
摘要:抗生素耐藥性是全球人類公共健康領域的巨大危機,影響生命安全并給社會帶來巨大的經濟負擔。氯己定(chlorhexidine, CHX)是臨床最為常用的消毒劑之一。目前已有大量研究發現,CHX應用與抗生素耐藥性密切相關。一方面,已有研究證實CHX可誘導多種重要的院內感染病原菌發生抗生素交叉耐藥,甚至出現對最后一線抗生素的耐藥性;另一方面,CHX與抗生素可能存在共耐藥。主動外排泵的過度表達及細胞膜的相關改變是CHX與抗生素耐藥性相關性中的重要機制。然而,CHX被廣泛無限制地應用于臨床領域,其潛在風險被嚴重低估。因此,本文將回顧CHX與抗生素耐藥性的相關性及其相關機制,以提高CHX臨床應用的警示。
關鍵詞:CHX;抗生素;交叉耐藥;共耐藥;主動外排泵
中圖分類號:R978.1 文獻標志碼:A
A review on the association between chlorhexidine and antibiotic resistance
Ren Jingyi, Wang Meijuan, Zhou Wenjuan, and Liu Zhonghao
(Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Department of implantology, Yantai 264008)
Abstract Antibiotic resistance is a global public health crisis affecting human beings that enormously threatens lives and burdens society and the economy. Chlorhexidine (CHX) is one of the most widely applied antiseptic agents in clinical practice. Currently, growing research has revealed a close association between CHX and antibiotic resistance. On the one hand, it has been demonstrated that CHX could induce antibiotic cross-resistance, even including resistance to the last-sort antibiotic in several important pathogens causing nosocomial infections. On the other hand, the co-resistance between CHX and antibiotics might exist. The overexpression of efflux pumps and alterations of cell membranes are vital mechanisms accounting for the association between CHX and antibiotic resistance. However, the potential risk of the extensive utilization of CHX in clinical practice has been far underestimated. Thus, this paper reviewed the evidence on the association between CHX and antibiotic resistance and linking mechanisms to raise awareness of its clinical application.
