






摘要:【目的】建立新疆庫爾勒地區和阿克蘇地區梨火疫病菌(Erwinia amylovora)對四霉素的敏感基線,監測梨火疫病菌對四霉素的抗藥性水平,為四霉素防治梨火疫病田間用藥、抗藥性監測與抗藥性治理提供理論依據。【方法】采用抑菌圈法測定100株梨火疫病菌株對四霉素的敏感性;采用平板劃線法和含藥培養基法藥劑馴化抗藥突變體,進行抗藥性評價。【結果】共監測到敏感菌株74個,低抗菌株26個。100株菌株對四霉素的敏感性頻率接近正態分布,因此可將該曲線(平均EC50=1.59±1.029μg·mL-1)作為新疆庫爾勒地區和阿克蘇地區梨火疫病菌對四霉素的敏感基線;共獲得4株抗藥突變體,均不具有穩定遺傳性;四霉素與84%噻霉酮、中生菌素均會產生交互抗藥性。【結論】建立了新疆梨火疫病菌分離菌株對四霉素藥劑的敏感基線,僅監測到少數低抗菌株,梨火疫病菌對四霉素的抗性風險低。
關鍵詞:梨火疫病菌;四霉素;室內毒力測定;敏感基線;抗性穩定性
中圖分類號:S661.2;S436.612文獻標志碼:A文章編號:1009-9980(2024)07-1418-11
Establishment of sensitivity baseline and evaluation of resistance to tetra-mycin of Erwinia amylovora
LüZhenhao,YANG Yuwei,LIU Qi*,YU Rui,CHEN Xiaoxiao,ZHOU Yihang,CHEN Jing
(College of Agronomy,Xinjiang Agricultural University/Key Laboratory of Prevention and Control of Invasive Alien Species in Agricul-tureamp;Forestry of the North-western Desert Oasis(Co-construction by Ministry and Province),Ministry of Agriculture and Rural Affairs/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region,Urumqi 830052,Xinjiang,China)
Abstract:【Objective】Pear fire blight caused by Erwinia amylovora is an international quarantine bac-terial disease.It is one of the top ten plant pathogenic bacteria in the world with fast transmission speed,multiple transmission routes and wide host range.Biopesticide tetramycin is a pure green biopesticide developed by Liaoning Academy of Microbial Sciences in the 1970s and was productized in the early 1990s.Tetramycin can inhibit both bacterial and fungal plant diseases.At present,there are no reports on the establishment of sensitivity baseline and the evaluation of resistance to tetramycin of E.amylovo-ra in China.The study aimed to establish a sensitivity baseline for E.amylovora to tetramycin in Korla and Aksu regions of Xinjiang,and monitor the resistance level of pear fire blight to tetramycin in the re-gion and provide a scientific basis for the field administration of tetramycin against pear fire blight,anti-biotic resistance monitoring and antibiotic resistance management.【Methods】The samples were col-lected,in ten areas in Xinjing,including Bayinguoleng and Aksu in 2021 and 2023.The bacterial strains were isolated from the infected plant materials of Korla fragrant pear.The sensitivity of 100 strains of E.amylovora isolated to tetramycin was determined by the inhibition zone method.The drug-resistant mutants were acclimated by streak plate method and drug containing medium method,followed by drug resistance evaluation.The preserved strains were separated in the NA medium,incubated