






摘要:目的 探討力線正常與膝內翻的膝骨關節炎(KOA)患者在股骨側與脛骨側軟骨下骨密度(BMD)方面的差異性。方法 納入明確診斷為KOA的450個膝關節的雙下肢負重全長正位X線片和雙下肢定量CT(QCT)掃描數據,其中力線正常組131個,膝內翻組319個。測量髖-膝-踝(HKA)角及股骨內髁、股骨外髁、脛骨內側平臺、脛骨外側平臺的BMD,同時計算脛骨內側平臺/脛骨外側平臺BMD比值及股骨內髁/股骨外髁BMD比值。比較2組在股脛內側間室與外側間室的BMD差異,并進行性別和年齡的亞組分析。Spearman相關分析膝內翻組中脛骨內、外側平臺BMD比值及股骨內、外髁BMD比值與內翻程度的相關性。結果 膝內翻組的股骨內髁及脛骨內側平臺的BMD高于力線正常組;而股骨外髁及脛骨外側平臺的BMD則低于力線正常組。2組的脛骨內、外側平臺BMD比值均大于1,且膝內翻組的比值更大;而膝內翻組的股骨內、外髁BMD比值顯著高于力線正常組。對于女性,上述結果更加明顯且不受年齡影響。相關性分析顯示,脛骨內、外側平臺BMD比值與HKA角呈負相關(rs=-0.436,P<0.01),股骨內、外髁BMD比值與HKA角同樣呈負相關(rs=-0.394,P<0.01)。結論 相比力線正常組,膝內翻組的股脛內側間室BMD增加,而外側間室BMD降低。
" 關鍵詞:骨關節炎;膝內翻;骨密度;定量CT
" 中圖分類號:R445.4 文獻標志碼:A DOI:10.11958/20241245
QCT analysis of the effect of knee varus on bone mineral density of medial and lateral femoral tibial compartments in knee osteoarthritis
DENG Wenwen, MENG Xianghong, SUN Zhenye, YANG Qilong, WANG Zhi△
Department of Radiology, Tianjin Hospital, Tianjin University, Tianjin 300211, China
△Corresponding Author E-mail: wz13820256789@163.com
Abstract: Objective To investigate the differences in subchondral bone mineral density (BMD) between the femoral and tibial sides in patients of knee osteoarthritis (KOA) with normal lines of force and varus. Methods The data of 450 knee joints with a definite diagnosis of KOA were included in this study including weight-bearing full-length X-ray films and quantitative computed tomography (QCT) scans of both lower limbs. Among them, 131 were in the normal force line group and 319 were in the knee varus group. The hip-knee-ankle (HKA) angle and BMD of the femoral medial condyle, femoral lateral condyle, tibial medial plateau and tibial lateral plateau were measured. BMD ratio of tibial medial plateau to tibial lateral plateau and the BMD ratio of femoral medial condyle to femoral lateral condyle were calculated. BMD in medial and lateral compartments of the femur and tibia were compared between the two groups, followed by subgroup analyses based on gender and age. Spearman correlation was used to analyze the correlation between the BMD ratio of tibial medial plateau to tibial lateral plateau, the BMD ratio of femoral medial condyle to femoral lateral condyle and the degree of varus in the knee varus group. Results The BMD of the medial femoral condyles and medial tibial platforms were higher in the knee varus group than those in the normal force line group. The BMD of femoral lateral condyle and lateral tibial platform was lower in the knee varus group than that in the normal force line group. The BMD ratio of the medial to lateral tibial plateaus was greater than one in both groups, and the ratio of the knee varus group was greater. The BMD ratio of femoral medial to lateral condyle in the knee varus group was significantly higher than that in the normal force line group. For women, these findings were more pronounced and were independent of age. Correlation analysis showed that the BMD ratio of medial tibial plateau to lateral tibial plateau was negatively correlated with HKA angle (rs=-0.436, P lt; 0.01), and the BMD ratio of the medial femoral condyle to lateral femoral condyle was also negatively correlated with HKA angle (rs=-0.394, P lt; 0.01). Conclusion The BMD of medial femoral and tibial compartment is increased and the BMD of lateral compartment is decreased in the genu varus group compared with the normal force line group.
