999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

水分脅迫對(duì)北紅葡萄果實(shí)品質(zhì)及有機(jī)酸合成基因表達(dá)的影響

2025-02-22 00:00:00王佳悅李光宗李娟單守明李翔
果樹(shù)學(xué)報(bào) 2025年2期

摘" " 要:【目的】探究水分脅迫對(duì)北紅葡萄果實(shí)品質(zhì)及有機(jī)酸合成相關(guān)基因表達(dá)量的影響。【方法】以9年生北紅葡萄為試材,在花后18 d,開(kāi)始進(jìn)行無(wú)脅迫(對(duì)照CK)、水澇脅迫(T1)和干旱脅迫(T2)處理,測(cè)定葡萄百粒質(zhì)量及總酚、單寧和有機(jī)酸含量等生理指標(biāo)。采用實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(quantitative real-time PCR,qRT-PCR)技術(shù),檢測(cè)與有機(jī)酸生物合成途徑相關(guān)基因的表達(dá)水平。【結(jié)果】與對(duì)照相比,在花后85~105 d時(shí),T2處理可提高可溶性固形物和花色苷含量,降低可滴定酸和有機(jī)酸含量。和T2處理相比,T1處理可提高IDH、PEPC和MDH基因的表達(dá)量,T1處理的PEPC基因表達(dá)量在各生長(zhǎng)階段均有所上升,在花后25~45 d時(shí),T2處理抑制了IDH和CS基因的表達(dá)。【結(jié)論】適度的水分脅迫可以提高果實(shí)品質(zhì)和有機(jī)酸含量,研究結(jié)果為賀蘭山東麓北紅葡萄栽培管理和水分高效利用提供理論依據(jù)。

關(guān)鍵詞:釀酒葡萄;水分脅迫;葡萄品質(zhì);有機(jī)酸;基因表達(dá)

中圖分類號(hào):S663.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)02-0266-10

Effects of water stress on berry quality and organic acid synthesis gene expression in Beihong grape

WANG Jiayue1, LI Guangzong1, LI Juan1, SHAN Shouming1*, LI Xiang2*

(1School of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China; 2 School of Forestry and Grassland Industry, Ningxia University, Yinchuan 750021, Ningxia, China)

Abstract: 【Objective】 Water stress refers to the phenomenon in that the normal physiological function of plants is disrupted due to inadequate or excessive soil water. This condition is mainly categorized as waterlogging stress and drought stress. In response to the imperative for developing water-saving agriculture, effective control of soil water content has been employed to impact plant growth, fruit quality, fruit physiological indicators, and fruit gene expression. Beihong grape is a novel variety characterized by cold resistance and disease resistance that was initially selected in 1965. It is well-suited for cultivation in northern regions and exhibits strong cold resistance. The aim of this study was to examine the effects of water stress on grape berry quality and elucidate the pattern of organic acid accumulation in grapes under different soil water content conditions. 【Methods】 The nine-year-old Eurasian grapevines of Beihong was chosen as the experimental material. T1 (soil relative water content 65%-80%, waterlogging stress), T2 (soil relative water content 40%-55%, drought stress), and CK (soil relative water content 55%-65%, control) were established on the 18th day after flowering. The basic quality (100 grain weight, soluble solids, titrable acids, total phenols, tannins and anthocyanins) and accumulation of organic acids in grape berries were measured. Real-time fluorescence quantitative PCR was utilized to detect the expression of genes related to organic acid synthesis. 【Results】 Under water stress condition, 100 grain mass of grapes decreased with the decrease of soil water content. On the whole, T2 treatment resulted in a significant decrease in 100 grain mass of grapes, while T1 treatment increased 100 grain mass of grapes. The soluble solids content increased gradually with grape ripening, and T2 treatment was significantly higher than other treatments, while T1 treatment was not conducive to the accumulation of soluble solids. Under T1 condition, the titrable acid content of grapes was lower from the berry expansion stage to the early stage of veraison, and T1 treatment resulted in fruit volume increase and acid concentration dilution. However, from the later stage of veraison to the mature stage, the titrable acid content with T1 was significantly higher than that with other treatments, and drought stress was significantly lower than that with other treatments, indicating that moderate water stress could reduce the acid content of grapes and accelerate berry ripening, thereby improving fruit quality. The contents of total phenol and tannin in berries showed a similar trend. At the initial stage of treatment, the contents of total phenol and tannin were higher under drought stress condition, but decreased with the progress of treatment. This indicated that short-term drought stress was beneficial to the accumulation of total phenol and tannin in berries, while long-term drought stress was not. Anthocyanins in grapes showed a trend of single-peak increase. At 105th day after flowering, the content of anthocyanins in T2 was the highest, while the content of anthocyanins in T1 treatment was always significantly lower than that in CK and T1 treatments. Anthocyanins are compounds formed by the interaction of anthocyanins and glycogroups, and water stress promoted the accumulation of sugars, thus affecting the accumulation of anthocyanins. The contents of malic and citric acids increased first and then decreased, and malic and citric acids reached their highest values on 45th day after flowering. The effects of water stress on malic and citric acids were similar to those of tartaric acid. With the increase of treatment time, the content of malic and citric acids decreased significantly under drought stress condition, and water stress promoted the accumulation of malic and citric acids before the veraison stage. Different degrees of water stress could regulate the malic acid anion channel and the activity of malic acid moving protein on the membrane, thus affecting the transport of malic acid. Water stress affected genes related to organic acid synthesis in grape. The expression levels of VvIDH and VvPEPC were higher from 45 to 65 days after flowering, while the contents of tartaric, malic and citric acids were higher at this stage, which was closely related to the accumulation of organic acids in the early stage of veraison. The expression levels of VvCS and VvMDH in grapes were higher from 85 to 105 days after flowering. Overall, T1 treatment could induce the expression of genes related to organic acid synthesis, while T2 treatment inhibited the expression of genes related to organic acid synthesis at the later stage of treatment. 【Conclusion】 Soil water stress affected fruit quality and organic acid content. Drought stress treatment with 40% to 55% soil water content after color transformation significantly reduced 100 grain weight and titrable acid content, and drought stress treatment with 40% to 55% soil water content at berry maturity significantly reduced organic acid content. Drought stress can improve the berry quality of Beihong grape to some extent, and affect the expression of genes related to organic acid accumulation and synthesis.

