




摘 " "要:【目的】探究叢枝菌根真菌(arbuscular mycorrhizal fungi,AMF)對鹽脅迫下草莓根系呼吸與超微弱發光(ultraweak luminescence,UWL)的影響,分析接種AMF后根系呼吸和相關酶活性及UWL強度的變化規律與相關性,為探究AMF改善鹽脅迫下草莓根系呼吸的機制提供理論參考?!痉椒ā窟x用紅顏草莓(Benihoppe)盆栽苗作為試驗材料,摩西球囊霉(Glomus mosseae)作為接種菌種,鹽脅迫選用90 mmol·L-1 NaCl、Na2SO4復合鹽溶液處理,測定草莓根系呼吸速率、呼吸相關酶活性、根系和葉片UWL強度?!窘Y果】鹽脅迫嚴重抑制了草莓根系呼吸作用的強度和酶活性,表現為根系呼吸速率和呼吸相關酶活性降低。UWL與氧化應激過程有關,呼吸過程被抑制,根系發散的光子數目受到影響,UWL強度隨之下降。而接種AMF可以使草莓根系呼吸速率、相關酶活性、UWL強度值升高。草莓根系呼吸強度、相關酶活性與根系、葉片UWL強度均有顯著的相關性?!窘Y論】接種AMF能有效緩解鹽脅迫帶來的傷害,提高呼吸速率和相關酶活性,表明AMF在緩解鹽脅迫下根系損傷方面具有重要作用。另外在接種AMF條件下草莓根系呼吸和UWL強度相關性顯著,可通過葉片UWL強度反映根系呼吸的脅迫程度。
關鍵詞:草莓;鹽脅迫;叢枝菌根真菌;呼吸作用;超微弱發光
中圖分類號:S668.4 文獻標志碼:A 文章編號:1009-9980(2025)01-0133-08
Effect of arbuscular mycorrhizal fungi on the relationship between root respiration and ultraweak luminescence under salt stress in strawberry
LI Jiafeng1, WANG Zhenfan1, YANG Bo2, FAN Li1*
(1College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China; 2Inner Mongolia Agricultural and Animal Husbandry Technology Extension Centery, Hohhot 010010, Inner Mongolia, China)
Abstract: 【Objective】 Soil salinity poses a significant challenge to global agriculture. Salt stress inhibits root respiration and disrupts physiological and metabolic activities, impairing essential functions such as absorption and transport. Arbuscular mycorrhizal fungi (AMF) enhance plant resistance to salt stress naturally and in an environmentally friendly way. Ultraweak luminescence (UWL) is a natural phenomenon observed in all living organisms, though its mechanisms remain largely unknown. The objectives of this study were to investigate the changes in root respiration, enzyme activities, and UWL intensity after AMF inoculation on the roots of strawberry under salt stress, and to assess the possibility of UWL as a potential indicator of plant physiological status under salt stress. 【Methods】 The strawberry cultivar Benihoppe was selected for the experiments.The strawberry plantlets were transplanted into the pots in greenhouse. The substrate was composed of peat, vermiculite and perlite (1∶1∶1). The substrate was sterilized by high temperature before treatment. The treatments included AMF inoculation (Glomus mosseae), salt stress, salt stress with AMF inoculation. The sterilized substrate used as control. 