at 28℃for 48 h,and single colonies were obtained by secondary activation.The single colony was transferred to the NB culture medium at 28℃,180 r·min-1 for 12 h,and the test bacterial suspension was obtained when OD600 was determined to be 1.0.After the bacterial suspension was diluted to 1×104 cfu·mL-1,100μL was coated in the NA medium until dry.Three pieces of sterilized filter paper with a diameter of 6 mm were placed on the NA medium in the petri dish.6μL of different concentrations of drug drops were absorbed on the filter paper sheet,with 5 treatment concentrations for each drug solution and 2 dishes for each concentration,for a total of 6 repetitions,with sterile water as the control.After being in-cubated at 28℃for 36 h,the diameter of the antibacterial zone was measured by the cross method,and the antibacterial rate was calculated according to the formula.The correlation coefficient and EC50 val-ue were calculated according to the bacteriostasis rate.Based on the average EC50 values of the all test-ed strains,the sensitivity baseline of tetramycin in Xinjiang was established.【Results】The results showed that from the all tested strains,74 sensitive strains were detected,accounting for 74%,and 26 re-sistant strains were detected,accounting for 26%.The distribution of EC50 values of 100 strains of E.am-ylovora ranged from 0.199 to 4.84μg·mL-1,with the maximum EC50 was 24.32 times as high as the mini-mum EC50,the average EC50 was(1.59±1.029)μg·mL-1,and the 95%confidence interval was 1.389 2-1.797 4μg·mL-1 The distribution of tetramycinto E.amylovorastrains showed a unimodal curve,which was similar to the normal distribution,and no E.amylovora strains with significantly decreased sensi-tivity were found.Therefore,the mean EC50 value of(1.59±1.029)μg·mL-1 could be used as the base-line for the sensitivity of E.amylovora strains to tetramycin in southern Xinjiang.There were some dif-ferences in the sensitivity of the 100 strains of E.amylovora between 4 regions,the strains from Aksu were more sensitive,with mean EC50 value of 0.780±0.436μg·mL-1,which was significantly different from the strains from Awati Township,Halayugong Township and Tiemengguan.After the four resistance mutants of E.amylovora were transferred to the NA medium for 10 successive generations,the resis-tance levels of the 11th generation resistance mutants were 0.275μg·mL-1,0.43μg·mL-1,0.145μg·mL-1 and 0.564μg·mL-1,respectively,which all decreased from the resistance level of low antibacterial strains to