Key words: osteoarthritis; knee varus; bone mineral density; quantitative computed tomography
膝骨關節炎(knee osteoarthritis,KOA)是常見的致殘性、慢性退行性骨關節病,全球超過7%的人患有骨關節炎[1],其中KOA約占85%[2];膝內側間室的發病率遠高于外側,前者占KOA的7/8以上[3]。當KOA者的下肢力線從膝中心向內偏移,會導致股脛內側間室的壓力增大,引起股脛內側間室骨關節炎,進而導致膝內翻,兩者互為因果,形成惡性循環[4-6]。膝內翻俗稱“O”型腿,是指當雙下肢自然站立或伸直時,雙足內踝接觸而雙膝無法并攏的病態體征[7]。其典型特征為下肢髖-膝-踝(hip-knee-ankle,HKA)角<180 °,內側關節間隙變窄和脛骨近端畸形等[8]。膝內翻者股脛內側間室負荷增加,軟骨下骨小梁易發生損傷,損傷后修復導致骨密度(bone mineral density,BMD)增加。因此,軟骨下BMD的量化對KOA的診斷和預后有重要意義。定量CT(quantitative computed tomography,QCT)可精準、定量測量膝關節軟骨下BMD,且不受體位和骨質增生影響。有研究使用QCT測量KOA患者脛骨側的BMD[9-10],但少有研究股骨側的BMD變化,同時未對膝內翻時各間室軟骨下BMD做定量分析。本研究通過比較KOA患者中力線正常與膝內翻者的股脛內外側間室各部位BMD差異,據性別和年齡進行亞組分析,探討KOA患者膝內翻對膝關節股骨側及脛骨側BMD的影響,并研究其與內翻程度的相關性。
1 對象與方法
1.1 研究對象 回顧性分析2021年8月—2023年2月天津市天津醫院診斷為KOA的患者資料,收集其雙下肢負重全長正位X線片和雙下肢QCT掃描數據,共590個膝關節,排除既往外傷或手術,或患有膝關節炎癥、代謝性骨病、腫瘤等疾病及膝外翻的患者圖像。最終納入450個膝關節,其中膝內翻組319個,力線正常組131個。力線正常組包括男52例,女79例,年齡40~85歲,平均(62.1±9.7)歲。膝內翻組包括男106例,女213例,年齡36~80歲,平均(60.1±8.0)歲。2組性別(χ2=1.704,P=0.192)、年齡(t=1.603,P=0.109)差異無統計學意義。本研究屬于回顧性分析,已通過天津醫院倫理委員會審核批準(倫理號:2024醫倫審051),受試者免除知情同意。
1.2 方法
1.2.1 雙下肢負重全長正位X線片 采用Discovery XR656型X線攝影機進行雙下肢負重全長正位X線片投照,使用系統自帶的自動全長拼接軟件將各部位圖像拼接為雙下肢全長圖像。攝影距離180 cm;曝光模式為自動曝光;掃描范圍為髂嵴上3 cm至第三跖骨基底。在影像存檔與傳輸系統(PACS)工作站中,測量所有患者HKA角(圖1)。HKA角為自股骨頭中心至膝關節中心連線與自膝關節中心至距骨中心連線之間內側的角度[11]。HKA角小于180°為膝內翻,大于180°為膝外翻,180°即為力線正常[12]。
1.2.2 膝關節QCT數據采集 采用64排螺旋CT掃描設備(CT750,General Electric,Milwaukee,WI,USA)進行雙膝CT檢查。掃描參數:管電壓120 kVp,管電流200~300 mA,層厚0.625 mm的各向同性容積采集。采用標準算法進行圖像重建。掃描完成后,將數據上傳至美國Mindways QCT工作站(QCT PRO V6.1I,USA)。重建膝關節冠狀面CT圖像,將股骨遠端分為股骨內髁及股骨外髁兩部分,將脛骨近端分為內側平臺、中間部和外側平臺(內側平臺40%,中間部20%,外側平臺40%)[13](圖2)。為避免軟骨下BMD測量受BMD減少區或皮質骨的影響,本研究測量的股骨內髁、股骨外髁、脛骨內側平臺及脛骨外側平臺的BMD均自膝關節軟骨下骨表面7 mm以下。計算脛骨內側平臺/脛骨外側平臺BMD比值和股骨內髁/股骨外髁BMD的比值。