90 mmol·L-1 NaCl and Na2SO4 salt solution were used for salt stress treatment. Each pot was irrigated with 600 mL of the salt solution, while the control was irrigated with the same amount of water. The samples were taken after 1, 3, 5, 7, and 9 days after the treatments. The main measurements included root respiration rate, enzyme activities (glucose 6-phosphate dehydrogenase, phosphofructokinase, NAD-malate dehydrogenase), and UWL intensity of the roots and leaves. For the measurements of root respiration rate, enzyme activities, and UWL intensity, the samples were taken randomly from the roots. For the measurements of UWL intensity of the leaves, three mature leaves of similar length were selected. Each test was repeated three times for accuracy. The statistical analyses were conducted to observe changes in the indicators and assess AMF’s effectiveness in mitigating salt stress effects. 【Results】 A significant decrease in the root respiration and enzyme activities was observed under the salt stress. Specifically, glucose-6-phosphate dehydrogenase, phosphofructokinase, and NAD-malate dehydrogenase activities decreased under the salt stress, reflecting its negative impact on root respiratory metabolism. Without salt stress, AMF-inoculated plants showed higher and more stable respiration rates, enzyme activities, and UWL intensities compared with those of the control. This suggested that under normal conditions, AMF inoculation could improve the overall physiological status of the strawberry root system. Under the salt stress, AMF inoculation effectively mitigated negative effects, increased respiration rate, enzyme activities, and UWL intensities compared with the control. These findings suggested that AMF would protect root function and metabolic activities under saline conditions. Additionally, there was a positive correlation between the UWL intensity, root respiration, and key respiratory enzyme activities in the leaves and roots of strawberry. 