the resistance level of sensitive strains.The results indicated that the 4 resistant mutants was not genetically stabile.The EC50 values of the E.amylovora resistance mutant against tetramycin were highly correlated with the EC50 values of 84%benziothiazolinone and zhongshengmycin,and the corre-lation coefficients were 0.765 8 and 0.900 8,respectively,and the absolute values of all correlation co-efficients were higher than 0.75.It can be seen that there is a cross-resistance problem between tetra-mycin and 84%benziothiazolinone and zhongshengmycin,which are commonly used in field to con-trol E.amylovora,so the three fungicides should be avoided as alternate standby pesticides in the field to avoid cross-resistance problems.Thus,it was confirmed that tetramycin had cross-resistance with the 84%benziothiazolinone and zhongshengmycin.【Conclusion】The basic resistance of the strains of E.amylovora from different regions to fungicides was determined by both the agent and the pathogen it-self.The sensitivity baseline value of the E.amylovora isolated strains in Xinjiang to benziothiazoli-none could be established according to this study.Only a few low resistant subgroupstrains were detect-ed,and the risk of resistance to tetramycin was at low level.
Key words:Erwinia amylovora;Tetramycin;Laboratory toxicity test;Sensitive baseline;Resistance stability
由歐文氏菌[Erwinia amylovora(Burr)Win-slow et al.]侵染所致的梨火疫病是國際檢疫性的細菌病害[1-2],該病害傳播速度快,傳播途徑多,寄主范圍廣,是全球十大植物病原細菌之一[3-5]。庫爾勒香梨作為中國國家地理標志產品,是當地農業增效、農民增收的重要產業之一[6]。因受到梨火疫病的影響,庫爾勒香梨產業的發展被嚴重制約。目前防治該病害的主要手段是化學防治,但國內外連續多年使用農用鏈霉素導致抗藥性菌株產生[7],中國于2016年6月已全部停止農用鏈霉素登記和使用[8],因此盡快尋找安全、有效的替代藥劑至關重要。
生物農藥四霉素是由遼寧省微生物科學研究院于20世紀70年代開始研發,90年代初實現產品化的純綠色生物農藥[9]。已有研究表明,四霉素通過抑制病原菌生長,促進作物生長,誘導作物產生抗性進而達到防治病害的目的[10-11]。該藥劑主要成分為不吸水鏈霉菌梧州亞種的發酵代謝產物,因是天然產物,故具有高效、低毒的殺菌效果[12]。四霉素對細菌性和真菌性的植物病害均產生抑制作用,如辣椒炭疽病[13]、馬鈴薯瘡痂病[14]、核桃細菌性黑斑病[15]、茭白葉斑病[16]等,其抑菌作用廣譜,故應用前景較好。目前中國尚未見梨火疫病菌對四霉素的敏感基線建立和抗藥性評價的研究報道。
筆者在本研究中通過建立新疆庫爾勒和阿克蘇地區(以下簡稱南疆地區)梨火疫病菌對四霉素的敏感基線,篩選梨火疫病菌對該藥劑的抗藥突變體,研究抗藥突變體的遺傳穩定性,以及與其他田間常用化學藥劑之間有無交互抗藥性,旨在為監測田間梨火疫病菌的四霉素抗藥性情況提供理論依據,為該藥劑對梨火疫病的田間防治與抗藥性治理提供參考。
1材料和方法
1.1材料
1.1.1供試藥劑四霉素標準樣品(Tetramycin,北京曼哈格生物科技有限公司)。交互抗性的藥劑:84%噻霉酮(Benziothiazolinone,陜西西大華特制藥廠);中生菌素標準樣品(Zhongshengmycin,北京倍特仁康生物醫藥科技有限公司)。
1.1.2供試菌株2021—2023年從新疆庫爾勒哈拉玉宮鄉、鐵門關市、阿瓦提鄉及阿克蘇地區采集的梨火疫病樣,經組織分離、鑒定,共獲得100株菌株。
1.1.3供試培養基NA培養基:無菌水1000 mL,牛肉膏3 g,酵母膏1 g,蛋白胨5 g,蔗糖10 g,氯化鈉5 g,瓊脂17 g,2 g·mL-1氫氧化鈉3000μL。121℃高壓滅菌25 min,備用。NB培養液:去掉瓊脂,其余試劑與NA培養基一致,121℃高壓滅菌25 min,備用。NA含藥培養基:參考李亞萌[17]“含藥培養基”的配比方法,將配好的不同質量濃度四霉素藥液按1∶99的比例加入到NA培養基中,每個培養皿中藥液與培養基體積之和為10 mL。