1.3 統計學方法 采用SPSS 27.0軟件進行數據分析。不符合正態分布或方差齊性數據采用M(P25,P75)表示,組間比較應用Mann-Whitney U檢驗。應用Spearman法進行相關分析。P<0.05為差異有統計學意義。
2 結果
2.1 力線正常組與膝內翻組膝關節各部位BMD的差異 膝內翻組股骨內髁和脛骨內側平臺的BMD高于力線正常組,股骨外髁和脛骨外側平臺的BMD低于力線正常組(P<0.01)。2組的脛骨內側平臺/脛骨外側平臺BMD比值均大于1,膝內翻組比值更高(P<0.01)。膝內翻組股骨內髁/股骨外髁BMD比值同樣顯著高于力線正常組(P<0.01),見表1。
2.2 不同性別亞組中力線正常組和膝內翻組BMD的差異 在男性KOA患者中,力線正常組與膝內翻組的股骨外髁和脛骨外側平臺BMD差異無統計學意義(P>0.05);而在女性患者中,膝內翻組的股骨外髁和脛骨外側平臺的BMD低于力線正常組(P<0.01)。除此之外,不論男性還是女性,膝內翻組的股骨內髁和脛骨內側平臺的BMD均高于力線正常組(P<0.01);2組的脛骨內側平臺/脛骨外側平臺BMD比值均大于1,膝內翻組的比值更高(P<0.01);膝內翻組的股骨內髁/股骨外髁BMD比值同樣顯著高于力線正常組(P<0.01),見表2、3。
2.3 不同年齡亞組中力線正常組和膝內翻組BMD的差異 本研究將患者以60歲為界,分為60歲以下組和60歲及以上組。兩亞組中,膝內翻組股骨內髁和脛骨內側平臺的BMD均高于力線正常組,而股骨外髁和脛骨外側平臺的BMD則均低于力線正常組(P<0.01);兩亞組的脛骨內側平臺/脛骨外側平臺BMD比值均大于1,其中膝內翻組的比值更高(P<0.01),并且膝內翻組的股骨內髁/股骨外髁BMD比值同樣顯著高于力線正常組(P<0.01),見表4、5。
2.4 膝內翻組的BMD比值與內翻程度的相關性分析 股骨內髁/股骨外髁BMD比值與HKA角呈負相關(rs=-0.394,P<0.01),脛骨內側平臺/脛骨外側平臺BMD比值與HKA角同樣呈負相關(rs=-0.436,P<0.01)。
3 討論
本研究發現膝內翻者股骨內髁及脛骨內側平臺的BMD高于力線正常者,而股骨外髁及脛骨外側平臺BMD低于力線正常者,這種表現不受年齡影響,且在女性中更為明顯。這可能是因為KOA股骨畸形存在性別差異,女性股骨外側彎曲程度更大,股骨干位置更高[14]。此外,膝內翻越嚴重,脛股內側間室BMD越高。膝內翻時,下肢力線向膝中心內側偏移,在承重面積不變的情況下,股脛內側間室應力強度逐漸增加,當內翻到達一定程度后,應力的顯著變化會導致股脛內側間室的骨小梁發生微小骨折[15],隨后發生骨小梁重塑,重塑的骨小梁會相應地增加BMD。隨著內翻程度加重,股脛內側間室負重增加,導致股脛內側間室軟骨下骨反應性骨硬化加重。
Omoumi等[16]通過膝關節CT圖像間接計算三維BMD圖,發現KOA的股脛內側間室與外側間室BMD比值明顯高于非KOA,說明了OA是影響膝關節BMD的因素之一。本研究在此基礎上通過QCT定量測量,進一步補充了膝內翻畸形對股脛關節間室BMD的影響,表明膝內翻會促進OA對股脛關節間室BMD的影響。從生物力學的角度分析,由于人在行走中60%~80%的負荷經膝內側傳遞,所以KOA中以內側間室骨關節炎最為常見。而KOA的發生又與膝關節生物力線改變有關,當發生膝內翻時,重力線至膝中心向內偏移,從而導致內側間室的壓力增大,膝內翻的患者時常會使病情進一步加重。
Roberts等[17]在25例終末期KOA標本中發現了膝內翻的脛骨內側平臺的骨體積分數明顯高于外側,且脛骨內、外側平臺BMD比值與下肢機械軸偏移程度呈正相關。Yoon等[18]運用雙能X線骨密度儀(DXA)研究發現,膝內翻時脛骨內側平臺的BMD大于外側平臺,且隨內翻角度的增大而增大。本研究結果與上述結果一致,并結合了股骨側BMD的變化,更加清楚地說明了當發生膝內翻時,下肢力線向膝中心內側偏移,增加了步態時的膝關節外內收力矩,導致股骨與脛骨接觸的股脛內側間室承擔更大比例的負荷,增加了股脛內側間室壓力,同時外側間室壓力減小。長期異常負荷會導致關節軟骨受損,出現軟骨下骨折,關節軟骨塌陷,從而引發軟骨營養不良。而軟骨是一種無血管組織,具有有限的再生和修復能力,軟骨的剝脫又進一步增加了股脛內側間室的壓力。如此惡性循環,進一步加重了膝內翻畸形。