【Conclusion】 There was a close relationship between strawberry root respiration intensity, related enzyme activities, and UWL of the roots and leaves of strawberry. The salt stress greatly reduced the root respiration rate and respiration-related enzyme activities, associated with oxidative stress processes. The reduced metabolic activities would result in lower UWL intensity, reflecting the adverse effects of salinity on the physiological state of the plants. The AMF inoculation would mitigate the inhibitory effects of salt stress on the root respiration and enzyme activities, thereby slowing the decrease in the UWL intensity. This suggested that under saline conditions, AMF would be helpful in maintaining higher metabolic activities and improve the overall physiological status of the root system, enhancing salt tolerance in strawberry plants. These findings highlight the potential of AMF to enhance strawberry salt tolerance by maintaining root respiratory metabolic activity, while the correlation suggests that the leaf UWL intensity could serve as a reference for non-invasive indicators of physiological status of strawberry under experimental salt stress conditions. This study would provide new insights into AMF’s protective mechanisms under sthe alt stress and deepen our understanding of plant-stress interactions and AMF’s role in enhancing crop stress tolerance.
Key words: Strawberry; Salt stress; Arbuscular mycorrhizal fungi; Respiration; Ultra weak luminescence
草莓(Fragaria × ananassa)屬于薔薇科草莓屬多年生草本植物。在世界上有著廣泛的栽植面積。其風味獨特,營養豐富,果實內含有高水平的維生素C、葉酸和酚類成分[1-2],且果實具有抗氧化等功效[3-4],深受廣大消費者喜愛。鹽脅迫是自然界最主要的非生物脅迫之一,是影響生態環境和農業生產的全球性問題。由于草莓對鹽敏感[5],鹽漬化的土壤嚴重影響了草莓植株發育和果實品質,限制了草莓的栽培推廣和生產發展[6]。
在鹽脅迫下,根系對土壤鹽脅迫感受最為迅速和明顯,也是受危害最直接的部位[7]。呼吸代謝是一切生命活動的基礎,為植物的生命活動提供能量和生物合成的原料[8-9]。鹽脅迫會抑制根系呼吸速率,從而影響生理代謝活動,導致根系吸收和運輸等主要功能紊亂[10]。鹽漬化對草莓的根系呼吸影響尤為顯著,但目前關于鹽脅迫條件下草莓根系呼吸速率以及相關酶活性的研究鮮有報道。