1.2試驗方法
1.2.1藥劑原藥及稀釋液配制四霉素標準樣品購自北京曼哈格生物科技有限公司,標準樣品質量濃度為100μg·mL-1,使用時用無菌水將母液稀釋制成1μg·mL-1、2.5μg·mL-1、5μg·mL-1、10μg·mL-1、20μg·mL-1的藥液備用。
1.2.2梨火疫病菌對四霉素的敏感性檢測利用抑菌圈法進行敏感性檢測試驗。在NA培養基上將保存菌種進行劃線分離,28℃恒溫培養48h,將單菌落轉入NB培養液中28℃、180 r·min-1搖培12 h,測定OD600為1.0時得到試驗菌懸液。將菌懸液稀釋涂布于NA培養基中至干燥。培養皿內放置3片直徑為6mm的滅菌濾紙片于NA培養基上[18]。吸取6μL的不同濃度的藥液滴于濾紙片上,無菌水作為對照。28℃正置培養36h,使用十字交叉法測量抑菌圈直徑大小,按公式(1)計算抑菌率。根據抑菌率計算其相關系數及EC50值。依據所有供試菌株的平均EC50值建立新疆庫爾勒地區梨火疫病菌對四霉素的敏感基線,按照公式(2)[19]計算各菌株對四霉素的抗性水平。
抑菌率%=(藥劑處理抑菌圈直徑-濾紙片直徑)/藥劑處理抑菌圈直徑×100;(1)
抗性水平=供試菌株EC50/敏感基線。(2)
根據各菌株的抗性水平數值,將各菌株分為敏感、低抗、中抗及高抗類型[20]。具體劃分如下:敏感菌株(S):抗性水平=(敏感基線的95%置信限上限/敏感基線),抗性水平=1.13μg·mL-1;低抗菌株(LR):(敏感基線的95%置信限上限/敏感基線)lt;抗性水平=敏感基線10倍,1.13μg·mL-1<抗性水平=15.9μg·mL-1;中抗菌株(MR):敏感基線10倍lt;抗性水平=敏感基線100倍,15.9μg·mL-1<抗性水平=159μg·mL-1;高抗菌株(HR):抗性水平>敏感基線100倍,抗性水平>159μg·mL-1。
1.2.3藥劑馴化獲得抗藥突變體以4個地區中最敏感菌株作為誘導抗藥突變體的親本菌株。參考胡白石[1]藥劑馴化的方法,將敏感菌株在NA培養基上進行平板劃線分離后獲得單菌落,挑單菌落到NB培養液中,28℃、180 r·min-1搖培12 h,分光光度計測定OD600值為1.0的菌懸液作為試驗親本菌懸液。用無菌接種針蘸取親本菌懸液,劃線接種在含有1μg·mL-1的NA含藥培養基上,按照此方法依次將平板中藥劑質量濃度提高為2.5μg·mL-1、5μg·mL-1、10μg·mL-1、20μg·mL-1。
1.2.4抗藥突變體抗性水平測定采用“抑菌圈法”測定抗藥突變體對四霉素的敏感性,按照公式(2)計算抗性水平,公式(3)計算其抗性倍數。
抗性倍數=抗藥突變體EC50/親本菌株EC50。(3)
1.2.5抗藥突變體遺傳穩定性測定將藥劑馴化得到的抗藥突變體在NA培養基上連續轉接10代,觀察其生長情況,待第10代單菌落生長36 h后,再次轉接到NA含藥培養基上作為第11代加以驗證,并在含藥培養基上比較抗藥突變體本身和第11代抗藥突變體間的抗藥性水平差異,確定抗藥突變體繼代培養的遺傳穩定性。
1.2.6抗藥突變體交互抗藥性測定采用“抑菌圈法”,用50 mL無菌水將四霉素標準物質樣品依次稀釋為20、10、5、2.5、1 mg·L-1的質量濃度梯度,將84%噻霉酮依次稀釋為1600、800、400、300、200、100 mg·L-1的質量濃度梯度;中生菌素標準物質樣品依次稀釋為200、100、50、25、10 mg·L-1的質量濃度梯度,測定抗藥突變體對3種藥劑的EC50值。以四霉素的EC50濃度對數值為橫坐標,分別以84%噻霉酮、中生菌素標準物質樣品的EC50濃度對數值為縱坐標,計算相關系數,并以其相關系數的絕對值來判斷四霉素與以上2種殺菌劑之間是否存在交互抗藥性[21],如相關系數絕對值大于0.75時,則該2種藥劑之間存在交互抗藥性[22]。
1.3數據處理
使用Microsoft Excel 2019進行數據統計分析,計算各藥劑相對毒力指數,并以各藥劑濃度的對數值為橫坐標(x),抑菌率對應的概率值為縱坐標(y),計算毒力回歸方程及相關系數。使用SPSS 26.0計算供試藥劑的EC50值,以及進行顯著性差異分析及其他統計學分析。
2結果與分析
2.1梨火疫病菌對四霉素的敏感性分布
通過分離并測定100株來自新疆不同地區的梨火疫病菌對四霉素的敏感性,發現100株梨火疫病菌對四霉素的抗性表現不一,但總體表現均較敏感。檢測到敏感菌株74個,占比74%;抗性菌株26個,占比26%,為低抗菌株,未檢測到中抗、高抗菌株,具體結果見表1。
2.2梨火疫病菌對四霉素敏感基線的建立
100株梨火疫病菌的EC50值分布范圍在0.199~4.840μg·mL-1之間,EC50最大值是EC50最小值的24.32倍,平均EC50為(1.590±1.029)μg·mL-1,95%置信區間為1.389 2~1.797 4μg·mL-1。所有梨火疫菌株對四霉素分布呈單峰曲線,近似于正態分布(圖1),未發現敏感性顯著下降的梨火疫菌群,因此可將平均EC50值(1.590±1.029)μg·mL-1作為新疆南疆地區梨火疫病菌對四霉素的敏感基線。
2.3不同地區梨火疫病菌對四霉素的敏感性差異
4個地區的100株梨火疫病菌對四霉素的敏感性存在一定差異。如表2所示,阿克蘇市菌株較為敏感,其EC50平均值為(0.780±0.436)μg·mL-1,與阿瓦提鄉菌株、哈拉玉宮鄉菌株和鐵門關菌株均存在顯著差異。
2.4抗藥突變體篩選
通過藥劑馴化試驗共獲得4株抗藥突變體,見表3。10μg·mL-1是4株供試菌株在該藥劑下的最高生長質量濃度,因此認定在10μg·mL-1質量濃度藥劑平板上還能繼續穩定生長的單菌落為抗藥突變體。
2.5抗藥突變體抗性水平測定
