999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

不同供水量對基質栽培軟棗獼猴桃中紅貝7號生長的影響

2025-03-03 00:00:00李昊孫小旭齊秀娟顧紅李蘭程大偉陳錦永楊英軍
果樹學報 2025年1期

摘 要:【目的】探究不同灌水量對基質栽培模式下軟棗獼猴桃(中紅貝7號)生長動態的影響,篩選出適宜軟棗獼猴桃生長的水分管理方案,以提升軟棗獼猴桃的生長性能,為優化軟棗獼猴桃基質栽培提供科學供水依據和實用建議。【方法】以基質栽培的1年生中紅貝7號軟棗獼猴桃為試材,設置基質持水量(saturated moisture content,SMC)的60%、70%、80%、90%、100%、110%、120%共7個處理,成活后測量其主干、主蔓、結果母蔓以及葉片相關生長指標,分析凈增長量與不同供水量的關聯性。【結果】主干和主蔓隨基質持水量的提高均顯著增加(p<0.05),基質持水量為100%、110%、120%時效果明顯,主干粗度凈增長達極顯著水平(p<0.01),尤以基質持水量110%處理的效果最佳。結果母蔓長度凈增長量與主干增長趨勢一致,但在基質持水量60%與120%處理的無顯著差異。結果母蔓粗度凈增長量隨基質持水量的提高而增加,低灌溉量處理(60%、70%、80%)與充足灌溉處理(100%、110%、120%)存在顯著差異。葉片面積凈增長量表明,低灌水量處理組的葉片表現優于高灌水量處理組。【結論】不同供水量對軟棗獼猴桃植株生長影響較大,綜合比較測量指標的凈增長量,110%、120%兩種灌溉量效果明顯。研究結果為基質栽培軟棗獼猴桃適宜的水分管理方案提供了參考。

關鍵詞:軟棗獼猴桃;水分供應;基質栽培;生長特性

中圖分類號:S663.4 文獻標志碼:A 文章編號:1009-9980(2025)01-0207-09

Effect of different water supply on the growth of kiwiberry vine cultivated in substrate

LI Hao1, 2, 3, SUN Xiaoxu2, 3#, QI Xiujuan2, 3, GU Hong2, 3, LI Lan2, 3, CHENG Dawei2, 3, CHEN Jinyong2, 3*, YANG Yingjun1*

(1College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, Henan, China; 2Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/National Key Laboratory for Germplasm Innovation amp; Utilization of Horticultural Crops/National Innovation Sub-Center for Digital Planting Industry (Orchard), Zhengzhou 450009, Henan, China; 3Zhongyuan Research Center, CAAS, Xinxiang 453000, Henan, China)

Abstract: 【Objective】 This study aimed to investigate the effects of different levels of irrigation on the growth dynamics of Zhong Hong Bei 7 hao kiwiberry (Actinidia arguta) vine under substrate cultivation. The primary goal was to identify the most suitable water management strategy to enhance the growth performance of the kiwiberry. By evaluating various irrigation strategies, the study sought to provide scientific recommendations and practical guidelines for optimizing substrate cultivation of kiwiberry. 【Methods】 One-year-old kiwiberry plants were selected for the experiment. On March 12, 2023, the kiwiberry plants grown from nursery bags were transplanted into a rain-shelter, using cylindrical nutrient bags with a diameter of 60 cm and a height of 60 cm for substrate cultivation. The planting density was 2 m × 3 m, and the plants were trained into a single main trunk with two lateral vines in a pinnate shape. The plants were subjected to seven irrigation treatments based on substrate maximum water holding capacity (saturated moisture content, SMC): 60%, 70%, 80%, 90%, 100%, 110%, and 120%. Each treatment was replicated three times to ensure statistical validity. The survival rates were recorded after planting, and growth metrics such as the length and thickness of the main trunk, primary vine, and fruiting branches, as well as leaves size, were measured 84 days after planting. The total net growth and growth increments between measurement intervals were compared across different treatments to assess the impact of irrigation levels on kiwifruit growth. The data analysis was conducted using One way ANOVA and LSD multiple comparison methods to determine the significant effects of different irrigation treatments on growth parameters. 【Results】 The substrate moisture levels significantly affected the growth performance of kiwiberry. The net growth of the main trunk and primary vine increased significantly with higher substrate moisture levels (p<0.05). Among the treatments, SMC-100%, SMC-110%, and SMC-120% significantly increased the net growth of the main stem’s diameter (p<0.01). The SMC-110% treatment yielded the best results. The net growth in the diameter of the main stem and primary vine showed significant increases during T2 (mid to late June), T4 (late July to mid-August), and T5 (late August to mid-September). The net growth in length of the fruiting branches showed a trend of initially increasing and then decreasing with the increase of substrate moisture levels. No significant differences were observed between the SMC-60% and SMC-120% treatments, indicating that the impact of irrigation levels on the length growth of the fruiting vine was quite complex. In contrast, the net growth in thickness of the fruiting vine increased significantly with the higher substrate moisture levels, with notable differences between the low irrigation treatments (e.g., SMC-60%, SMC-70%, SMC-80%) and sufficient irrigation treatments (e.g., SMC-100%, SMC-110%, SMC-120%) (p<0.05).The net growth in the diameter of the fruiting branch showed significant increase during T3 (early July) and T4 (July to mid-August). Regarding the leaf growth indicators, the lower irrigation treatments (e.g., SMC-60%, SMC-70%, SMC-80%) resulted in better leaf performance compared with the higher irrigation treatments (e.g., SMC-100%, SMC-110%, SMC-120%). The periods T2 and T6 were identified as phases of rapid growth for the leaves. The SPAD values and nitrogen content of the leaves were also affected to varying degrees by different substrate moisture levels. Within the same treatment, the trends in the leaf SPAD values and nitrogen content were generally consistent. Notably, leaves under low moisture treatments showed a more rapid response in changes to the SPAD values and nitrogen content. 【Conclusion】 The different irrigation levels had a significant impact on the growth of kiwiberry. SMC-110% and SMC-120% irrigation levels had biggest effect on the net growth compared with other treatments. SMC-110% or SMC-120% irrigation levels should be adopted as water management strategies in practical cultivation to optimize the growth of kiwiberry.