Key words: Wine grape; Water stress; Grape quality; Organic acid; Gene expression

寧夏賀蘭山東麓葡萄種植區(qū)依靠得天獨(dú)厚的地理環(huán)境,成為世界釀酒葡萄最佳產(chǎn)區(qū)之一[1],但地處中國(guó)西北干旱半干旱區(qū),全年干旱少雨,水分成為限制寧夏地區(qū)葡萄產(chǎn)業(yè)發(fā)展的重要因素[2]。水分不僅是維持葡萄正常生長(zhǎng)的基礎(chǔ),還直接關(guān)系到葡萄果實(shí)的產(chǎn)量和品質(zhì)[3]。土壤相對(duì)含水量過(guò)高時(shí),土壤通透性變差,影響根系的正常呼吸,甚至導(dǎo)致根系受損、死亡[4]。同時(shí),過(guò)多的水分會(huì)使葡萄果實(shí)迅速膨脹,稀釋果實(shí)中的芳香物質(zhì)和糖分,降低果實(shí)的品質(zhì)。土壤相對(duì)含水量較低時(shí),會(huì)使葡萄果實(shí)數(shù)量減少,品質(zhì)下降[5-6],果實(shí)中糖分和酸度受到影響。隨著葡萄種植面積的擴(kuò)大,對(duì)水分的需求量也逐漸增加,由于不合理灌溉方式,造成農(nóng)業(yè)用水緊張的局面,尋找合理的節(jié)水灌溉方式,對(duì)區(qū)域節(jié)水農(nóng)業(yè)的發(fā)展具有重要意義[7]。

葡萄果實(shí)內(nèi)有機(jī)酸含量變化直接關(guān)系到葡萄的酸甜平衡、風(fēng)味層次以及整體感官體驗(yàn),塑造了葡萄的獨(dú)特口感與風(fēng)味輪廓[8]。在通常情況下,酒石酸在葡萄有機(jī)酸中占比最大,其次是蘋(píng)果酸,檸檬酸占比較小[9]。其中酒石酸又名葡萄酸,分子式為C4H6O6,含量相對(duì)穩(wěn)定,不參與其他代謝途徑[7]。酒石酸含量對(duì)葡萄酒酸味起決定性作用,在葡萄酒中質(zhì)量濃度為5~10 g·L-1,是同等質(zhì)量濃度下檸檬酸的1.2~1.3倍[10],當(dāng)葡萄酒中酒石酸含量過(guò)高時(shí),遇到低溫會(huì)產(chǎn)生結(jié)晶。蘋(píng)果酸的分子式為C4H6O5,穩(wěn)定性相對(duì)較差,在植物體內(nèi)可被高效代謝,在果實(shí)著色前期含量達(dá)到最高,然后隨果實(shí)著色成熟而逐漸降低,與酒石酸含量一致,均呈先上升后下降的趨勢(shì)[11]。檸檬酸分子式為C6H8O7,僅占總酸的0.02%~0.03%[12],常見(jiàn)于葡萄果實(shí)的各個(gè)發(fā)育階段,具有可口的酸味。

水分在植物生長(zhǎng)發(fā)育中發(fā)揮重要作用,近年來(lái),對(duì)于水分脅迫下釀酒葡萄果實(shí)品質(zhì)和有機(jī)酸含量變化的相關(guān)研究較少,為了更系統(tǒng)全面地明確水分脅迫與葡萄果實(shí)品質(zhì)的關(guān)系,筆者以9年生北紅葡萄為研究對(duì)象,著重探究水分脅迫條件下釀酒葡萄果實(shí)品質(zhì)特性及有機(jī)酸累積模式,深化對(duì)釀酒葡萄品質(zhì)提升機(jī)制的理論認(rèn)知,以期為實(shí)際生產(chǎn)中優(yōu)化栽培管理措施、促進(jìn)高品質(zhì)釀酒葡萄的培育提供堅(jiān)實(shí)的科學(xué)依據(jù)與實(shí)踐指導(dǎo)。

1 材料和方法

1.1 材料

本試驗(yàn)在寧夏銀川市平吉堡釀酒葡萄示范園(38°24′ N,106°01′ E)進(jìn)行。試驗(yàn)材料為9年生北紅葡萄,南北行向定植,株行距1.0 m×3.0 m,“廠”式架形。園內(nèi)水肥管理一致,采用2管1行控制模式的滲灌方式,計(jì)劃潤(rùn)濕深度為50 cm,以每日土壤含水率的平均值作為當(dāng)日觀測(cè)值。土壤含水量采用PR2土壤水分剖面儀進(jìn)行監(jiān)測(cè),以田間正常管理下40 cm處土壤的相對(duì)含水率為對(duì)照,在葡萄全生育期內(nèi)設(shè)置T1(水澇脅迫)和T2(干旱脅迫)兩個(gè)土壤含水量處理水平,每個(gè)處理30株,每10株為1個(gè)生物學(xué)重復(fù)。于花后18 d開(kāi)始處理,分別于花后25、45、65、85、105 d共5個(gè)時(shí)期進(jìn)行采樣,用液氮速凍后存放于-80 ℃冰箱保存。

1.2 方法

試驗(yàn)從葡萄坐果期到成熟期分別以不同土壤含水量進(jìn)行處理,以田間正常水肥管理下40 cm處土壤含水量為對(duì)照(CK),在葡萄果實(shí)全生長(zhǎng)期內(nèi)設(shè)置T1(水澇脅迫)和T2(干旱脅迫)兩個(gè)土壤含水量處理(表1)。