4株梨火疫抗藥突變體對四霉素抗性水平測定結果見表4。經過室內毒力測定,四霉素對各親本菌株的EC50值均在1μg·mL-1以下,而對抗藥突變體的EC50值除RM-TM91外均在2μg·mL-1以上,表明室內藥劑馴化有效。RM-AW20、RM-BG25、RM-TM91、RM-AK01的EC50值分別為2.166、2.312、1.352、2.82μg·mL-1,與其親本菌株的EC50值相比,抗性倍數分別為5.59倍、4.08倍、6.79倍、5.86倍,抗性水平逐步提高,按照1.2.1中的菌株抗藥性劃分標準,親本菌株通過藥劑馴化后的抗藥突變體均已轉變為對四霉素產生抗性的低抗菌株(1.13μg·mL-1<抗性水平=15.9μg·mL-1)。
2.6抗藥突變體交互抗藥性測定
交互抗藥性測定結果見圖2,梨火疫抗藥突變體對四霉素的EC50值與84%噻霉酮和中生菌素之間的EC50值相關性較高,相關系數分別為0.765 8與0.900 7,所有相關系數絕對值均高于0.75。由此可見,四霉素與田間常用防治梨火疫藥劑84%噻霉酮、中生菌素之間存在交互抗藥性問題,故應避免將該三種殺菌劑作為輪換備用農藥在田間使用,以免產生交互抗藥性問題。
3討論
梨火疫病是危害新疆地區梨樹的最主要細菌性病害,該病害對梨果的生長、產量和品質影響極大,傳染風險高,因而,對梨火疫病的防治措施研究一直是科研工作者關注的熱點[23]。四霉素對多種植物病原菌具有廣譜的抑制作用[9],且具有高效、低毒的特點[24],在中國作為對植物真菌與細菌均有防治效果的殺菌劑,該藥劑已在各個作物與田間得到大范圍、大面積的使用[25-28]。目前有關梨火疫病菌的敏感性檢測與抗藥性評價研究在國內外鮮有報道,因此筆者在本試驗中以100株新疆庫爾勒梨火疫病菌為供試靶標菌株,旨在建立起庫爾勒梨火疫病菌對四霉素的敏感基線,以4株梨火疫病敏感菌株為供試靶標菌株,在室內進行病原菌的抗藥性評價試驗,旨在為其抗藥性監測及田間科學用藥提供參考。
在化學殺菌劑長期、單一的使用壓力下,病原菌對殺菌劑將產生較高的抗性風險[29]。故在開始使用新型的殺菌劑之前,建立敏感基線對評價其抗藥性與制定其抗藥性治理策略具有重要意義[30]。本研究結果顯示,四霉素對所有供試菌株均有室內抑制作用,抗藥性表現不一。檢測到敏感菌株74個,抗性菌株26個,其中低抗菌株26個,未檢測到中抗、高抗菌株。所有EC50值中,未出現明顯異常值,表明對四霉素而言,庫爾勒地區的梨火疫病菌大部分還處于野生敏感種群階段。敏感性頻率分布呈正態分布,因此可將(1.59±1.029)μg·mL-1作為新疆地區梨火疫病菌對四霉素的敏感基線。從病原菌的角度來看,該敏感基線可作為觀測新疆地區是否出現四霉素抗藥性群體的依據,從防治藥劑角度看,對避免及延緩抗藥性的產生具有重要意義。但需要注意的是,不同地區的梨火疫病菌對四霉素的敏感性可能會存在差異,這是因為不同地區使用四霉素防治該病害的用藥水平存在差異。
不同地區菌株對殺菌劑的基本抗性是由藥劑與病原菌本身兩者共同決定的,如防治藥劑篩選、殺菌劑的作用機制和病原菌本身的代謝方式、抗藥性突變頻率、交互抗性等因素,都受菌株自身的遺傳性、防治藥劑的選擇或環境因素影響[31-34]。因此,需進一步加強對新藥劑和新防治對象開展抗藥性風險評估、制定抗藥性管理策略、建立再評價機制等。綜上,明確植物病原菌抗藥性發生發展特點并制定科學合理的抗性治理策略,對進一步開展植物病害的科學防控具有重要的參考價值[35]。目前在篩選抗藥突變體時,根據不同的目標作物、靶標病菌或防治藥劑,會采用不同的篩選方法,一般采用紫外誘導與藥劑馴化這兩種方法[36-37],如王文橋等[38]在誘導葡萄霜霉病菌與馬鈴薯晚疫病菌對三種藥劑的抗性突變體時發現,馬鈴薯晚疫病菌在藥劑馴化條件下,對惡霜靈容易發生抗性變異,而對烯酰嗎啉和霜脲氰不易發生抗性變異。王藝燁[39]在誘導辣椒疫霉抗突變菌株時,通過藥劑馴化出6株,而采用游動孢子紫外照射僅誘導出2株,紫外照射菌絲塊未誘導出突變菌株,由此說明在該致病菌誘導突變體時,藥劑馴化的方法更優于紫外照射。筆者在本研究中共獲得4株抗四霉素的抗藥突變體,分別為RM-AW20、RM-BG25、RM-AK01和RM-TM91,因時間限制,未采用紫外照射的方法誘導抗藥突變體,因此尚待證明通過不同方法的誘導抗藥突變體的抗性水平是否一致。
由4株抗藥突變體經11代繼代培養后,抗性水平值分別為0.275μg·mL-1、0.430μg·mL-1、0.145μg·mL-1和0.564μg·mL-1,均從低抗菌株的抗性水平下降到敏感菌株抗性水平=1.13μg·mL-1的標準范圍內,說明這4株抗藥突變體不具有穩定遺傳性。由此推斷,該致病菌對四霉素不易產生較強抗性,但需要注意,如果在藥劑長期、單一的選擇壓力條件下,田間一旦產生抗藥突變體,抗性菌株可能很快上升為優勢種群,病害防治問題將會變得尤為棘手。交互抗藥性試驗結果表明,四霉素與中生菌素、噻霉酮等田間常用殺菌劑之間存在交互抗藥性。因此,在四霉素投入生產實踐中時,不可與上述殺菌劑輪換使用,否則將產生交互抗性問題[40]。
除此之外,親本菌株之間的生物學性狀差異、遺傳多樣性和抗藥突變體的遺傳差異也會導致抗性水平的變化,所以今后研究目標是利用分子生物學技術對抗藥性基因進行篩選,深層次地揭示梨火疫病菌抗藥性的產生機制,分析抗藥性群體的基因型[41-42],進一步揭示該病原菌對四霉素抗藥性的遺傳本質。
4結論
通過測定2021—2023年新疆分離的100個梨火疫病菌對四霉素藥劑的敏感性,其EC50均值為(1.59±1.029)μg·mL-1,作為新疆地區梨火疫病菌對四霉素的敏感基線,適用于對四霉素藥劑敏感性和抗藥性菌株的監測。僅發現少數低抗藥性菌株,說明目前該藥劑防治梨火疫病的風險低。
參考文獻References:
[1]胡白石.梨火疫病菌的風險分析及檢測技術研究[D].南京:南京農業大學,2000.
HU Baishi.Pest risk analysis and detection techniques of Erwin-ia amylovora[D].Nanjing:Nanjing Agricultural University,2000.