生物光子輻射(biophoton emission)是自然界普遍存在的一種生物發光現象,其輻射強度僅為0~103 hv·s-1·cm-2,波長范圍為180~800 nm[11-12],因為極為微弱的發光強度又被稱為超微弱發光(ultra weak luminescence,UWL)。UWL普遍存在于生命體中,包括各個器官、組織和細胞都會自發性地向外輻射光子[13],其涉及植物體內許多主要的生物功能,如細胞分裂、能量代謝、信息傳遞[14]。盡管UWL與生物體生理反應以及生化過程有著緊密聯系,并且呼吸作用為植株生長最關鍵的生理活動之一,但目前對于園藝植物的相關研究主要集中于葉片、果實、種子等器官,對于最先受到土壤鹽害影響的根系呼吸作用與UWL之間的相關性仍知之甚少。
叢枝菌根真菌(arbuscular mycorrhizal fungi,AMF)是自然界普遍存在的一種根系共生真菌,具有天然、無污染等優勢,因具有提升植株抗性的特點,已有AMF應用在果蔬種植方面的報道。草莓根系呼吸速率是逆境條件下重要的生理指標,那么草莓根系在鹽脅迫下呼吸相關指標如何變化?AMF如何緩解鹽脅迫對草莓根系的影響?筆者在本研究中以草莓根系為材料,在前期已進行AMF對草莓植株抗逆性影響研究的基礎上,探究鹽脅迫下接種AMF后草莓根系呼吸速率和相關酶活性的變化特性,以UWL與根系呼吸指標的相關性變化為主要切入點,研究在鹽脅迫環境下AMF提高草莓耐鹽性的機制。
1 材料和方法
1.1 試驗材料
試驗選取生長健壯、長勢相似的紅顏草莓苗為材料,草莓苗苗齡3個月,平均莖粗3 mm。
1.2 試驗設計
試驗為雙因素隨機區組設計,包含AMF和鹽脅迫兩個因素。采用溫室內盆栽控制的方法,將草莓苗移栽到含有基質的花盆中,栽培基質為泥炭、蛭石、珍珠巖體積比1∶1∶1的混合物,接種菌劑經高溫干熱滅菌處理后作為不接種AMF的對照。將草莓苗分為4組處理,包括只接種AMF組、接種AMF后進行鹽脅迫組、對照組和只進行鹽脅迫組,分別記為FF、FY、CK和YY,每組分別在5個采樣時期進行相關指標測量,每個處理組在每個測量時期內設置3盆草莓作為重復。
1.3 AMF處理
AMF選取與草莓根系親和性好的摩西球囊霉(Glomus mosseae)[15]為供試菌種,以含有孢子、菌絲及侵染根段的根土混合物作為接種菌劑。將AMF接種于草莓苗根系,接種時先在花盆中裝略低于1/3高度的栽培基質,將30 g菌劑均勻撒下后再將草莓苗栽在菌劑表面,使其與根系充分接觸,繼續加入適量的栽培基質覆蓋住根系并澆足定根水。待草莓與AMF建立共生關系后進行鹽脅迫處理。
1.4 鹽脅迫處理
鹽脅迫處理采用內蒙古地區鹽堿土壤中含量較高的NaCl和Na2SO4復合鹽,將兩種鹽配置為摩爾比1∶1、濃度90 mmol·L-1的鹽溶液,處理時按照每盆600 mL澆灌。為使鹽溶液充分浸潤土壤,需將流出的鹽溶液反復回澆直到不再流出,非鹽脅迫組澆灌等量蒸餾水作為對照。試驗期間對草莓苗正常澆水與田間管理。從鹽脅迫的第1天開始,每2 d進行1次指標測量,處理時長為9 d(采樣時間表示為D1、D3、D5、D7、D9,共5次)。
1.5 試驗指標及測定方法
1.5.1 菌根侵染率 將接菌草莓根系取出后用毛刷輕柔刷去表面附著的土壤,沖洗潔凈后剪成1 cm長根段備用。根系AMF染色使用臺盼藍染色劑,染色及侵染率測定參考王思雨等[16]的方法。
1.5.2 根系呼吸速率測定 選用液相Oxy-Lab氧電極(英國HANSATECH公司)用于測量根系呼吸速率,參考毛志泉等[17]的方法并進行改良。取直徑基本一致的健康根系,迅速稱取0.05 g,切成2 mm左右根段放入反應杯,加蓋啟動測量程序。
1.5.3 根系呼吸相關酶活性測定 選用索萊寶公司試劑盒測定草莓根系呼吸相關酶活性,包括6-磷酸葡萄糖脫氫酶(G-6-PDH)、磷酸果糖激酶(PFK)、NAD-蘋果酸脫氫酶(NAD-MDH)活性。
1.5.4 UWL強度測定 選用BPCL-GP15型超微弱發光分析儀(北京建新力拓科技有限公司)測量UWL強度,參考孫聰等[18]的方法并適當調整。儀器開機后調控高壓950 V預熱30 min,設定采樣時間5 s。各處理葉片選擇直徑10 mm打孔器取樣測定,根系剪取0.1 g用于測量。
1.6 數據處理與方法
數據處理使用Microsoft Excel (2021),圖形設計使用Origin 2022軟件(Origin Lab,Northampton,MA,USA)。采用SPSS 26(IBM SPSS STATISTICS,USA)進行統計學和相關性分析,以p<0.05為差異有統計學意義。
2 結果與分析
2.1 草莓菌根侵染率
菌根侵染率可以作為AMF與草莓植株的共生情況是否良好的參考指標,由表1可知FF、FY組草莓接種后AMF定殖情況良好,菌根侵染率均超過60%;未接菌的CK、YY組侵染率為0,對后續試驗無影響。
2.2 鹽脅迫下草莓根系呼吸速率的變化
根系呼吸速率測定結果如圖1所示。隨著脅迫時間的延長,測定期內草莓根系呼吸速率總體呈下降趨勢,受到鹽脅迫的FY、YY組呼吸速率下降趨勢明顯強于未受到鹽脅迫組,并且隨著鹽脅迫時間的增加,呼吸速率持續下降。FF組草莓根系呼吸速率顯著高于其他處理組,且呼吸速率隨時間變化幅度最小;CK組呼吸速率高于鹽脅迫處理的兩組,維持波動穩定。在鹽脅迫處理的情況下,接菌的FY組比未接菌YY組呼吸速率更高,且變化幅度更小,由此推斷AMF可以緩解被鹽抑制的呼吸速率。