Key words: Kiwiberry; Water supply; Substrate cultivation; Growth characteristic

軟棗獼猴桃(Actinidia arguta Sieb. et Zucc.)為獼猴桃科獼猴桃屬的多年生雌雄異株藤本植物[1],其果實表皮光滑無毛、營養豐富、風味獨特,具有較高的食用、藥用及經濟價值,近年來已逐漸成為各國競相推廣的新興果樹種類。隨著產業快速發展,種苗質量不高、栽植成活率低、管理水平低下、產量和品質不高等問題日益成為軟棗獼猴桃生產中的限制因素[2]。另外,軟棗獼猴桃的根為肉質根,根系較淺,對水分需求更為嚴苛[2-4],如何合理進行水分管理、提高水分利用率、制定合理灌溉方案正在成為軟棗獼猴桃產業關注的熱點。

作為一個傳統農業大國,中國農業用水占全部用水總量的80%以上[5],但長期存在灌溉水分利用率偏低的問題,僅45%[6],造成水資源極大浪費,而且還有多地常因干旱缺水造成農業大幅減產甚至絕收,可見科學精準用水對保證作物正常生長、高產穩產、穩定品質具有重要意義。

近年來興起的基質栽培技術與傳統技術相比具有高水分利用率、高空間利用率、操作便捷等特點[7-8],該技術不僅大大減少了人力資源投入,還克服了土壤栽培引發的一系列環境問題[9];不但可根據作物特點對生長環境進行合理調控、優化生產環境、提高生產力[10],還可根據作物特點、生態環境等因素,精準控制生長所需水量及時間[11-12]。科學灌溉制度的制定和水資源高效利用,推動傳統農業向數字化、精準化和智慧化的變革已成為農業可持續發展的必由之路[13-18]。

筆者在本研究中通過7種不同水分供應處理,研究其對基質栽培軟棗獼猴桃的干、蔓、葉生長的影響,期望篩選出適宜的水分供應方案,為制定基質栽培軟棗獼猴桃合理的灌溉方案提供理論依據。

1 材料和方法

1.1 試驗地點

試驗于2023年在中國農業科學院鄭州果樹研究所軟棗獼猴桃試驗園(113°06′ E,34°07′ N)進行。

1.2 試驗材料

供試材料為中國農業科學院鄭州果樹研究所選育的軟棗獼猴桃品種中紅貝7號(A. arguta ‘Zhong Hong Bei No. 7’)1年生植株,2023年3月12日將前一年繁育的以野生軟棗獼猴桃為砧木嫁接的中紅貝7號營養袋苗定植在試驗園,采用直徑60 cm、高度60 cm、厚度1.3 mm的黑色無紡布圓柱形營養袋進行基質栽培(圖1),栽培基質采用普通育苗營養土與草炭按照體積比1∶1均勻混合,株行距為2 m×3 m,采用一干兩蔓羽狀整形。