[2]ABDOLLAHI H,RUGINI E,RUZZI M,MULEO R.In vitro system for studying the interaction between Erwinia amylovora and genotypes of pear[J].Plant Cell,Tissue and Organ Culture,2004,79(2):203-212.
[3]董歡.梨火疫病檢測技術研究與推廣應用[J].農業工程技術,2021,41(8):47-48.
DONG Huan.Research and application of detection technology of pear fire blight[J].Agricultural Engineering Technology,2021,41(8):47-48.
[4]ZHAO Y Q,TIAN Y L,WANG L M,GENG G M,ZHAO W J,HU B S,ZHAO Y F.Fire blight disease,a fast-approaching threat to apple and pear production in China[J].Journal of Inte-grative Agriculture,2019,18(4):815-820.
[5]MANSFIELD J,GENIN S,MAGORI S,CITOVSKY V,SRIAR-IYANUM M,RONALD P,DOW M,VERDIER V,BEER S V,MACHADO M A,TOTH I,SALMOND G,FOSTER G D.Top 10 plant pathogenic bacteria in molecular plant pathology[J].Molecular Plant Pathology,2012,13(6):614-629.
[6]張峰,李養義.庫爾勒香梨產業發展現狀與對策建議[J].西北園藝(綜合),2020(11):3-5.
ZHANG Feng,LI Yangyi.Development status and countermea-sures of Korla pear industry[J].Northwest Horticulture,2020(11):3-5.
[7]CHATTERJEE A.Fire blight:The disease and its causative agent,Erwinia amylovora.edited by J.L.vanneste[J].European Journal of Plant Pathology,2001,107(5):569.
[8]新華社.農用鏈霉素已被禁,網售產品均為假藥[J].農村百事通,2019(23):20.
XINHUA News Agency.Agricultural streptomycin has been banned,and the products sold online are fake pesticides[J].Ru-ral Know It All,2019(23):20.
[9]韓希軍.生物農藥四霉素水劑生產研究與應用[Z].沈陽:遼寧省科學技術廳,2014-02-28.
HAN Xijun.Study on production and application of biological pesticide tetramycin aqueous agent[Z].Shenyang:Departmentof Scienceamp;Technology of Liaoning province,2014-02-28.
[10]WANG Q P,ZHANG C,LONG Y H,WU X M,SU Y,LEI Y,AI Q.Bioactivity and control efficacy of the novel antibiotic tet-ramycin against various kiwifruit diseases[J].Antibiotics,2021,10(3):289.
[11]MA D C,ZHU J M,HE L M,CUI K D,MU W,LIU F.Baseline sensitivity and control efficacy of tetramycin against Phytoph-thora capsici isolates in China[J].Plant Disease,2018,102(5):863-868.
[12]鄔劼,王曉琳,黃潔雪,刁春友,閆曉陽,吉沐祥.7種殺菌劑對草莓膠孢炭疽菌和灰霉病病菌的室內毒力測定[J].江蘇農業科學,2019,47(20):129-133.
WU Jie,WANG Xiaolin,HUANG Jiexue,DIAO Chunyou,YAN Xiaoyang,JI Muxiang.Determination of indoor virulence of seven fungicides against Colletotrichum gloeosporioides and Botrytis cinerea[J].Jiangsu Agricultural Sciences,2019,47(20):129-133.
[13]陳鵬宇,楊立輝,翟長蘭,田慧迪,張敏,白慶榮,趙廷昌.辣椒炭疽病菌Colletotrichum nigrum鑒定、生物學特性及藥劑敏感性研究[J].中國瓜菜,2023,36(3):27-35.
CHEN Pengyu,YANG Lihui,ZHAI Changlan,TIAN Huidi,ZHANG Min,BAI Qingrong,ZHAO Tingchang.Identification,biological characteristics and fungicide susceptibility of Colleto-trichum nigrum in pepper[J].China Cucurbits and Vegetables,2023,36(3):27-35.
[14]寧楠楠,咸文榮,馬永強,郭青云.0.3%四霉素水劑防治馬鈴薯瘡痂病田間藥效試驗[J].青海農林科技,2020(3):86-88.
NING Nannan,XIAN Wenrong,MA Yongqiang,GUO Qin-gyun.Field efficacy test of 0.3%tetracycline aqueous solution in the control of potato scab[J].Science and Technology of Qin-ghai Agriculture and Forestry,2020(3):86-88.
[15]譙天敏,王麗,朱天輝.核桃細菌性黑斑病殺菌劑篩選及藥效研究[J].植物保護,2020,46(4):258-263.
QIAO Tianmin,WANG Li,ZHU Tianhui.Screening of bacteri-cides and their control effect against bacterial black spot disease of walnut[J].Plant Protection,2020,46(4):258-263.