Key words CHX; Antibiotic; Cross-resistance; Co-resistance; Efflux pump
抗生素耐藥性對全球人類健康造成嚴重威脅,根據歐洲疾病預防控制中心的最新數據,2020年歐盟地區有801517例感染及35813起死亡是由抗生素耐藥性導致[1]。而我國是世界最大的抗生素生產和消費國,地域間的平衡性、藥品質量及群眾用藥習慣等諸多因素導致我國面臨的抗生素耐藥問題更加嚴峻[2]。除此,新冠病毒的流行加劇了抗生素處方的增長及多重耐藥菌株的出現[3-4]。
與抗生素相比,CHX等消毒劑的使用缺乏限制。日益增多的研究顯示CHX與抗生素耐藥性密切相關。一方面,CHX的選擇壓力可誘發細菌產生對抗生素的交叉耐藥(cross-resistance)[5-7]。尤其是CHX誘導細菌產生對最后一線抗生素-多黏菌素的耐藥性,引發了學界的廣泛關注[8-9]。另一方面,CHX與抗生素可能存在共耐藥(co-resistance),CHX敏感性下降的菌株同時也表現出不同程度的抗生素耐藥[10-13]。
CHX是一種雙胍類廣譜消毒劑,被廣泛應用于醫療領域的表面消毒,包括術前術者手部消毒及術野預備[14]。CHX還被用于敷料或擦浴預防中心導管相關的血流感染[14-15]。其作為口腔領域最常用的消毒劑,含有CHX的漱口水常規用于控制口腔菌斑。同時,CHX還被應用于重癥監護室患者口腔護理來預防呼吸機相關肺炎[16-17]。盡管CHX對于新冠病毒的有效性存在爭議,但美國牙醫協會等仍推薦口腔患者就診前常規應用CHX漱口水減少氣溶膠傳播[18-20]。CHX等消毒劑的選擇壓力可促進抗生素耐藥表型的發生,而新冠病毒的流行使得細菌更頻繁暴露于CHX及抗生素壓力下。因此,本文將對CHX與抗生素耐藥性的相關性及其相關機制做一綜述。
1 CHX誘導的抗生素交叉耐藥
研究表明,在CHX誘導下細菌可只發生抗生素交叉耐藥,但不伴有CHX耐藥性(抗性)的產生[5,21-22]。因此,本文將僅對CHX誘導的抗生素耐藥性進行討論,對菌株是否發生CHX耐藥暫不做討論。此外,由于同一菌種的標準菌株及臨床分離菌株在CHX誘導下可出現不同的應答反應[6,23],CHX引起的標準菌株及臨床分離菌株交叉耐藥情況參見表1。
1.1 標準菌株
CHX誘導的抗生素交叉耐藥在革蘭陽性及陰性菌中均有發現,尤其是在ESKAPE病原體中得到了廣泛證實。ESKAPE病原體是一組與院內感染密切相關的重要致病菌包括屎腸球菌、金黃色葡萄球菌、肺炎克雷伯菌、鮑曼不動桿菌、銅綠假單胞菌及腸桿菌屬。CHX誘導發生的抗生素耐藥幾乎涵蓋了目前所有臨床應用的抗生素種類甚至最后一線抗生素。金黃色葡萄球菌標準菌株暴露于CHX可發生對包括環丙沙星、慶大霉素、四環素、阿米卡星、頭孢吡肟及美羅培南中至少一種抗生素的交叉耐藥[5]。除此,其在CHX誘導下還可發生對苯唑西林最低抑菌濃度(minimum inhibitory concentration, MIC)值4倍的增長[22]。
與革蘭陽性菌一致,肺炎克雷伯菌、鮑曼不動桿菌及銅綠假單胞菌標準菌株在CHX連續誘導下多黏菌素MIC值出現8~32倍的增長[24]。除此,銅綠假單胞菌標準菌株在CHX誘導下,可對頭孢吡肟、環丙沙星及美羅培南由敏感轉為中度耐藥或完全耐藥,并同時對阿米卡星、頭孢他啶MIC值升高[25]。除ESKAPE病原體外,淋病的主要致病菌,淋病奈瑟菌標準菌株在CHX誘導下對阿奇霉素及環丙沙星的MIC值升高[26]。CHX還可誘導人類腸道感染最常見的厭氧菌,脆弱擬桿菌標準菌株發生頭孢哌酮及四環素的交叉耐藥[27]。