2.3 鹽脅迫下草莓根系呼吸相關酶活性的變化
2.3.1 6-磷酸葡萄糖脫氫酶活性 G-6-PDH活性的高低在一定程度上反映生物體的生物合成能力和抗氧化能力。通過在340 nm波長下測定NADPH生成的速率,可以評估G-6-PDH的催化活性。草莓根系酶活性測定結果如圖2-A所示,在測定時期內G-6-PDH活性隨時間延長呈下降趨勢。除D5時期外FF組酶活性均明顯高于其他3組;CK組呈現波動下降趨勢;FY組酶活性在D1、D3時與CK無顯著差異;YY組酶活性最低,均與同期其他3組達到差異顯著水平。由此推斷AMF可以提高鹽脅迫條件下草莓根系G-6-PDH活性。
2.3.2 磷酸果糖激酶活性 PFK活性測定結果如圖2-B所示。通過在340 nm波長下測定NADH濃度的下降速率,可以有效評估PFK活性。在測定時期內,鹽脅迫處理使PFK活性下降,未受鹽脅迫的FF和CK組酶活性保持穩定。FF組酶活性均高于其他3組,對照CK組變化與FF組大致相同,都呈現波動穩定趨勢。在D1時期FY和YY組分別為同期CK組的94.67%和87.34%,隨測定時期延長PFK活性均呈降低趨勢,FY組酶活性整體高于YY組。通過測定數據推斷AMF可以提高鹽脅迫條件下草莓根系磷酸果糖激酶活性。
2.3.3 NAD-蘋果酸脫氫酶活性 蘋果酸脫氫酶(MDH)廣泛分布于動物、植物、微生物和培養細胞中。圖2-C表明草莓根系NAD-蘋果酸脫氫酶(NAD-MDH)活性隨著處理時間延長總體呈下降趨勢。FF組酶活性在D5~D9中顯著高于CK組,FY組酶活性在脅迫時期內顯著高于YY組,FF組酶活性整體較CK組變化波動更穩定,YY組酶活性下降比例比FY組更大。由此推斷AMF可以提高鹽脅迫條件下草莓根系NAD-MDH活性,緩解鹽脅迫對根系呼吸的抑制。
2.4 鹽脅迫下草莓UWL強度的變化
2.4.1 草莓根系UWL強度 試驗結果如圖3-A所示,隨著時間的延長,未經鹽脅迫處理兩組UWL強度略微波動下降,鹽脅迫處理下的兩組根系UWL強度均呈現明顯下降趨勢。FF組整體UWL強度高于CK且下降幅度較小,推測接種AMF可以提高草莓根系UWL強度,且能使UWL強度維持在較為穩定狀態。脅迫結束時FY、YY組UWL強度分別為774.00、619.67,比脅迫第1天降低了14.3%、27.6%。由以上數據分析可以得出,鹽脅迫會導致草莓根系UWL強度下降,接種AMF可以緩解UWL強度下降趨勢,減少鹽脅迫對草莓根系造成的影響。
2.4.2 草莓葉片UWL強度 草莓葉片UWL強度試驗結果如圖3-B所示,在處理時間內,FF組葉片UWL強度呈現略微增強趨勢而CK組則略微減弱,整體上FF組UWL強度高于CK組,從而推斷AMF可以提高草莓葉片UWL強度。鹽脅迫下是否接種AMF對葉片UWL強弱有顯著影響。鹽脅迫導致草莓葉片UWL強度呈現隨時間延長而下降的趨勢,FY與YY組在9 d內UWL強度分別下降了17.82%、25.55%。D1為兩組UWL強度差距最小的測試時間,FY組強度為4 425.22,YY組為4 016.56,接種AMF后根系發光強度增強了10.17%;D9為兩組UWL強度差距最大的測試時間,FY組強度為
3 636.50,YY組為2 990.17,FY相比于YY強度增強了21.62%。以上表明鹽脅迫會導致草莓葉片UWL強度減弱,接種AMF可以緩解這種減弱現象。
2.5 鹽脅迫下草莓根系呼吸及相關酶活性與UWL強度的關系
在鹽脅迫下,草莓根系呼吸速率、三種根系呼吸相關酶活性、根系UWL強度以及葉片UWL強度均隨著試驗時間的延長而下降;接種了AMF的FY組雖呈現測量指標下降趨勢但速率低于未接菌的YY組。經相關性分析,純接菌組FF與對照組CK(圖4-A、B)的根系UWL強度與根系呼吸速率、G-6-PDH活性、PFK活性、NAD-MDH活性呈正相關,葉片UWL強度與根系UWL強度呈正相關。鹽脅迫下的FY(圖4-C)組、YY(圖4-D)組葉片UWL強度與根系UWL強度、根系呼吸速率、G-6-PDH活性、PFK活性、NAD-MDH活性均呈極顯著正相關;根系UWL強度與根系呼吸速率、G-6-PDH活性、PFK活性、NAD-MDH活性也呈極顯著正相關。分析表明,草莓在鹽脅迫下根系UWL強度與根系呼吸相關酶活性密切相關,因酶活性降低導致草莓根系呼吸速率降低,從而導致根系UWL強度降低,隨著脅迫時間的延長,根系受到鹽脅迫傷害加重,葉片也表現出鹽害特征,UWL強度也隨之降低。3 討 論