1.3 指標(biāo)測(cè)定

1.3.1 生理指標(biāo)測(cè)定 采用萬(wàn)分之一電子天平測(cè)定百粒質(zhì)量;采用手持測(cè)糖折光儀測(cè)定可溶性固形物含量;采用氫氧化鈉滴定法測(cè)定可滴定酸含量;采用福林酚法測(cè)定總酚含量[13];采用福林-丹寧斯法測(cè)定單寧含量[14];采用pH示差法測(cè)定總花色苷含量[15]。

1.3.2 有機(jī)酸含量測(cè)定 提取:將移除過(guò)種子與果蒂的果實(shí)樣品迅速浸入液氮中進(jìn)行深度冷凍,研磨至粉末狀,精確量取0.2 g粉末置于離心管中,加入1.8 mL的超純水進(jìn)行稀釋,超聲25 min后12 000 r·min-1離心10 min。將所得上清液過(guò)0.22 μm濾膜后,用HPLC分析檢測(cè)。

HPLC檢測(cè):使用紫外檢測(cè)器測(cè)定,C18色譜柱(250 mm×4.6 mm,5 μm),流動(dòng)相:甲醇、0.01 mol·L-1 KH2PO4體積比為3∶97,pH=2.5,流速:0.8 mL·min-1,柱溫:35 ℃,檢測(cè)波長(zhǎng)為210 nm,進(jìn)樣量:10 μL。

1.3.3 有機(jī)酸代謝相關(guān)基因表達(dá)量的測(cè)定 北紅葡萄果實(shí)中總RNA的提取參照TIANGEN RNA提取試劑盒產(chǎn)品說(shuō)明書(shū)進(jìn)行,每個(gè)樣品3個(gè)生物學(xué)重復(fù),使用NanoDrop 2000測(cè)定 RNA的提取質(zhì)量,并結(jié)合瓊脂糖凝膠電泳檢測(cè)RNA的完整性,以確保后續(xù)分析的需要。使用TaKaRa反轉(zhuǎn)錄試劑盒將所提取的RNA反轉(zhuǎn)錄為cDNA。選取VvEF作為內(nèi)參基因,運(yùn)用Primer 5.0設(shè)計(jì)引物,引物序列如表2所示。qRT-PCR反應(yīng)程序?yàn)椋侯A(yù)變性95 ℃ 10 min,變性95 ℃ 15 s,退火58 ℃ 30 s,40個(gè)循環(huán),延伸72 ℃ 32 s。通過(guò)2-△△CT算法計(jì)算基因相對(duì)表達(dá)量。

1.4 數(shù)據(jù)分析

采用Excel 2021整理數(shù)據(jù),采用SPSS 26.0進(jìn)行數(shù)據(jù)處理,采用Origin 2021軟件繪圖。

2 結(jié)果與分析

2.1 水分脅迫對(duì)北紅葡萄果實(shí)百粒質(zhì)量的影響

如圖1所示,北紅果實(shí)百粒質(zhì)量在不同生長(zhǎng)時(shí)期均呈上升趨勢(shì)。從整體來(lái)看,水分脅迫并未改變北紅果實(shí)的整體生長(zhǎng)趨勢(shì),至花后25 d時(shí),T1處理的果實(shí)百粒質(zhì)量顯著低于對(duì)照與T2處理;至花后45~105 d時(shí),T2處理的百粒質(zhì)量顯著低于對(duì)照與T1處理;至花后65~105 d時(shí),T1處理的百粒質(zhì)量顯著高于對(duì)照與T2處理;至花后105 d時(shí),對(duì)照、T1與T2處理的葡萄百粒質(zhì)量分別為169.45、170.28和165.02 g。由此可見(jiàn),隨著干旱脅迫時(shí)間的增加,葡萄果實(shí)生長(zhǎng)受阻,百粒質(zhì)量隨之下降,而水澇處理卻與之相反,在一定程度上增加了葡萄的百粒質(zhì)量。

2.2 水分脅迫對(duì)北紅葡萄果實(shí)中可溶性固形物含量的影響

如圖2所示,北紅葡萄果實(shí)中的可溶性固形物含量在不同生長(zhǎng)時(shí)期均呈上升趨勢(shì)。從整體來(lái)看,水分脅迫并未改變北紅果實(shí)的整體生長(zhǎng)趨勢(shì),花后25~65 d時(shí),可溶性固形物含量的增速較為平緩,呈現(xiàn)出一種穩(wěn)定的增長(zhǎng)態(tài)勢(shì);花后65~85 d時(shí),可溶性固形物含量急劇升高,T2處理的可溶性固形物含量顯著高于T1處理;在花后105 d時(shí),T2處理的可溶性固形物含量分別較對(duì)照與T1處理顯著提高3.31%和4.99%,T1處理最低,顯著低于對(duì)照和T2處理。由此可知,干旱脅迫對(duì)北紅葡萄可溶性固形物含量增加具有積極作用,而水澇處理始終對(duì)可溶性固形物含量增長(zhǎng)具有負(fù)作用。

2.3 水分脅迫對(duì)北紅葡萄果實(shí)中可滴定酸含量的影響

如圖3所示,北紅果實(shí)中可滴定酸含量在不同生長(zhǎng)時(shí)期均呈下降趨勢(shì)。從整體來(lái)看,水分脅迫并未改變北紅果實(shí)的整體生長(zhǎng)趨勢(shì),花后25~65 d,T1與T2處理均顯著低于對(duì)照,其中T1處理的可滴定酸含量最低;花后65~85 d,可滴定酸含量下降幅度最大;在花后85~105 d,可滴定酸含量下降幅度較小,T1處理顯著高于T2處理,與對(duì)照差異不顯著。由此可見(jiàn),隨著脅迫時(shí)間的延長(zhǎng),在葡萄生長(zhǎng)后期,水澇處理會(huì)在一定程度上造成葡萄果實(shí)中可滴定酸含量上升。