近期,口腔細菌中抗生素耐藥性的產生及傳播越發受到關注。口腔菌斑是人體最重要的抗生素耐藥基因積蓄地之一,并有利于耐藥基因發生基因水平轉移[32]??谇患毦L期暴露于CHX等消毒劑的壓力下,抗生素在口腔領域的過度及錯誤使用也被嚴重低估。2011年美國的抗生素處方中,口腔醫生開具的處方占全部門診使用量的10%,且其中約60%的處方是不必要或不恰當的[33]。已有研究發現,重要的口腔致病菌包括中間普氏菌、具核梭桿菌、牙齦卟啉單胞菌、變形鏈球菌、遠緣鏈球菌及伴放線放線桿菌標準菌株在CHX誘導下,除具核梭桿菌外所有菌株均發生對阿奇霉素敏感性下降[28]。此外,遠緣鏈球菌菌株還表現出對四環素的敏感性下降。
1.2 臨床分離菌株
除標準菌株外,CHX引發的抗生素交叉耐藥在多種重要病原菌的臨床分離菌株中也得到證實,基于臨床分離菌株的研究結果更具有臨床相關性。Wu等[5]的研究發現CHX除可誘導金黃色葡萄球菌標準菌株發生抗生素交叉耐藥外,在臨床分離菌株中也觀察到一致結果。2016年,Wand等[8]首次報道了CHX能夠誘導肺炎克雷伯菌臨床分離菌株發生多黏菌素交叉耐藥(誘導前MIC值2~4 mg/L;誘導后
64 mg/L)。類似結果在產肺炎克雷伯菌碳青霉烯酶肺炎克雷伯菌、大腸埃希菌、產酸克雷伯菌及陰溝腸桿菌多個菌種的臨床分離菌株中也得到證實[9,21,31]。除此,CHX還可誘導耐萬古霉素屎腸球菌菌株發生對達托霉素的敏感性下降[29]。2022年的一項研究也觀察到,銅綠假單胞菌臨床分離菌株可在CHX誘導下發生抗生素交叉耐藥或多重耐藥表型[7]。
然而目前的研究結果在口腔菌群中尚存在爭議。2019年,Kaspar等[30]報道了CHX可誘導齲病致病菌-變形鏈球菌臨床分離菌株發生對達托霉素及克林霉素的敏感性下降。然而,2022年Auer等[34]發現變形鏈球菌臨床分離菌株在CHX連續誘導下,僅在第一次誘導后出現對氨芐西林/阿莫西林及頭孢呋辛敏感性下降的趨勢。上述研究結果表明,CHX誘導的抗生素交叉耐藥可能存在菌株特異性。
2 CHX與抗生素的共耐藥
已有研究表明存在不同程度抗生素耐藥的菌株相比于抗生素敏感菌株,對CHX的敏感性也相對較差,這一現象可被稱為共耐藥。一方面,多重耐藥菌株相比于非多重耐藥菌株,其對CHX敏感性相對較差。例如,2016年,Mal等[35]對比了兩組臨床分離菌株的CHX敏感性,其中一組包括甲氧西林敏感金黃色葡萄球菌、萬古霉素敏感腸球菌、泛敏感大腸埃希菌及肺炎克雷伯菌共124株臨床分離菌株;另一組包括攜帶新德里金屬-β-內酰胺-1(New Delhi metallo-beta-lactamase-1, NDM-1)基因的肺炎克雷伯菌及大腸埃希菌、耐甲氧西林金黃色葡萄球菌、耐萬古霉素腸球菌以及多重耐藥/極度耐藥不動桿菌共161株臨床分離菌株。結果發現抗生素耐藥菌株相對于抗生素敏感菌株對CHX的敏感性更差。與此一致,多重耐藥革蘭陰性桿菌臨床分離菌株中CHX敏感性下降菌株的頻率顯著高于非多重耐藥菌株[36]。
另一方面,CHX敏感性下降與一些特定種類的抗生素耐藥性存在相關性。例如,耐碳青霉烯腸桿菌科[12]以及耐萬古霉素腸球菌臨床分離菌株[37]對CHX敏感性相對較差。鮑曼不動桿菌臨床分離菌株中,CHX敏感性下降與氨基糖苷類抗生素、四環素及環丙沙星的耐藥性存在相關性[13]。一項秘魯的研究通過回歸分析發現,肺炎克雷伯菌臨床分離菌株對CHX MIC值的升高與甲氧芐啶-磺胺甲唑耐藥性顯著相關[11]。基于收集自我國的銅綠假單胞菌臨床分離菌株的研究結果也發現CHX耐藥菌株對包括頭孢他啶、環丙沙星、左氧氟沙星及慶大霉素等一系列抗生素的耐藥率顯著高于CHX敏感菌株[7,38]。一項先鋒研究利用機器學習技術對從歐洲、東亞、北美、南美及大洋洲不同地域收集的1632株金黃色葡萄球菌臨床分離菌株進行分析,其中對CHX敏感性下降與對至少一種抗生素的耐藥性存在相關性[10]。同時,CHX MIC值與喹諾酮類、β-內酰胺類以及大環內酯類抗生素耐藥性的相關系數大于0.4[39]。Saleem等[40]用含有2 μg/mL CHX的培養基對口腔菌斑臨床分離菌株進行篩選,篩選出對CHX敏感性較差的6株臨床分離菌株包括金黃桿菌、產吲哚金黃桿菌、乙酸鈣不動桿菌、路氏腸桿菌、施氏假單胞菌及唾液鏈球菌。這些菌株同時表現出不同水平的抗生素耐藥(氨芐西林、卡那霉素、慶大霉素及四環素)。