筆者在本研究中旨在探討AMF在鹽脅迫下對草莓根系呼吸和UWL強度的影響。結果顯示,鹽脅迫顯著抑制了草莓根系的呼吸速率和相關酶活性,且隨著時間的推移,根系和葉片的UWL強度逐漸下降。這一發現與陳曉晶等[9]、孫聰等[18]的研究一致。在無鹽脅迫條件下,接種AMF的草莓植株表現出更高的根系呼吸速率、酶活性和UWL強度,這表明AMF能夠增強植物的代謝活動,促進植物健康生長。在鹽脅迫條件下,接種AMF顯著減緩了草莓根系呼吸速率和酶活性的下降幅度,并且減緩了UWL強度的下降。這一發現與之前的研究一致。譚英等[19]研究得出接種AMF可以增強鹽脅迫下紫花苜??寡趸富钚?。吳艷芬等[20]發現接種AMF可促進大豆的呼吸代謝。本研究中的數據進一步支持了AMF在鹽脅迫條件下可對植物發揮保護作用的觀點。
呼吸作用是植物維持正常生長的重要一環,根系的呼吸作用可以釋放能量滿足植物各種生理活動需要,同時呼吸作用的中間產物為植物體其他組織器官的形成提供重要的碳骨架[21]。G-6-PDH是磷酸戊糖途徑的關鍵酶,其還原生成的NADPH在生物合成和維持細胞內還原態中起著至關重要的作用。PFK主要負責將果糖-6-磷酸和ATP轉化為果糖-1,6-二磷酸和ADP,是糖酵解途徑中的重要調控酶。MDH在細胞的多種生理功能中發揮著至關重要的作用,在線粒體內為三羧酸循環的關鍵酶,在胞質中則催化草酰乙酸還原生成蘋果酸。以上三種酶在草莓根系呼吸過程中起重要作用,因此試驗選取以上三種關鍵酶作為檢測指標。草莓根系對鹽分變化較為敏感,試驗中隨著鹽脅迫時間延長,根系呼吸相關的G-6-PDH、PFK、NAD-MDH活性下降,導致草莓根系呼吸速率降低,而接種AMF可以緩解三種呼吸相關酶活性和呼吸速率的下降趨勢。
植物的UWL強度被認為來自體內的核酸代謝、呼吸代謝等各種氧化還原過程,可以作為植物抗逆性的參考指標[22]。筆者在本研究中發現,未受到鹽脅迫的草莓根系、葉片UWL強度保持波動穩定,接種AMF后發光強度有明顯提升;受到鹽脅迫時,隨著時間延長葉片和根系UWL強度逐漸下降,接種AMF同樣可以緩解這種下降趨勢。結果表明接種AMF可以緩解草莓在鹽脅迫下造成的傷害。
根據試驗數據的相似變化趨勢,考慮到草莓地上部葉片的UWL強度與地下部根系的UWL強度之間可能存在一定相關關系,同時探討根系UWL強度與呼吸作用及酶活性之間的關系。通過相關性分析,發現在鹽脅迫環境下,草莓葉片UWL強度與草莓根系UWL強度、根系呼吸強度及幾種關鍵酶活性(G-6-PDH、PFK、NAD-MDH)之間存在顯著的正相關關系。這表明UWL強度可以作為衡量鹽濃度下草莓根系受脅迫程度的一個有效指標。根系是首先受到鹽脅迫影響的部位,直接受到鹽離子濃度變化的影響,導致呼吸作用和酶活性的變化。由于植物生長在土壤中,直接檢測根系的生理生化指標具有一定難度。筆者發現,在試驗設置的鹽濃度條件下,通過測量草莓葉片的UWL強度,可以間接評估根系的呼吸作用強度和相關酶活性,以此了解植物受脅迫程度。這種方法不僅提高了檢測的便捷性,還提供了一種非侵入性的手段來監測植物健康狀態和鹽脅迫反應的思路。綜合上述結果,通過相關性分析,發現在4組處理中草莓葉片生長與根系呼吸均存在正相關性,進一步支持了UWL強度作為植物生理狀態指標的潛力,為實際農業生產中的脅迫監測提供了理論依據和實踐指導。
4 結 論
鹽脅迫顯著抑制了草莓根系的呼吸相關酶活性,從而導致根系呼吸速率下降,根系和葉片UWL強度隨時間的推移而下降。AMF有效減小了呼吸速率和酶活性的下降幅度,并抑制了UWL強度的下降。草莓葉片UWL強度與根系UWL強度、根系呼吸強度及關鍵酶活性(G-6-PDH、PFK、NAD-MDH)之間存在正相關關系,通過測量草莓葉片的UWL強度,可以提供在重度鹽脅迫情況下根系呼吸強度和相關酶活性的評估指標。
參考文獻References:
[1] PROTEGGENTE A R,PANNALA A S,PAGANGA G,VAN BUREN L,WAGNER E,WISEMAN S,VAN DE PUT F,DACOMBE C,RICE-EVANS C A. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition[J]. Free Radical Research,2002,36(2):217-233.
[2] GIAMPIERI F,TULIPANI S,ALVAREZ-SUAREZ J M,QUILES J L,MEZZETTI B,BATTINO M. The strawberry:Composition,nutritional quality,and impact on human health[J]. Nutrition,2012,28(1):9-19.
[3] TULIPANI S,ROMANDINI S,BUSCO F,BOMPADRE S,MEZZETTI B,BATTINO M. Ascorbate,not urate,modulates the plasma antioxidant capacity after strawberry intake[J]. Food Chemistry,2009,117(1):181-188.