2.4 水分脅迫對(duì)北紅葡萄果實(shí)中總酚含量的影響

如圖4所示,北紅果實(shí)中總酚含量在不同生長(zhǎng)時(shí)期均呈先上升后下降的趨勢(shì)。從整體來(lái)看,水分脅迫并未改變北紅果實(shí)的整體生長(zhǎng)趨勢(shì),在花后65 d,不同處理的總酚含量均達(dá)到峰值,然后呈現(xiàn)逐步下降的趨勢(shì)。轉(zhuǎn)色后,對(duì)照的總酚含量維持在較高水平,T1處理的總酚含量顯著低于對(duì)照。至花后105 d時(shí),總酚含量表現(xiàn)為對(duì)照>T2>T1,對(duì)照的總酚含量(w,后同)為8.21 mg·g-1,分別為T(mén)2和T1的1.03和1.13倍。由此可知,隨著水分脅迫時(shí)間的延長(zhǎng),干旱脅迫和水澇處理均會(huì)導(dǎo)致葡萄果實(shí)中總酚含量降低。

2.5 水分脅迫對(duì)北紅葡萄果實(shí)中單寧含量的影響

如圖5所示,北紅果實(shí)中單寧含量在不同生長(zhǎng)時(shí)期均呈先上升后下降的趨勢(shì)。從整體來(lái)看,水分脅迫并未改變北紅果實(shí)的整體生長(zhǎng)趨勢(shì),其單寧含量變化趨勢(shì)與總酚含量變化趨勢(shì)較為相似,同樣于花后65 d時(shí)達(dá)到最大值。在花后65~105 d,對(duì)照的單寧含量持續(xù)顯著高于TI和T2處理,T1處理的單寧含量始終最低,至花后105 d時(shí),對(duì)照的單寧含量為4.39 mg·g-1,分別較T2和T1處理顯著提高8.20%和14.12%。由此可見(jiàn),隨著水分脅迫時(shí)間的延長(zhǎng),干旱脅迫和水澇處理均會(huì)導(dǎo)致葡萄果實(shí)中的單寧含量降低。

2.6 水分脅迫對(duì)北紅葡萄果實(shí)中花色苷含量的影響

如圖6所示,北紅果實(shí)中單寧含量在不同生長(zhǎng)時(shí)期均呈上升趨勢(shì)。從整體來(lái)看,水分脅迫并未改變北紅果實(shí)的整體生長(zhǎng)趨勢(shì),花色苷于花后65 d轉(zhuǎn)色初期開(kāi)始積累,其含量不斷上升。在各處理中,T1處理的花色苷含量顯著低于對(duì)照和T2處理,對(duì)照與T2處理間差異不顯著,至花后105 d,T2、對(duì)照及T1處理的花色苷含量分別達(dá)到了2.48、2.40和2.11 mg·g-1。由此可見(jiàn),水澇處理不利于葡萄果實(shí)中花色苷的積累,而適當(dāng)?shù)母珊得{迫有利于其積累。

2.7 水分脅迫對(duì)北紅葡萄果實(shí)中有機(jī)酸含量的影響

如表3所示,在北紅葡萄果實(shí)的不同處理?xiàng)l件下,酒石酸、蘋(píng)果酸和檸檬酸含量隨果實(shí)發(fā)育均呈先升后降的動(dòng)態(tài)變化模式。從整體來(lái)看,水分脅迫并未改變北紅果實(shí)的整體生長(zhǎng)趨勢(shì)。花后85~105 d,T2處理的酒石酸含量顯著低于T1處理和對(duì)照,于花后105 d其含量(ρ,后同)達(dá)到最低值,T1、對(duì)照和T2處理分別為3.38、3.27和2.93 g·L-1。各處理的蘋(píng)果酸含量變化趨勢(shì)與酒石酸相似,花后45~65 d,T1處理顯著低于對(duì)照和T2處理,花后85~105 d,T1處理均高于對(duì)照和T2處理,至花后105 d,對(duì)照的含量為1.56 g·L-1,分別較T1和T2處理提高0.6%和10.90%。在不同處理?xiàng)l件下,檸檬酸含量均維持在較低水平,其含量在花后45 d達(dá)到最高值,然后呈下降趨勢(shì),在花后65~105 d,T2處理均低于T1處理和對(duì)照。

2.8 水分脅迫對(duì)北紅葡萄果實(shí)中有機(jī)酸合成相關(guān)基因表達(dá)量的影響

圖7為北紅葡萄果實(shí)中有機(jī)酸合成相關(guān)基因的表達(dá)量。各處理的VvIDH表達(dá)水平存在影響,在花后25 d,T1和T2處理高于對(duì)照,在花后45~105 d,T2處理抑制了VvIDH的表達(dá),表達(dá)量均低于T1處理和對(duì)照,在花后45 d,T1處理分別是對(duì)照和T2處理的1.05和2.39倍。VvPEPC的表達(dá)量在不同處理下的變化趨勢(shì)存在差異,其中對(duì)照和T2處理均呈先上升后下降的表達(dá)趨勢(shì),而T1處理呈先降后升再降的表達(dá)趨勢(shì),在花后25~45 d,T1處理促進(jìn)其表達(dá),而在花后65~105 d,T1和T2處理均顯著低于對(duì)照。從整體上看,VvCS與VvMDH的表達(dá)趨勢(shì)相近,在花后25 d,T1和T2處理促進(jìn)VvCS與VvMDH表達(dá),而在花后45 d表現(xiàn)為抑制,花后85~105 d,T1處理下的VvCS表達(dá)量顯著高于對(duì)照和T2處理,分別較對(duì)照提高17.69%和7.50%,而在花后105 d,T1和T2處理的VvMDH表達(dá)量均顯著低于對(duì)照。