3 相關機制
3.1 主動外排泵過度表達
主動外排泵(efflux pump)是一種能夠將抗生素、消毒劑、染料、重金屬及多種代謝產物等有害物質轉運至細胞外的膜蛋白[41]。其過度表達可導致抗生素及消毒劑等無法在細胞內積累從而導致其敏感性下降甚至耐藥性的產生,在CHX及抗生素耐藥機制中均發揮重要作用。目前主動外排泵可被分為6個主要家族:ATP結合轉運蛋白超家族(ATP-binding cassette, ABC superfamily)、主要易化子超家族(major facilitator superfamily, MFS superfamily)、耐藥結節化細胞分化超家族(resistance-nodulation-cell division, RND superfamily)、多藥及毒性化合物外排家族(multidrug and toxic compound extrusion, MATE family)、變形菌抗菌物外排家族(proteobacterial antimicrobial compound efflux, PACE family)及小多重耐藥性家族(small multidrug resistance, SMR family)[42]。
目前研究發現除PACE型外排泵外,CHX可通過激活其他5個家族中多種外排泵的表達從而誘發抗生素交叉耐藥。例如,CHX可誘導鮑曼不動桿菌菌株中外排泵基因amvA(MFS型)及adeB(RND型)的表達升高[13, 43-44]。在銅綠假單胞菌中,CHX可通過激活一系列RND型外排泵包括MexCD-OprJ[45-46]、MexAB-OprM[24]、Mex-Opr[7]及MexXY[25]的表達從而導致抗生素交叉耐藥。肺炎克雷伯菌在CHX誘導下也出現AcrAB-TolC(RND型)外排泵的表達上調,并發生對多種氟喹諾酮類抗生素及多西環素的敏感性下降[47]。除ESKAPE病原體外,在淋病奈瑟菌菌株中也觀察到,CHX可通過激活NorM(MATE型)及MtrCDE(RND型)外排泵的表達引發抗生素交叉耐藥[26]。在CHX誘導下產生頭孢哌酮及四環素交叉耐藥的脆弱擬桿菌菌株與標準菌株相比,RND型外排泵基因包括bmeB1、bmeB3、bmeB4、bmeB7、bfrA1及bfrA2的表達也明顯升高[27]。上述研究表明,CHX可通過誘導多種主動外排泵的表達上調,進而導致抗生素被過度排出至細胞外而無法在細胞內積累,從而發生抗生素交叉耐藥。在不同菌種及菌株中CHX可激活不同種類的主動外排系統,而不同的主動外排系統常具有不同的轉運底物,因而CHX誘導發生的抗生素交叉耐藥具有菌種及菌株特異性。
另一方面,抗生素及CHX可作為一些主動外排泵的共同轉運底物,從而產生共耐藥。腸球菌菌株中ABC型外排泵基因efrA/B的表達與慶大霉素及CHX耐藥性顯著相關[37]。肺炎克雷伯菌中KpnEF外排泵(SMR型)與KpnGH外排泵(MFS型)能夠同時介導一系列抗生素及CHX的耐藥性[48-49]。Royer等[23]通過全基因組關聯研究發現大腸埃希菌臨床分離菌株中對CHX敏感性下降與tetA外排泵基因(MFS型)存在相關性。作者通過構建攜帶tetA的大腸埃希菌菌株,證實了這一基因的獲得可同時導致CHX及四環素的耐藥性。
3.2 細胞膜相關改變