本研究還發現隨著內翻程度的增加,股脛內、外側間室BMD比值增加。Lo等[19]運用DXA發現HKA與脛骨內側平臺/脛骨外側平臺BMD比值具有明顯相關性,內翻程度越高,脛骨內側平臺/脛骨外側平臺BMD比值越高。雖然上述結果與本研究結果一致,但DXA的二維性質限制了對BMD空間變化和局部改變的評估。
本研究存在一定的局限性。首先,本研究為單中心研究;其次,盡管控制了患者性別和年齡對BMD的影響,但未考慮體質量指數和KOA嚴重程度對軟骨下骨BMD測量的影響,可能會造成結果偏倚。再者,膝關節內、外側間室內的載荷還可能受前交叉韌帶的完整性和半月板損傷等其他組織病變的影響,在今后的研究中將納入這些因素進一步分析。
本研究表明QCT可定量、精準分析KOA患者各間室軟骨下BMD。膝內翻者股脛內側間室BMD增加,而外側間室BMD降低在女性中更為明顯,且不受年齡因素影響。隨著內翻程度加重,股脛內、外側間室軟骨下骨BMD比值逐漸增加。
參考文獻
[1] LEIFER V P,KATZ J N,LOSINA E. The burden of OA-health services and economics[J]. Osteoarthritis Cartilage,2022,30(1):10-16. doi:10.1016/j.joca.2021.05.007.
[2] HUNTER D J,BIERMA-ZEINSTRA S. Osteoarthritis[J]. Lancet,2019,393(10182):1745-1759. doi:10.1016/S0140-6736(19)30417-9.
[3] 馬圣楠,柯竟悅,董洪銘,等. 矯形器在內側間室膝關節骨性關節炎中的應用[J]. 中國康復,2023,38(2):119-123. MA S N,KE J Y,DONG H M,et al. Application of orthoses in medial compartment knee osteoarthritis[J]. Chinese Journal of Rehabilitation,2023,38(2):119-123. doi:10.3870/zgkf.2023.02.012.
[4] 史俊龍,鹿戰,雷宏偉,等. 下肢力線在盤狀半月板損傷應用的研究進展[J]. 中國骨傷,2020,33(4):383-387. SHI J L,LU Z,LEI H W,et al. Research progress on the application of lower limb alignment in discoid meniscus injury[J]. China J Orthop Trauma,2020,33(4):383-387. doi:10.12200/j.issn.1003-0034.2020.04.019.
[5] 李亞楠,田軍營,楊洸,等. 膝內翻矯形器械治療膝關節骨性關節炎的臨床觀察[J]. 中國康復,2024,39(9):572-576. LI Y N,TIAN J Y,YANG G,et al. Clinical observation of the knee varus orthosis in the treatmen of knee osteoarthritis patients[J]. Chinese Journal of Rehabilitation,2024,39(9):572-576. doi:10.3870/zgkf.2024.09.012.