1.3 試驗設計

試驗共設計7個供水量處理,分別為基質持水量(saturated moisture content,SMC)的60%(SMC-60%)、70%(SMC-70%)、80%(SMC-80%)、90%(SMC-90%)、100%(SMC-100%)、110%(SMC-110%)、120%(SMC-120%),單株小區,3次重復。使用水肥一體化智能系統設定灌溉時間,使用不同流量滴箭區分灌水量,統一進行灌溉管理。使用托普云農TP-WSB-02溫室寶(溫室環境監測儀)監控基質內溫濕度等參數情況,當基質含水量低于設定值時進行補水。

1.4 測定指標與方法

軟棗獼猴桃試材兩條主蔓南北分布,主蔓上發出的側蔓向主蔓兩側生長,作為下一年的結果母蔓。側蔓長至1.5 m時進行摘心增粗、促進花芽分化。營養袋苗定植84 d后開始測量,主要測定主干、主蔓、結果母蔓和葉片生長情況(圖1),在固定位置做好標記,每次均在標記位置進行測量。兩次測量間隔25 d,一年共測量6次(6—10月),標記為T1~T6。

植株生長特性測定:對試驗株主干、南北兩條主蔓基部1 cm處進行標記,隨后對所標記主蔓由基部至梢頭,依照發梢順序在第1~2條、第3~4條以及第5~6條位置上各隨機標記1條結果母蔓;使用卷尺和數顯游標卡尺分別測量主干、主蔓和結果母蔓的長度以及基部1 cm處的莖粗度,統計凈增長量。

葉片功能測定:在每條標記結果母蔓上的第3~6枚葉片中隨機選取1枚葉片進行標記,使用托普云農TYS-4N(FO2)植物養分測定儀測量葉片大小、厚度、葉綠素相對含量(SPAD值)、氮含量指標等。

1.5 數據處理與分析

采用Microsoft Excel 2019統計分析試驗數據,使用IBM SPSS Statistics 23.0進行差異顯著性檢驗(LSD法,p<0.05)和相關性分析,使用Origin 2019軟件作圖。

2 結果與分析

2.1 不同供水量對軟棗獼猴桃1年生植株主干粗度的影響

軟棗獼猴桃主干粗度凈增長量隨基質持水量提高在SMC-110%時達到最大(圖2),SMC-60%處理的增長幅度最小,凈增長量差異顯著(p<0.01)。主干粗度凈增長在SMC-110%達到最大后開始下降,相較于其他處理分別提高了188%(SMC-60%)、137%(SMC-70%)、106%(SMC-80%)、28%(SMC-90%)、14%(SMC-100%)、30%(SMC-120%)。

對比每兩次調查間指標凈增長量(圖3),基質持水量SMC-60%以上時,試驗植株在T2(6月中下旬)、T4(7月下旬至8月中旬)、T5(8月下旬至9月中旬)時主干粗度凈增長量漲幅較大,為快速生長期。T3(7月初)、T6(10月下旬)時漲幅較小,為緩慢增長期。基質含水量較低情況下即在SMC-60%時,僅在T2時有較大增長。

2.2 不同供水量對中紅貝7號軟棗獼猴桃主蔓長度和粗度的影響

軟棗獼猴桃主蔓凈增長量隨基質持水量提高呈上升趨勢(圖4),SMC-110%和SMC-120%處理的主蔓長度和粗度凈增長量相較于其他處理顯著增加,不同處理間存在顯著差異(p<0.05)。軟棗獼猴桃主蔓長度和粗度的凈增長量均在SMC-120%達到最大。

對比每兩次調查間主蔓長度、粗度凈增長量(圖5),在T2(6月中下旬)、T4(7月下旬至8月中旬)、T5(8月下旬至9月中旬)時漲幅較大,此為快速生長期。而在T3(7月初)、T6(10月下旬)漲幅相對較小,為緩慢生長期。

2.3 不同供水量對軟棗獼猴桃植株結果母蔓長度和粗度的影響

當結果母蔓長至1.5 m后進行摘心或剪梢,抑制其生長。在分析該指標時選取摘心前一次數據。結果母蔓長度的凈增長量趨勢隨基質持水量增加呈現先上升后下降的趨勢(圖6),SMC-100%最大,不同供水量處理間均無顯著差異。結果母蔓粗度的凈增長量隨著基質持水量的提高而提高,SMC-60%表現最差,SMC-120%表現最好,低供水量處理(SMC-60%、SMC-70%、SMC-80%)與充足水分處理(SMC-100%、SMC-110%、SMC-120%)間存在顯著差異。