除主動外排泵外,細胞膜通透性也是調控CHX及抗生素耐藥性的重要機制之一。目前研究已證實,CHX可誘導細胞膜發生改變,導致細胞膜通透性降低,通過阻礙抗生素進入細胞而引發抗生素交叉耐藥。對CHX誘導發生多黏菌素交叉耐藥的銅綠假單胞菌、肺炎克雷伯菌及鮑曼不動桿菌進行蛋白質組學分析,結果發現菌株暴露于CHX后出現細胞膜蛋白如脂多糖運輸蛋白(lipopolysaccharide transport protein D, LptD)及TolA蛋白(Tol-Pal system protein A, TolA)的表達顯著升高[24]。其中LptD負責脂多糖(lipopolysaccharide,LPS)的轉運與合成,刪除lptD基因可導致細胞膜通透性明顯升高[50]。上述研究表明,CHX誘導可通過激活LptD表達上調,降低細胞膜通透性,從而導致多黏菌素交叉耐藥的發生。除此,在肺炎克雷伯菌菌株中,CHX誘發的多黏菌素交叉耐藥還與多黏菌素耐藥蛋白(polymyxin resistance protein, Pmr)基因pmrD及pmrK的表達上調密切相關[8,21]。多黏菌素是一種陽離子肽抗生素,可以與細胞外膜載負電荷的LPS成分結合[51]。而CHX誘導下基因pmrD及pmrK的表達上調,可通過減少LPS中脂質A的凈負電荷,阻礙多黏菌素的結合而引發交叉耐藥。在CHX誘導產生多黏菌素交叉耐藥的腸道細菌中也觀察到bamE與mipA基因的變異[9]。MipA是一種β-桶外膜蛋白質,其功能相當于細胞外膜孔蛋白,其表達下調與氨基糖苷類抗生素耐藥性相關[52]。CHX誘導發生抗生素交叉耐藥的銅綠假單胞菌菌株還出現細胞外膜蛋白(約為35 kDa)的缺失,缺失的細胞外膜蛋白具有細胞外膜孔蛋白的功能,其缺失可導致親水性抗生素如美羅培南、頭孢他啶及頭孢吡肟的敏感性降低[25]。
除此,CHX與抗生素耐藥性的相關性中可能還存在其他機制。例如,Jutkina等[53]首次揭示了亞抑制濃度CHX可顯著促進大腸埃希菌菌株發生抗生素耐藥基因水平轉移。耐萬古霉素腸球菌在CHX誘導下,還可出現relA基因的變異,relA基因可通過影響(p)ppGpp的產生,進而調控細菌的應激反應并影響其對抗生素的耐藥性[29]。在CHX連續誘導下,銅綠假單胞菌還可出現形態學改變如出現較大的菌落,且菌落具有輕微粗糙的表面及邊緣較為起伏[24]。這些形態學改變也可能對抗生素耐藥性產生影響,但其確切機制尚待進一步研究。
4 結論
目前研究表明,CHX能夠誘導多種重要臨床病原菌發生抗生素交叉耐藥,這一現象提示了CHX長期廣泛應用的風險。應加強CHX的應用管控,盡量避免錯誤或過度使用而導致臨床菌株廣泛暴露于CHX。其次,CHX及抗生素可作為一些特定主動外排泵的共同轉運底物而發生共耐藥。多重耐藥菌株可能同時也對CHX等消毒劑的敏感性減低[54]。因此,對臨床多重耐藥菌株的CHX敏感性也應進行定期監控,以預防CHX失效造成院內感染。
參 考 文 獻
Prevention E C F D, Control. assessing the health burden of infections with antibiotic-resistant bacteria in the EU/EEA, 2016–2020[R/OL]. (2022-11) https://www.ecdc.europa.eu/en/publications-data/health-burden-infections-antibiotic-resistant-bacteria-2016-2020.
國家衛生健康委員會. 中國抗菌藥物管理和細菌耐藥現狀報告[R/OL]. (2018)http://www.nhc.gov.cn/yzygj/s3594/201904/1b5a42f0e326487295b260c813da9b0e/files/65d864a34e824d1abbc6807cd3c999b1.pdf.