[6] MESSIER S P,MIHALKO S L,BEAVERS D P,et al. Effect of high-intensity strength training on knee pain and knee joint compressive forces among adults with knee osteoarthritis:the start randomized clinical trial[J]. JAMA,2021,325(7):646-657. doi:10.1001/jama.2021.0411.
[7] 陳川田,張國如. 膝內翻全膝關節置換術下肢機械軸研究進展 [J]. 國際骨科學雜志,2023,44(6):340-344. CHEN C T,ZHANG G R. Research progress on the mechanical axis of the lower extremity in total knee arthroplasty for valgus knee[J]. Int J Orthop,2023,44(6):340-344. doi:10.3969/j.issn.1673-7083.2023.06.002.
[8] ROSSI R,COTTINO U,BRUZZONE M,et al. Total knee arthroplasty in the varus knee:tips and tricks[J]. Int Orthop,2019,43(1):151-158. doi:10.1007/s00264-018-4116-3.
[9] BURNETT W D,KONTULAINEN S A,MCLENNAN C E,et al. Knee osteoarthritis patients with more subchondral cysts have altered tibial subchondral bone mineral density[J]. BMC Musculoskelet Disord,2019,20(1):14. doi:10.1186/s12891-018-2388-9.
[10] BURNETT W D,KONTULAINEN S A,MCLENNAN C E,et al. Proximal tibial trabecular bone mineral density is related to pain in patients with osteoarthritis[J]. Arthritis Res Ther,2017,19(1):200. doi:10.1186/s13075-017-1415-9.
[11] ISHII Y,NOGUCHI H,SATO J,et al. Association between bone mineral density distribution and various radiographic parameters in patients with advanced medial osteoarthritis of the knee[J]. J Orthop Sci,2019,24(4):686-692. doi:10.1016/j.jos.2018.12.019.
[12] KAMATH A F,ISRAELITE C,HORNEFF J,et al. Editorial:What is varus or valgus knee alignment?:a call for a uniform radiographic classification[J]. Clin Orthop Relat Res,2010,468(6):1702-1704. doi:10.1007/s11999-010-1334-4.
[13] BENNELL K L,CREABY M W,WRIGLEY T V,et al. Tibial subchondral trabecular volumetric bone density in medial knee joint osteoarthritis using peripheral quantitative computed tomography technology[J]. Arthritis Rheum,2008,58(9):2776-2785. doi:10.1002/art.23795.
[14] MOCHIZUKI T,TANIFUJI O,KOGA Y,et al. Sex differences in femoral deformity determined using three-dimensional assessment for osteoarthritic knees[J]. Knee Surg Sports Traumatol Arthrosc,2017,25(2):468-476. doi:10.1007/s00167-016-4166-2.
[15] OTA S,CHIBA D,SASAKI E,et al. Symptomatic bone marrow lesions induced by reduced bone mineral density in middle-aged women:a cross-sectional Japanese population study[J]. Arthritis Res Ther,2019,21(1):113. doi:10.1186/s13075-019-1900-4.
[16] OMOUMI P,BABEL H,JOLLES B M,et al. Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density(sBMD)using computed tomography(CT):comparison of non-osteoarthritic(OA)and severe OA knees[J]. Osteoarthritis Cartilage,2017,25(11):1850-1857. doi:10.1016/j.joca.2017.07.014.
[17] ROBERTS B C,SOLOMON L B,MERCER G,et al. Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis[J]. Osteoarthritis Cartilage,2018,26(4):547-556. doi:10.1016/j.joca.2018.01.014.
[18] YOON C,CHANG M J,CHANG C B,et al. Bone mineral density around the knee joint:correlation with central bone mineral density and associated factors[J]. J Clin Densitom,2020,23(1):82-91. doi:10.1016/j.jocd.2018.07.005.
[19] LO G H,MERCHANT M G,DRIBAN J B,et al. Knee alignment is quantitatively related to periarticular bone morphometry and density,especially in patients with osteoarthritis[J]. Arthritis Rheumatol,2018,70(2):212-221. doi:10.1002/art.40325.
(2024-08-30收稿 2024-10-13修回)
(本文編輯 胡小寧)