[16]蔣冬陽,陳夕軍,陳銀鳳,陳宸,張治平,魏利輝.茭白葉斑病病原鑒定及其對5種殺菌劑的敏感性測定[J].中國瓜菜,2022,35(10):34-41.
JIANG Dongyang,CHEN Xijun,CHEN Yinfeng,CHEN Chen,ZHANG Zhiping,WEI Lihui.Pathogen identification of cane shoots leaf spot and determination of its sensitivity to five fungi-cides[J].China Cucurbits and Vegetables,2022,35(10):34-41.
[17]李亞萌.北京地區番茄灰霉病菌對咯菌腈的抗性風險評估[D].北京:北京農學院,2020.
LI Yameng.Risk assessment of Botrytis cinerea resistance to fludioxonil in Beijing[D].Beijing:Beijing University of Agricul-ture,2020.
[18]陳曉曉,偉力·肉孜,呂振豪,劉琦,陳晶.10種殺菌劑對梨火疫病的田間藥效評價[J].中國果樹,2023(7):69-72.
CHEN Xiaoxiao,Weili·Rouzi,LüZhenhao,LIU Qi,CHEN Jing.Field efficacy evaluation of 10 bactericides on pear fire blight[J].China Fruits,2023(7):69-72.
[19]王秋月.辣椒疫霉對氟吡菌胺的抗藥性風險研究[D].重慶:西南大學,2016.
WANG Qiuyue.Studies on the resistance risk of Phytophthora capsici to fluopicolide[D].Chongqing:Southwest University,2016.
[20]閆磊.黃瓜霜霉病菌對氟吡菌胺的抗性風險研究[D].保定:河北農業大學,2013.
YAN Lei.Studies on risk of resistance in Pseudoperonospora cubensis to fluopicolide[D].Baoding:Hebei Agricultural Univer-sity,2013.
[21]侯軍.番茄灰霉病菌對丙烷脒的抗藥性風險研究[D].楊凌:西北農林科技大學,2011.
HOU Jun.Studies on the resistance risk of Botrytis cinerea to fungicide propamidine[D].Yangling:Northwest Aamp;F Universi-ty,2011.
[22]王迪,王詩然,楊明佳,盧寶慧,劉麗萍,高潔.吉林省人參黑斑病菌對常用藥劑的抗藥性監測及交互抗藥性測定[J].農藥,2018,57(8):603-605.
WANG Di,WANG Shiran,YANG Mingjia,LU Baohui,LIU Liping,GAO Jie.Detection of the resistance of Alternaria panax and cross-resistance on ginseng in Jilin Province[J].Agro-chemicals,2018,57(8):603-605.
[23]葛藝欣.梨火疫病菌對春雷霉素的抗性機制以及丁香假單胞菌RsmA蛋白的功能研究[D].南京:南京農業大學,2019.
GE Yixin.Study on mechanism of kasugamycin resistance in Erwinia amylovora and functions of RsmA proteins in Pseudo-monas syringae[D].Nanjing:Nanjing Agricultural University,2019.
[24]殷吉龍.0.3%四霉素水劑對楊樹的安全性試驗[J].現代農村科技,2020(10):77.
YIN Jilong.Safety test of 0.3%tetramycin AS on poplar[J].Modern Rural Science and Technology,2020(10):77.
[25]梁歡,徐進,王曉寧,張彤,許景升,張昊,馮潔.11種殺菌劑對馬鈴薯軟腐病的防治效果[J].植物保護,2020,46(5):309-315.
LIANG Huan,XU Jin,WANG Xiaoning,ZHANG Tong,XU Jingsheng,ZHANG Hao,FENG Jie.Control effects of eleven bactericides on potato soft rot[J].Plant Protection,2020,46(5):309-315.
[26]阮宏椿,石妞妞,田佩玉,杜宜新,陳文樂,陳巧紅,陳鳳平,陳福如.福建省稻瘟病菌對4種殺菌劑的敏感性分析[J].西北農林科技大學學報(自然科學版),2022,50(2):125-134.
RUAN Hongchun,SHI Niuniu,TIAN Peiyu,DU Yixin,CHEN Wenle,CHEN Qiaohong,CHEN Fengping,CHEN Furu.Sensi-tivity of Magnaporthe oryzae in Fujian to 4 fungicides[J].Jour-nal of Northwest Aamp;F University(Natural Science Edition),2022,50(2):125-134.
[27]朱強興,周小軍,何曉嬋,朱麗燕.多種藥劑防治水稻白葉枯病田間藥效試驗[J].上海農業科技,2021(5):109-110.
ZHU Qiangxing,ZHOU Xiaojun,HE Xiaochan,ZHU Liyan.Field efficacy trial of several insecticides against rice bacterial blight[J].Shanghai Agricultural Science and Technology,2021(5):109-110.