[4] WANG S Y,LIN H S. Antioxidant activity in fruits and leaves of blackberry,raspberry,and strawberry varies with cultivar and developmental stage[J]. Journal of Agricultural and Food Chemistry,2000,48(2):140-146.
[5] 吳雯雯,安玉艷,汪良駒. 5-氨基乙酰丙酸緩解‘紅顏’草莓鹽脅迫傷害的時間效應研究[J]. 園藝學報,2017,44(6):1038-1048.
WU Wenwen,AN Yuyan,WANG Liangju. Study on time effects of exogenous 5-aminolevulinic acid treatment on alleviating salinity injury in ‘Benihoppe’ strawberry[J]. Acta Horticulturae Sinica,2017,44(6):1038-1048.
[6] ONDRA?EK G,ROMI? D,ROMI? M,DURALIJA B,MUSTA? I. Strawberry growth and fruit yield in a saline environment[J]. Agriculturae Conspectus Scientificus,2006,71(4):155-158.
[7] MCCORMACK M L,DICKIE I A,EISSENSTAT D M,FAHEY T J,FERNANDEZ C W,GUO D L,HELMISAARI H S,HOBBIE E A,IVERSEN C M,JACKSON R B,LEPP?LAMMI-KUJANSUU J,NORBY R J,PHILLIPS R P,PREGITZER K S,PRITCHARD S G,REWALD B,ZADWORNY M. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes[J]. New Phytologist,2015,207(3):505-518.
[8] 馬懷宇,劉國成,呂德國,秦嗣軍. ‘寒富’蘋果花芽呼吸代謝途徑對低溫脅迫的響應特征[J]. 果樹學報,2012,29(3):317-321.
MA Huaiyu,LIU Guocheng,Lü Deguo,QIN Sijun. Responsive characteristics of respiratory metabolism pathway activity in ‘Hanfu’ apple flower buds under cold stress[J]. Journal of Fruit Science,2012,29(3):317-321.
[9] 陳曉晶,徐忠山,趙寶平,米俊珍,嚴威凱,劉景輝. 鹽脅迫對燕麥根系呼吸代謝、抗氧化酶活性及產量的影響[J]. 生態學雜志,2021,40(9):2773-2782.
CHEN Xiaojing,XU Zhongshan,ZHAO Baoping,MI Junzhen,YAN Weikai,LIU Jinghui. Effects of salt stress on root respiratory metabolism,antioxidant enzyme activities,and yield of oats[J]. Chinese Journal of Ecology,2021,40(9):2773-2782.
[10] COSTA J H,JOLIVET Y,HASENFRATZ-SAUDER M P,ORELLANO E G,DA GUIA S L M,DIZENGREMEL P,DE MELO D F. Alternative oxidase regulation in roots of Vigna unguiculata cultivars differing in drought/salt tolerance[J]. Journal of Plant Physiology,2007,164(6):718-727.
[11] POPP F A,LI K H,MEI W P,GALLE M,NEUROHR R. Physical aspects of biophotons[J]. Experientia,1988,44(7):576-585.
[12] 郭金麗,劉歡,梁爽,朱冠宇,白楊,李連國. 活性氧調控下草莓果實衰老過程中活性氧與超微弱發光的關系[J]. 果樹學報,2017,34(3):363-369.
GUO Jinli,LIU Huan,LIANG Shuang,ZHU Guanyu,BAI Yang,LI Lianguo. Relationship between reactive oxygen species and ultraweak luminescence in strawberry fruit during senescence under various reactive oxygen regulation treatments[J]. Journal of Fruit Science,2017,34(3):363-369.
[13] PRASAD A,GOURIPEDDI P,DEVIREDDY H R N,OVSII A,RACHAKONDA D P,WIJK R V,POSPí?IL P. Spectral distribution of ultra-weak photon emission as a response to wounding in plants:An in vivo study[J]. Biology,2020,9(6):139.