Karata? M, Ya?ar Duman M, Tünger A, et al. Secondary bacterial infections and antimicrobial resistance in COVID-19: Comparative evaluation of pre-pandemic and pandemic-era, a retrospective single center study[J]. Ann Clin Microbiol Antimicrob, 2021, 20(1): 51.
Guisado Gil A B, Infante Domínguez C, Pe?alva G, et al. Impact of the COVID-19 pandemic on antimicrobial consumption and hospital-acquired candidemia and multidrug-resistant bloodstream infections[J]. Antibiotics (Basel), 2020, 9(11): 816.
Wu D, Lu R, Chen Y, et al. Study of cross-resistance mediated by antibiotics, chlorhexidine and Rhizoma coptidis in Staphylococcus aureus[J]. J Glob Antimicrob Resist, 2016, 7: 61-66.
Nicolae D G, Dopcea I, Nanu A E, et al. Resistance and cross-resistance in Staphylococcus spp. strains following prolonged exposure to different antiseptics[J]. J Glob Antimicrob Resist, 2020, 21: 399-404.
Zheng X, Zhang X, Zhou B, et al. Clinical characteristics, tolerance mechanisms, and molecular epidemiology of reduced susceptibility to chlorhexidine among Pseudomonas aeruginosa isolated from a teaching hospital in China[J]. Int J Antimicrob Agents, 2022, 60(1): 106605.
Wand M E, Bock L J, Bonney L C, et al. Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine[J]. Antimicrob Agents Chemother, 2017, 61(1): 1110-1128.
Lescat M, Magnan M, Kenmoe S, et al. Co-lateral effect of octenidine, chlorhexidine and colistin selective pressures on four enterobacterial species: A comparative genomic analysis[J]. Antibiotics (Basel), 2021, 11(1): 50.
Coelho J R, Carri?o J A, Knight D, et al. The use of machine learning methodologies to analyse antibiotic and biocide susceptibility in Staphylococcus aureus[J]. PLoS One, 2013, 8(2): e55582.
Morante J, Quispe A M, Yma?a B, et al. Tolerance to disinfectants (chlorhexidine and isopropanol) and its association with antibiotic resistance in clinically-related Klebsiella pneumoniae isolates[J]. Pathog Glob Health, 2021, 115(1): 53-60.
Chen Y, Liao K, Huang Y, et al. Determining the susceptibility of carbapenem resistant Klebsiella pneumoniae and Escherichia coli strains against common disinfectants at a tertiary hospital in China[J]. BMC Infect Dis, 2020, 20(1): 88.
Fernández-Cuenca F, Tomás M, Caballero-Moyano F J, et al. Reduced susceptibility to biocides in Acinetobacter baumannii: Association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps[J]. J Antimicrob Chemother, 2015, 70(12): 3222-3229.
羅紅敏編譯. 氯己定敷料可降低導管相關性血流感染:一項真實世界數據研究[J]. 中華危重病急救醫學, 2019, 31(12): 1520.
Puig-Asensio M, Marra A R, Childs C A, et al. Effectiveness of chlorhexidine dressings to prevent catheter-related bloodstream infections. Does one size fit all? A systematic literature review and meta-analysis[J]. Infect Control Hosp Epidemiol, 2020, 41(12): 1388-1395.
Kes D, Aydin Yildirim T, Kuru C, et al. Effect of 0.12% chlorhexidine use for oral care on ventilator-associated respiratory infections: A randomized controlled trial[J]. J Trauma Nurs, 2021, 28(4): 228-234.
Pinto A, Silva B M D, Santiago-Junior J F, et al. Efficiency of different protocols for oral hygiene combined with the use of chlorhexidine in the prevention of ventilator-associated pneumonia[J]. J Bras Pneumol, 2021, 47(1): e20190286.
ADHA Interim Guidance on Returning to Work[S]. (2021-09-15) https://www.mdhawell-being.org/files/ADHA_TaskForceReport_11_C.pdf
Yoon J G, Yoon J, Song J Y, et al. Clinical significance of a high SARS-CoV-2 viral load in the saliva[J]. J Korean Med Sci, 2020, 35(20): e195.