圖8為北紅葡萄果實(shí)品質(zhì)指標(biāo)與有機(jī)酸合成基因表達(dá)量的相關(guān)性分析。結(jié)果表明,VvIDH表達(dá)量與果實(shí)百粒質(zhì)量、可溶性固形物含量、花色苷含量呈顯著負(fù)相關(guān)(p<0.05),且與可滴定酸含量、酒石酸含量呈顯著正相關(guān)(p<0.05);VvCS表達(dá)量與可滴定酸、酒石酸和蘋(píng)果酸含量呈顯著負(fù)相關(guān)(p<0.05);VvMDH表達(dá)量與果實(shí)百粒質(zhì)量呈極顯著正相關(guān)(p<0.01),與可滴定酸、酒石酸、蘋(píng)果酸含量呈顯著負(fù)相關(guān)(p<0.05)。不同性狀間的相關(guān)性分析,可為實(shí)際生產(chǎn)加工提供參考。

3 討 論

果實(shí)的外觀品質(zhì)包含果實(shí)大小、果形及果面顏色等直觀特征,而內(nèi)在品質(zhì)則涉及可溶性固形物、可滴定酸、總酚、單寧和花色苷含量等關(guān)鍵指標(biāo),這些共同構(gòu)成了果實(shí)品質(zhì)的全面評(píng)價(jià)體系[16]。水分在葡萄生長(zhǎng)發(fā)育的各個(gè)階段都發(fā)揮著重要作用,直接影響葡萄果實(shí)品質(zhì)和有機(jī)酸含量的積累[17-18],適當(dāng)?shù)乃置{迫有利于提高葡萄果實(shí)產(chǎn)量,提升葡萄酒的質(zhì)量,從而帶動(dòng)整個(gè)葡萄園經(jīng)濟(jì)效益。Ju等[19]研究表明,在遭遇水分脅迫的條件下,葡萄果實(shí)的百粒質(zhì)量會(huì)出現(xiàn)明顯的減輕趨勢(shì),但能在一定程度上提升可溶性固形物含量。本試驗(yàn)結(jié)果表明,隨著土壤含水量的逐步減少,北紅葡萄的百粒質(zhì)量呈現(xiàn)下降趨勢(shì),可溶性固形物含量卻相應(yīng)地在一定范圍內(nèi)有所提升,這與前人的試驗(yàn)結(jié)果相似。轉(zhuǎn)色期干旱脅迫對(duì)成熟期果實(shí)品質(zhì)的影響最大,水分缺失會(huì)抑制果實(shí)細(xì)胞的快速分裂和增殖,抑制光合作用,降低水分轉(zhuǎn)化率,從而導(dǎo)致果實(shí)品質(zhì)下降[20]。酚類化合物以固有的抗氧化性能著稱,這一特性顯著地豐富了葡萄及葡萄酒的感官體驗(yàn)與品質(zhì)特性,諸如風(fēng)味、色澤及結(jié)構(gòu)等方面,均受到一定因素的影響[21]。胡宏遠(yuǎn)等[22]研究表明,短期的干旱脅迫有利于果實(shí)中總酚和單寧的積累,而長(zhǎng)期的干旱脅迫不利于其積累。本試驗(yàn)結(jié)果表明,在初始干旱脅迫處理中,北紅葡萄果實(shí)中總酚與單寧含量較高,隨著處理時(shí)間的延長(zhǎng),總酚和單寧含量均有所下降,與前人的試驗(yàn)結(jié)果一致。葡萄花色苷是一類天然的植物色素,屬于黃酮類化合物,廣泛存在于葡萄的果皮中,對(duì)葡萄的顏色、營(yíng)養(yǎng)價(jià)值及健康功效起著重要作用。本研究中,北紅葡萄花色苷含量表現(xiàn)出遞增的趨勢(shì),在花后85 d,各處理下的花色苷含量都出現(xiàn)驟然遞增的現(xiàn)象,在花后105 d,花色苷含量依舊小幅增長(zhǎng),各時(shí)期中T2處理的花色苷含量均高于對(duì)照和T1處理,而T1處理的花色苷含量始終顯著低于對(duì)照和T2處理,這與李倩[23]的研究結(jié)果相似。花色苷是花色素與糖基作用形成的化合物,因此水分脅迫促進(jìn)糖的積累是花色苷積累的主要原因之一[24]。

在葡萄生長(zhǎng)發(fā)育過(guò)程中,有機(jī)酸是構(gòu)成葡萄風(fēng)味的重要組成部分,對(duì)葡萄的口感和品質(zhì)有重要影響。酒石酸是葡萄中最為主要的有機(jī)酸之一,約占有機(jī)酸總含量的90%,對(duì)葡萄的酸味貢獻(xiàn)最大。酒石酸含量高的品種吃起來(lái)會(huì)偏酸。蘋(píng)果酸是葡萄中重要的有機(jī)酸之一,與酒石酸共同構(gòu)成了葡萄的主要酸味來(lái)源。檸檬酸含量雖然相對(duì)較少,但仍是葡萄有機(jī)酸的重要組成部分[25]。本試驗(yàn)中北紅葡萄樣本中檢測(cè)出的主要有機(jī)酸種類為酒石酸與蘋(píng)果酸,兩者含量相對(duì)較高,相較之下,檸檬酸含量的占比較小,這與前人的研究結(jié)果一致。Des Gachons等[26]研究表明,對(duì)歐洲葡萄進(jìn)行水分脅迫處理,會(huì)導(dǎo)致果實(shí)酸度下降。張艷霞[27]研究表明,葡萄酒石酸含量在整個(gè)生育期內(nèi)呈先上升后下降的趨勢(shì),水分脅迫在一定程度上使酒石酸含量降低。本研究中,前期水分脅迫促進(jìn)了酒石酸的積累,但隨處理時(shí)間的延長(zhǎng),酒石酸含量呈下降趨勢(shì),植物逐漸適應(yīng)當(dāng)下的脅迫環(huán)境,與前人的研究結(jié)果相似。酒石酸分為兩個(gè)合成階段,前期階段由抗壞血酸合成,后期階段是從抗壞血酸到合成酒石酸的過(guò)程,而L-艾杜糖酸脫氫酶(IDH)是后期階段合成酒石酸的關(guān)鍵限速酶[28]。在本研究中,北紅葡萄中VvIDH和VvPEPC在花后25~45 d各處理表達(dá)量較高,VvCS和VvMDH在花后85 d表達(dá)量較高。整體來(lái)看,T1處理能夠誘導(dǎo)有機(jī)酸合成相關(guān)基因的表達(dá),而在處理后期,T2處理均抑制有機(jī)酸合成相關(guān)基因的表達(dá)。