[14] 程海鵬,王君暉,池浩超,朱睦元. 豌豆種子萌發過程中超微弱發光的研究[J]. 浙江大學學報(理學版),2001,28(6):682-685.
CHENG Haipeng,WANG Junhui,CHI Haochao,ZHU Muyuan. Study on ultraweak luminescence of Pisum sativum seeds at the stage of germination[J]. Journal of Zhejiang University (Sciences Edition),2001,28(6):682-685.
[15] 雷曉光. 叢枝菌根真菌(AMF)與草莓共生效應研究[D]. 呼和浩特:內蒙古農業大學,2017.
LEI Xiaoguang. Symbiotic effect of arbuscular mycorrhizal fungi (AMF) on strawberry[D]. Hohhot:Inner Mongolia Agricultural University,2017.
[16] 王思雨,魏涵,陳科宇,董強,紀寶明,張靜. 叢枝菌根真菌(AMF)孢子、菌絲密度及侵染率定量測定方法[J]. Bio-101,2021:e2104253.
WANG Siyu,WEI Han,CHEN Keyu,DONG Qiang,JI Baoming,ZHANG Jing. Practical methods for arbuscular mycorrhizal fungal spore density,hyphal density and colonization rate of AMF[J]. Bio-101,2021:e2104253.
[17] 毛志泉,王麗琴,沈向,束懷瑞,鄒巖梅. 有機物料對平邑甜茶實生苗根系呼吸強度的影響[J]. 植物營養與肥料學報,2004,10(2):171-175.
MAO Zhiquan,WANG Liqin,SHEN Xiang,SHU Huairui,ZOU Yanmei. Effect of organic materials on respiration intensity of annual Malus hupehensis Rehd. root system[J]. Plant Nutrition and Fertilizing Science,2004,10(2):171-175.
[18] 孫聰,郭金麗. 鹽脅迫下歐李葉片葉綠素代謝與超微弱發光的關系[J]. 果樹學報,2023,40(7):1411-1420.
SUN Cong,GUO Jinli. The relationship between chlorophyll metabolism and ultraweak luminescence of leaves under salt stress in Cerasus humilis[J]. Journal of Fruit Science,2023,40(7):1411-1420.
[19] 譚英,尹豪. 鹽脅迫下根施AMF和褪黑素對紫花苜蓿生長、光合特征以及抗氧化系統的影響[J]. 草業學報,2024,33(6):64-75.
TAN Ying,YIN Hao. Effects of root application of an arbuscular mycorrhizal fungus and melatonin on the growth,photosynthetic characteristics,and antioxidant system of Medicago sativa under salt stresss[J]. Acta Prataculturae Sinica,2024,33(6):64-75.
[20] 吳艷芬,劉秋鳴,劉衛歡,蒙愛萍,陳振翔,劉靈. AMF與根瘤菌對間作大豆光合與呼吸代謝的影響[J]. 廣西師范大學學報(自然科學版),2022,40(2):231-241.
WU Yanfen,LIU Qiuming,LIU Weihuan,MENG Aiping,CHEN Zhenxiang,LIU Ling. Effects of inoculation of AMF and Rhizobium on photosynthetic and respiratory metabolism and growth of intercropping Glycine max[J]. Journal of Guangxi Normal University (Natural Science Edition),2022,40(2):231-241.
[21] 高相彬,趙鳳霞,沈向,胡艷麗,郝云紅,楊樹泉,蘇立濤,毛志泉. 肉桂酸對平邑甜茶幼苗根系呼吸速率及相關酶活性的影響[J]. 中國農業科學,2009,42(12):4308-4314.
GAO Xiangbin,ZHAO Fengxia,SHEN Xiang,HU Yanli,HAO Yunhong,YANG Shuquan,SU Litao,MAO Zhiquan. Effects of cinnamon acid on respiratory rate and its related enzymes activity in roots of seedlings of Malus hupehensis Rehd.[J]. Scientia Agricultura Sinica,2009,42(12):4308-4314.
[22] 習崗. 植物超弱發光及其在農業上的應用[J]. 物理,1994,23(9):548-552.
XI Gang. Ultra-weak luminescence in plants and its application to agriculture[J]. Physics,1994,23(9):548-552.