Guimar?es T C, Marques B B F, Castro M V, et al. Reducing the viral load of SARS-CoV-2 in the saliva of patients with COVID-19[J]. Oral Dis, 2022, 28: 2474-2480.
Bleriot I, Blasco L, Delgado-Valverde M, et al. Mechanisms of tolerance and resistance to chlorhexidine in clinical strains of Klebsiella pneumoniae producers of carbapenemase: Role of new type Ⅱ toxin-antitoxin system, PemIK[J]. Toxins (Basel), 2020, 12(9): 566.
Adkin P, Hitchcock A, Smith L J, et al. Priming with biocides: A pathway to antibiotic resistance[J]? J Appl Microbiol, 2022, 133(2): 830-841.
Royer G, Ortiz de la Rosa J, Vuillemin X, et al. Reduced clorhexidine ssceptibility is associated with tetracycline resistance tet genes in clinical isolates of Escherichia coli[J]. Antimicrob Agents Chemother, 2022, 66(3): e0197221.
Hashemi M M, Holden B S, Coburn J, et al. Proteomic analysis of resistance of Gram-negative bacteria to chlorhexidine and impacts on susceptibility to colistin, antimicrobial peptides, and geragenins[J]. Front Microbiol, 2019, 10: 210.
Tag ElDein M A, Yassin A S, El-Tayeb O, et al. Chlorhexidine leads to the evolution of antibiotic-resistant Pseudomonas aeruginosa[J]. Eur J Clin Microbiol Infect Dis, 2021, 40(11): 2349-2361.
Laumen J G E, Van Dijck C, Manoharan-Basil S S, et al. Sub-inhibitory concentrations of chlorhexidine induce resistance to chlorhexidine and decrease antibiotic susceptibility in Neisseria gonorrhoeae[J]. Front Microbiol, 2021, 12: 776909.
Pumbwe L, Skilbeck C A, Wexler H M. Induction of multiple antibiotic resistance in Bacteroides fragilis by benzene and benzene-derived active compounds of commonly used analgesics, antiseptics and cleaning agents[J]. J Antimicrob Chemother, 2007, 60(6): 1288-1297.
Verspecht T, Rodriguez H E, Khodaparast L, et al. Development of antiseptic adaptation and cross-adapatation in selected oral pathogens in vitro[J]. Sci Rep, 2019, 9(1): 8326.
Bhardwaj P, Hans A, Ruikar K, et al. Reduced chlorhexidine and daptomycin susceptibility in vancomycin-resistant Enterococcus faecium after serial chlorhexidine exposure[J]. Antimicrob Agents Chemother, 2018, 62(1): e01235-17.
Kaspar J R, Godwin M J, Velsko I M, et al. Spontaneously arising Streptococcus mutans variants with reduced susceptibility to chlorhexidine display genetic defects and diminished fitness[J]. Antimicrob Agents Chemother, 2019, 63(7): e00161-19.
Zhang Y, Zhao Y, Xu C, et al. Chlorhexidine exposure of clinical Klebsiella pneumoniae strains leads to acquired resistance to this disinfectant and to colistin[J]. Int J Antimicrob Agents, 2019, 53(6): 864-867.
Brooks L, Narvekar U, McDonald A, et al. Prevalence of antibiotic resistance genes in the oral cavity and mobile genetic elements that disseminate antimicrobial resistance: A systematic review[J]. Mol Oral Microbiol, 2022, 37(4): 133-153.
Hicks L A, Bartoces M G, Roberts R M, et al. US outpatient antibiotic prescribing variation according to geography, patient population, and provider specialty in 2011[J]. Clin Infect Dis, 2015, 60(9): 1308-1316.
Auer D L, Mao X, Anderson A C, et al. Phenotypic adaptation to antiseptics and effects on biofilm formation capacity and antibiotic resistance in clinical isolates of early colonizers in dental plaque[J]. Antibiotics (Basel), 2022, 11(5): 688.