[28]PAN H W,HE X S,LUX R,LUAN J,SHI WY.Killing of Esch-erichia coli by Myxococcus xanthus in aqueous environments re-quires exopolysaccharide-dependent physical contact[J].Micro-bial Ecology,2013,66(3):630-638.
[29]URBAN J,LEBEDAA.Fungicide resistance in cucurbit downy mildew-methodological,biological and population aspects[J].Annals of Applied Biology,2006,149(1):63-75.
[30]CHEN Y,YAO J,WANG W X,GAO T C,YANG X,ZHANG A F.Effect of epoxiconazole on rice blast and rice grain yield in China[J].European Journal of Plant Pathology,2013,135(4):675-682.
[31]BASIT M.Status of insecticide resistance in Bemisia tabaci:Re-sistance,cross-resistance,stability of resistance,genetics and fit-ness costs[J].Phytoparasitica,2019,47(2):207-225.
[32]ZHANG X M,JIANG H,HAO J J.Evaluation of the risk of de-velopment of fluopicolide resistance in Phytophthora erythro-septica[J].Plant Disease,2019,103(2):284-288.
[33]BI Q Y,MA Z Q.Sensitivity,resistance stability,and cross-re-sistance of Plasmopara viticola to four different fungicides[J].Crop Protection,2016,89:265-272.
[34]CHEN X D,GILL T A,ASHFAQ M,PELZ-STELINSKI K S,STELINSKI L L.Resistance to commonly used insecticides in Asian citrus psyllid:Stability and relationship to gene expres-sion[J].Journal of Applied Entomology,2018,142(10):967-977.
[35]劉西莉,苗建強,張燦.植物病原菌抗藥性及其抗性治理策略[J].農藥學學報,2022,24(5):921-936.
LIU Xili,MIAO Jianqiang,ZHANG Can.Fungicide resistance and the management strategies[J].Chinese Journal of Pesticide Science,2022,24(5):921-936.
[36]李京,紀明山,劉煜財,王廣祥,孫中華,郭紅霞,王維靜.遼寧省野慈姑對氯氟吡啶酯抗性風險評估[J].農藥,2020,59(7):541-546.
LI Jing,JI Mingshan,LIU Yucai,WANG Guangxiang,SUN Zhonghua,GUO Hongxia,WANG Weijing.Risk assessment of resistance to Florpyrauxifen-benzyl in Sagittaria trifolia L.of Li-aoning Province[J].Agrochemicals,2020,59(7):541-546.
[37]CHEN L,ZHU S S,LU X H,PANG Z L,CAI M,LIU X L.As-sessing the risk that Phytophthora melonis can develop a point mutation(V1109L)in CesA3 conferring resistance to carboxylic acid amide fungicides[J].PLoS One,2012,7(7):e42069.
[38]王文橋,劉國容,張小風,馬志強,韓秀英.葡萄霜霉病菌和馬鈴薯晚疫病菌對三種殺菌劑的抗藥性風險研究[J].植物病理學報,2000,30(1):48-52.
WANG Wenqiao,LIU Guorong,ZHANG Xiaofeng,MA Zhi-qiang,HAN Xiuying.Studies on resistance risk to three fungi-cides in Plasmopara viticola and Phytophthora infestans[J].Ac-taPhytopathologica Sinica,2000,30(1):48-52.
[39]王藝燁.辣椒疫霉對甲霜靈的抗性監測及誘變研究[D].合肥:安徽農業大學,2019.
WANG Yiye.Resistance monitoring and mutagenesis of Phy-tophthora capsici to metalaxyl[D].Hefei:Anhui Agricultural University,2019.
[40]陳曉曉,艾尼賽·賽米,粟神強,賈玉鳳,劉琦,陳晶.梨火疫病病原菌的分離鑒定及室內抑菌藥劑篩選[J].西北農業學報,2023,32(3):468-478.
CHEN Xiaoxiao,Anisa·Saimi,SU Shenqiang,JIA Yufeng,LIU Qi,CHEN Jing.Separation and identification of pear fire blight pathogens and indoor screening of bactericides[J].Acta Agricul-turae Boreali-occidentalis Sinica,2023,32(3):468-478.
[41]郭爽,黃貞,常紹東,劉玉平,曹翠文.利用分子標記鑒定辣椒抗疫病材料[J].中國農學通報,2012,28(13):163-166.
GUO Shuang,HUANG Zhen,CHANG Shaodong,LIU Yuping,CAO Cuiwen.Identification of resistance to Phytophthora blight in hot pepper using molecular marker[J].Chinese Agricul-tural Science Bulletin,2012,28(13):163-166.
[42]羅德旭,鞏振輝,李大偉.辣椒疫病抗病性分子鑒定技術研究[J].西北農業學報,2008,17(5):76-80.
LUO Dexu,GONG Zhenhui,LI Dawei.Study on molecular identification technology of pepper resistance to Phytophthora blight[J].Acta Agriculturae Boreali-Occidentalis Sinica,2008,17(5):76-80.