4 結(jié) 論

與對(duì)照和水澇脅迫相比,干旱脅迫可降低葡萄果實(shí)百粒質(zhì)量和可滴定酸含量,促進(jìn)可溶性固形物和花色苷積累;有機(jī)酸含量在果實(shí)發(fā)育前期高于對(duì)照,成熟期酒石酸和蘋(píng)果酸含量及VvIDH、VvPEPC、VvMDH基因表達(dá)量顯著低于對(duì)照。因此,適度的干旱脅迫更有利提升北紅果實(shí)的整體品質(zhì)。

參考文獻(xiàn)References:

[1] 楊洋,張磊,陳豫英,郭曉雷,李紅英. 賀蘭山東麓釀酒葡萄種植區(qū)晚霜凍低溫持續(xù)時(shí)間規(guī)律分析[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,54(6):149-154.

YANG Yang,ZHANG Lei,CHEN Yuying,GUO Xiaolei,LI Hongying. Low temperature duration pattern in late frost period in wine grape growing area in eastern Helan Mountain[J]. Journal of Gansu Agricultural University,2019,54(6):149-154.

[2] 楊海云,艾雪瑩,MARIA B,劉芳,蒯婕,王晶,汪波,周廣生. 油菜響應(yīng)水分脅迫的生理機(jī)制及栽培調(diào)控措施研究進(jìn)展[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,40(2):6-16.

YANG Haiyun,AI Xueying,MARIA B,LIU Fang,KUAI Jie,WANG Jing,WANG Bo,ZHOU Guangsheng. Progress on physiological mechanisms of response to water stress and measures of cultivation controlling in rapeseed[J]. Journal of Huazhong Agricultural University,2021,40(2):6-16.

[3] 謝小龍. 水分脅迫對(duì)文冠果幼苗的影響及應(yīng)對(duì)措施[J]. 林業(yè)科技情報(bào),2024,56(2):113-115.

XIE Xiaolong. The effect of water stress on the seedlings of Xanthoceras sorbifolia and corresponding measures[J]. Forestry Science and Technology Information,2024,56(2):113-115.

[4] 毛妮妮,蘇西婭,任俊鵬,張奎峰,劉照亭. 水分調(diào)虧對(duì)‘夏黑’葡萄葉片形態(tài)及光合特性的影響[J]. 江蘇農(nóng)業(yè)科學(xué),2022,50(16):133-138.

MAO Nini,SU Xiya,REN Junpeng,ZHANG Kuifeng,LIU Zhaoting. Impacts of water deficit regulation on morphology and photosynthetic characteristics of ‘Summer Black’ grape leaves[J]. Jiangsu Agricultural Sciences,2022,50(16):133-138.

[5] 張振文,李華,宋長(zhǎng)冰. 節(jié)水灌溉對(duì)葡萄及葡萄酒質(zhì)量的影響[J]. 園藝學(xué)報(bào),2002,29(6):515-518.

ZHANG Zhenwen,LI Hua,SONG Changbing. Effects of irrigation on grape and wine[J]. Acta Horticulturae Sinica,2002,29(6):515-518.

[6] 殷夢(mèng)婷,代紅軍,賀琰,汪月寧,郭學(xué)良,劉妍,王振平. 水分脅迫對(duì)馬瑟蘭葡萄果實(shí)揮發(fā)性物質(zhì)合成的影響[J]. 果樹(shù)學(xué)報(bào),2023,40(8):1592-1605.

YIN Mengting,DAI Hongjun,HE Yan,WANG Yuening,GUO Xueliang,LIU Yan,WANG Zhenping. Effects of water stress on the synthesis of volatile compounds in Marselan grape berries[J]. Journal of Fruit Science,2023,40(8):1592-1605.

[7] 張海峰,龐桂斌,付玉榮,劉洪玲,蘇雪偉,張立志,王昕,徐征和. 不同生育期水分脅迫對(duì)葡萄葉綠素?zé)晒鈪?shù)指標(biāo)和產(chǎn)量的影響[J]. 節(jié)水灌溉,2024(7):1-7.

ZHANG Haifeng,PANG Guibin,F(xiàn)U Yurong,LIU Hongling,SU Xuewei,ZHANG Lizhi,WANG Xin,XU Zhenghe. Effects of water stress at different growth stages on chlorophyll fluorescence parameters and yield of grape[J]. Water Saving Irrigation,2024(7):1-7.

[8] 朱磊,陳蕓華,胡禧熙,李新月,戰(zhàn)川,呂珊珊. 葡萄有機(jī)酸的研究進(jìn)展[J]. 中外葡萄與葡萄酒,2022(6):88-95.

ZHU Lei,CHEN Yunhua,HU Xixi,LI Xinyue,ZHAN Chuan,Lü Shanshan. Research progress of organic acids in grape[J]. Sino-Overseas Grapevine amp; Wine,2022(6):88-95.

[9] 任言,劉婉君,李美璇,喬月蓮,王莉,師校欣,杜國(guó)強(qiáng). 鮮食葡萄果實(shí)發(fā)育過(guò)程中有機(jī)酸積累差異研究[J]. 中外葡萄與葡萄酒,2024(3):67-74.

REN Yan,LIU Wanjun,LI Meixuan,QIAO Yuelian,WANG Li,SHI Xiaoxin,DU Guoqiang. Study on differences of organic acid accumulation during fruit development of table grape[J]. Sino-Overseas Grapevine amp; Wine,2024(3):67-74.