Mal P B, Farooqi J, Irfan S, et al. Reduced susceptibility to chlorhexidine disinfectant among New Delhi metallo-beta-lactamase-1 positive Enterobacteriaceae and other multidrug-resistant organisms: Report from a tertiary care hospital in Karachi, Pakistan[J]. Indian J Med Microbiol, 2016, 34(3): 346-349.
Nakipoglu Y. Investigation of chlorhexidine tolerance and its association with antibiotic resistance in clinical Gram-negative Bacilli isolates[J]. Clin Lab, 2021, 67(9): 2093-2098.
Sobhanipoor M H, Ahmadrajabi R, Nave H H, et al. Reduced susceptibility to biocides among enterococci from clinical and non-clinical sources[J]. Infect Chemother, 2021, 53(4): 696-704.
石士藝, 鄭相闊, 張曉亞, 等. 臨床常見分離菌對葡萄糖酸氯己定的耐藥性及感染患者的臨床特征[J]. 中華傳染病雜志, 2021, 39(9): 519-523
Oggioni M R, Coelho J R, Furi L, et al. Significant differences characterise the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus[J]. Curr Pharm Des, 2015, 21(16): 2054-2057.
Saleem H G, Seers C A, Sabri A N, et al. Dental plaque bacteria with reduced susceptibility to chlorhexidine are multidrug resistant[J]. BMC Microbiol, 2016, 16: 214.
Gaurav A, Bakht P, Saini M, et al. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors[J]. Microbiology (Reading), 2023, 169(5): 001333.
Kumawat M, Nabi B, Daswani M, et al. Role of bacterial efflux pump proteins in antibiotic resistance across microbial species[J]. Microb Pathog, 2023, 181: 106182.
Lin F, Xu Y, Chang Y, et al. Molecular characterization of reduced susceptibility to biocides in clinical isolates of Acinetobacter baumannii[J]. Front Microbiol, 2017, 8: 1836.
Hassan K A, Jackson S M, Penesyan A, et al. Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins[J]. Proc Natl Acad Sci U S A, 2013, 110(50): 20254-20259.
Fraud S, Campigotto A J, Chen Z, et al. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: Involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor[J]. Antimicrob Agents Chemother, 2008, 52(12): 4478-4482.
Nde C W, Jang H J, Toghrol F, et al. Global transcriptomic response of Pseudomonas aeruginosa to chlorhexidine diacetate[J]. Environ Sci Technol, 2009, 43(21): 8406-8415.
Wand M E, Darby E M, Blair J M A, et al. Contribution of the efflux pump AcrAB-TolC to the tolerance of chlorhexidine and other biocides in Klebsiella spp[J]. J Med Microbiol, 2022, 71(3): 001496.
Srinivasan V B, Rajamohan G. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance[J]. Antimicrob Agents Chemother, 2013, 57(9): 4449-4462.
Srinivasan V B, Singh B B, Priyadarshi N, et al. Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae[J]. PLoS One, 2014, 9(5): e96288.
Balibar C J, Grabowicz M. Mutant alleles of lptD increase the permeability of Pseudomonas aeruginosa and define determinants of intrinsic resistance to antibiotics[J]. Antimicrob Agents Chemother, 2016, 60(2): 845-854.
Robinson J A. Folded synthetic peptides and other molecules targeting outer membrane protein complexes in Gram-negative bacteria[J]. Front Chem, 2019, 7: 45.
Li H, Zhang D F, Lin X M, et al. Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein[J]. FEMS Microbiol Lett, 2015, 362(11): fnv074.
Jutkina J, Marathe N P, Flach C F, et al. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations[J]. Sci Total Environ, 2018, 616-617: 172-178.
趙凝秋, 劉聰, 薛云新, 等. 細菌對抗菌化合物的交叉與共耐藥研究[J]. 中國抗生素雜志, 2021, 46(1): 11-19.