses of sunburned Satsuma mandarin(Citrus unshiu Marc.)fruits[J].Plants,2022,11(14):1801.
[45]ZHAO D Q,WANG R,MENG J S,LI Z Y,WU Y Q,TAO J.Ameliorative effects of melatonin on dark-induced leaf senes-cence in Gardenia(Gardenia jasminoides Ellis):Leaf morpholo-gy,anatomy,physiology and transcriptome[J].Scientific Re-ports,2017,7(1):10423.