[10] COELHO E M,DA SILVA PADILHA C V,MISKINIS G A,DE Sá A G B,PEREIRA G E,DE AZEVêDO L C,DOS SANTOS LIMA M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC:Method validation and characterization of products from northeast Brazil[J]. Journal of Food Composition and Analysis,2018,66:160-167.

[11] WALKER R P,F(xiàn)AMIANI F. Organic acids in fruits:Metabolism,functions and contents[J]. Horticultural Reviews,2018,45:371-430.

[12] 莫燕霞,殷居易,顧曉俊,陳梅珍,何衛(wèi)敏,吳維兒. 葡萄酒有機(jī)酸研究現(xiàn)狀及應(yīng)用展望[J]. 食品工業(yè)科技,2015,36(6):380-384.

MO Yanxia,YIN Juyi,GU Xiaojun,CHEN Meizhen,HE Weimin,WU Weier. Research status and application prospects of organic acids in wine[J]. Science and Technology of Food Industry,2015,36(6):380-384.

[13] 李靜,聶繼云,王孝娣,李海飛,徐國(guó)峰,毋永龍,孟昭軍. Folin-Ciocalteus法測(cè)定葡萄和葡萄酒中的總多酚[J]. 中國(guó)南方果樹(shù),2007,36(6):86-87.

LI Jing,NIE Jiyun,WANG Xiaodi,LI Haifei,XU Guofeng,WU Yonglong,MENG Zhaojun. Determination of total polyphenols in grape and wine by folin-ciocalteus method[J]. South China Fruits,2007,36(6):86-87.

[14] 張小月,戚金生,劉曉燕,蔡軍社,呂玥昕,李學(xué)文. 不同單株負(fù)載量對(duì)赤霞珠葡萄果實(shí)生長(zhǎng)及品質(zhì)指標(biāo)的影響[J]. 中國(guó)釀造,2021,40(10):70-75.

ZHANG Xiaoyue,QI Jinsheng,LIU Xiaoyan,CAI Junshe,Lü Yuexin,LI Xuewen. Effects of different single plant loading capacity on fruit growth and quality indexes of Cabernet Sauvignon[J]. China Brewing,2021,40(10):70-75.

[15] 翦祎,韓舜愈,張波,祝霞,王婧,崔日寶. 單一pH法、pH示差法和差減法快速測(cè)定干紅葡萄酒中總花色苷含量的比較[J]. 食品工業(yè)科技,2012,33(23):323-325.

JIAN Yi,HAN Shunyu,ZHANG Bo,ZHU Xia,WANG Jing,CUI Ribao. Comparison of single pH method,pH-differential method and substraction method for determining content of anthocyanins from red wine[J]. Science and Technology of Food Industry,2012,33(23):323-325.

[16] 薛曉斌,李棟梅,張艷霞,王振平. 水分脅迫對(duì)馬瑟蘭葡萄果實(shí)品質(zhì)及花色苷合成代謝的影響[J]. 果樹(shù)學(xué)報(bào),2023,40(5):919-931.

XUE Xiaobin,LI Dongmei,ZHANG Yanxia,WANG Zhenping. Effects of water stress on berry quality and anthocyanin metabolism in Marselan grape[J]. Journal of Fruit Science,2023,40(5):919-931.

[17] 張一單,王建國(guó),黃曉龍,宋于洋. 不同管理措施對(duì)土壤水分狀況及釀酒葡萄品質(zhì)的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),2021,30(7):1037-1045.

ZHANG Yidan,WANG Jianguo,HUANG Xiaolong,SONG Yuyang. Effects of different management methods on soil moisture content and wine grape quality[J]. Acta Agriculturae Boreali-occidentalis Sinica,2021,30(7):1037-1045.

[18] 伍國(guó)紅,駱強(qiáng)偉,蘇來(lái)曼·艾則孜,廖康. 不同灌水量對(duì)無(wú)核白葡萄生長(zhǎng)發(fā)育和產(chǎn)量的影響[J]. 新疆農(nóng)業(yè)科學(xué),2013,50(5):889-893.

WU Guohong,LUO Qiangwei,Sulaiman·Aizezi,LIAO Kang. Impact of different irrigation volumes on growth,development and yield of Thompsons Seedless grape[J]. Xinjiang Agricultural Sciences,2013,50(5):889-893.

[19] JU Y L,YANG B H,HE S,TU T Y,MIN Z,F(xiàn)ANG Y L,SUN X Y. Anthocyanin accumulation and biosynthesis are modulated by regulated deficit irrigation in Cabernet Sauvignon (Vitis vinifera L.) grapes and wines[J]. Plant Physiology and Biochemistry,2019,135:469-479.

[20] 楊昌鈺,張芮,藺寶軍,王騰飛,王春宏. 水分脅迫對(duì)鮮食葡萄果實(shí)品質(zhì)影響的研究進(jìn)展[J]. 農(nóng)業(yè)工程,2020,10(1):86-91.

YANG Changyu,ZHANG Rui,LIN Baojun,WANG Tengfei,WANG Chunhong. Review of effects of water stress on fruit quality of table grapes[J]. Agricultural Engineering,2020,10(1):86-91.

[21] 郭鋆鋆,武東波,肖慶紅,蒙靜,李紹華,范培格. ‘北紅’和‘北玫’在寧夏地區(qū)生長(zhǎng)發(fā)育及抗逆性的表現(xiàn)初報(bào)[J]. 河北林業(yè)科技,2015(4):57-58.

GUO Junjun,WU Dongbo,XIAO Qinghong,MENG Jing,LI Shaohua,F(xiàn)AN Peige. A Preliminary report on the growth and stress resistance of ‘Northern Red’ and ‘Northern Rose’ in Ningxia[J]. Journal of Hebei Forestry Science and Technology,2015(4):57-58.

[22] 胡宏遠(yuǎn),李雙岑,馬丹陽(yáng),王振平. 水分脅迫對(duì)赤霞珠葡萄果實(shí)品質(zhì)的影響研究[J]. 節(jié)水灌溉,2016(12):36-41.

HU Hongyuan,LI Shuangcen,MA Danyang,WANG Zhenping. Effects of water stress on qualities of Cabernet Sauvignon[J]. Water Saving Irrigation,2016(12):36-41.

[23] 李倩. 成熟期土壤含水量對(duì)‘北紅’和‘北玫’葡萄果實(shí)酚類物質(zhì)積累的影響[D]. 銀川:寧夏大學(xué),2019.

LI Qian. Effect of soil water content on accumulation of phenolic substances in ‘Beihong’ and ‘Beimei’ grape fruits at maturity stage[D]. Yinchuan:Ningxia University,2019.

[24] CASTELLARIN S D,PFEIFFER A,SIVILOTTI P,DEGAN M,PETERLUNGER E,DI GASPERO G. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit[J]. Plant,Cell amp; Environment,2007,30(11):1381-1399.

[25] 趙悅,韓寧,孫玉霞,孫慶揚(yáng),韓愛(ài)芹,趙新節(jié). 不同產(chǎn)地釀酒葡萄‘赤霞珠’果實(shí)中有機(jī)酸差異性研究[J]. 食品工業(yè)科技,2016,37(1):297-301.

ZHAO Yue,HAN Ning,SUN Yuxia,SUN Qingyang,HAN Aiqin,ZHAO Xinjie. Difference of organic acids in ripen berry of wine grape (Cabernet Sauvignon) among production regions[J]. Science and Technology of Food Industry,2016,37(1):297-301.

[26] DES GACHONS C P,VAN LEEUWEN C,TOMINAGA T,SOYER J P,GAUDILLèRE J P,DUBOURDIEU D. Influence of water and nitrogen deficit on fruit ripening and aroma potential of Vitis vinifera L. cv. Sauvignon Blanc in field conditions[J]. Journal of the Science of Food and Agriculture,2005,85(1):73-85.

[27] 張艷霞. 水分脅迫對(duì)赤霞珠果實(shí)有機(jī)酸和甲氧基吡嗪含量的影響[D]. 銀川:寧夏大學(xué),2019.

ZHANG Yanxia. Effects of water stress on the contents of organic acids and methoxypyrazines in the berries of Cabernet Sauvignon[D]. Yinchuan:Ningxia University,2019.

[28] 曹慧玲,舒河霖,邵建輝,張海明,馬春花. 葡萄果實(shí)酒石酸生物合成研究進(jìn)展[J]. 中國(guó)果樹(shù),2021(4):8-13.

CAO Huiling,SHU Helin,SHAO Jianhui,ZHANG Haiming,MA Chunhua. Research progress on biosynthesis of tartaric acid in grape berries[J]. China Fruits,2021(4):8-13.

收稿日期:2024-08-16 接受日期:2024-12-09

基金項(xiàng)目:寧夏回族自治區(qū)重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022BBF03019);寧夏自然科學(xué)基金項(xiàng)目(2020AAC03093)

作者簡(jiǎn)介:王佳悅,在讀碩士研究生,研究方向?yàn)槠咸芽鼓嬖耘嗯c分子生物學(xué)。E-mail:ndhwjy@126.com

*通信作者Author for correspondence. E-mail:fxssm@163.com;E-mail:lixiangphd@nxu.edu.cn

主站蜘蛛池模板: 亚洲天堂久久| 国产va欧美va在线观看| 美女无遮挡免费网站| 精品国产福利在线| 91成人在线观看| 中文成人在线视频| 欧美日韩高清| 麻豆精品在线视频| 精品日韩亚洲欧美高清a| 在线亚洲精品福利网址导航| 欧美精品影院| 成人免费网站在线观看| 青草视频网站在线观看| 69综合网| 国产黄视频网站| 99久久国产综合精品2020| 91精品在线视频观看| 国产不卡国语在线| 国产精品久久久久久影院| 五月婷婷导航| 欧美国产日韩在线观看| 成人免费黄色小视频| 亚洲日本中文字幕天堂网| 亚洲国产精品无码久久一线| 最新精品久久精品| 免费A∨中文乱码专区| 狠狠亚洲婷婷综合色香| 国产高颜值露脸在线观看| 老司机午夜精品网站在线观看| 欧美精品色视频| 18禁色诱爆乳网站| 亚洲天堂在线免费| 免费看久久精品99| 一级毛片基地| 四虎在线观看视频高清无码 | 丰满的少妇人妻无码区| 狠狠ⅴ日韩v欧美v天堂| 999福利激情视频 | 这里只有精品在线| 亚洲国语自产一区第二页| 国产美女精品人人做人人爽| 天天综合网亚洲网站| 国产精品大尺度尺度视频| 97se亚洲综合在线韩国专区福利| 欧洲日本亚洲中文字幕| 久久鸭综合久久国产| 亚洲国产成人久久精品软件| 国产精品视频久| 特级做a爰片毛片免费69| 久久这里只有精品66| 日本www色视频| 波多野结衣在线一区二区| 久草视频中文| 一级毛片基地| 熟妇丰满人妻| 国产精品天干天干在线观看| 国产成人精品亚洲77美色| 啦啦啦网站在线观看a毛片| 99久久国产综合精品2023| 欧美 亚洲 日韩 国产| 波多野结衣无码中文字幕在线观看一区二区| 女高中生自慰污污网站| 精品国产成人a在线观看| 99视频在线观看免费| 一区二区三区毛片无码| 中文字幕在线看| 97人妻精品专区久久久久| 免费一级成人毛片| 国产精品无码AⅤ在线观看播放| 自拍中文字幕| 国产在线视频自拍| 亚洲色偷偷偷鲁综合| 亚洲不卡av中文在线| 国产在线一区二区视频| 亚洲天堂精品在线| 黄网站欧美内射| 综合五月天网| 人人妻人人澡人人爽欧美一区| 亚洲大尺度在线| 亚洲日本www| 午夜小视频在线| 国产福利小视频在线播放观看|