如圖7所示,結果母蔓粗度凈增長量在T3、T4(7月至8月中旬)時漲幅較大,為母蔓粗度的快速增長期。在T2(6月中下旬)、T5(8月下旬至9月中旬)、T6(10月下旬)時漲幅相對較小,為緩慢生長期。

2.4 不同供水量對軟棗獼猴桃葉片生長及生理特性的影響

各供水量處理下,葉片面積、厚度均呈上升趨勢,其中SMC-80%處理的葉片面積凈增長量最大,SMC-110%的最小。低供水量(SMC-60%、SMC-70%、SMC-80%、SMC-90%)處理的葉厚凈增長量整體大于充足水分(SMC-100%、SMC-110%、SMC-120%)處理的。

不同處理間葉片厚度凈增長量無顯著差異,在基質持水量較低(SMC-60%、SMC-70%、SMC-80%)時該指標大于充足水分(SMC-100%、SMC-110%、SMC-120%)情況下的凈增長量(圖8)。對比每兩次葉面積、厚度凈增長量(圖9),葉面積在T2、T3、T6時漲幅較大,為葉面積快速生長期,葉片厚度在T2、T5、T6時漲幅較大,為葉片厚度的快速生長期。綜上,T2(6月中下旬)、T6(10月下旬)時為葉片的快速生長期。

圖10可以看出不同水分處理下的葉片葉綠素相對含量(SPAD值)、氮含量在第一次(T1)測量時數值差異較大,后均呈快速上升趨勢;不同水分處理下葉片SPAD值和氮含量分別在T2、T3時緩慢下降,最后分別在T5或T6時緩慢上升并處在較高水平。T6時各處理間SPAD值、氮含量差異不明顯,且同一處理下葉片SPAD值和氮含量變化趨勢基本一致。

3 討 論

水是植物細胞的主要組成部分,水分通過根系吸收直接參與植物代謝活動,是植物進行光合作用的重要原料;同時充當所需礦質元素的運輸載體,為植物提供受壓支持并促進物質運輸。適宜的水分供應有利于植物正常的生理活動與代謝,而水分過多會對植物生理機制造成傷害[19-22]。同樣,存在嚴重水分脅迫時,也會導致長勢減弱、莖蔓生長受到抑制[23-25];因此,某種程度上來說植物的高度和粗度等外觀性狀可以直觀反映出水分的供應狀況[26]。

在本研究中,1年生中紅貝7號軟棗獼猴桃在基質水分含量較低或超過基質持水量時的主干、主蔓以及結果母蔓的長度和粗度等外觀性狀均受到明顯影響。當基質持水量較高如在120%時,主蔓的長度和粗度以及母蔓粗度凈增長量最大。而主干粗凈增長量比最大凈增長量少了23%,母蔓長凈增長量比最大凈增長量少了8.3%。在低基質持水量如在60%時,此時植株生長凈增長量最小;相較于最大凈增長量主干粗度、主蔓以及母蔓長度和粗度分別減少了65%、50%和21%以及18%和31%。這與前人在桃[27]、刺槐[28]上的研究結果類似。同時,低水分供應導致葉片正常功能會受到一定程度的損害,葉綠素含量減少、光合速率降低,且降低幅度與水分脅迫的嚴重程度呈正相關[29];輕度干旱對生長無明顯影響,反而會提高作物的水分利用率和光合速率[30-33]。這與本研究中葉片表現結果一致,較低水分處理下的葉片優于充足水分處理時的生長表現,葉片SPAD值與氮含量受不同程度影響,其趨勢表明低水分處理的葉片SPAD值和氮含量變化響應更為迅速。而葉面積、葉片厚度凈增長量在不同供水量條件下,并未遵循隨基質水分提高而逐步提高的規律,這是否與試材使用遮陽網防曬有關,還需進一步探究。

4 結 論

不同供水量對1年生基質栽培中紅貝7號軟棗獼猴桃的生長影響差異顯著,在基質含水量110%、120%處理下主干、蔓、母蔓長度、粗度和葉片等生長指標凈增長量綜合表現較好,可作為基質栽培軟棗獼猴桃適宜的水分管理方案。

參考文獻 References:

[1] PINTO D,DELERUE-MATOS C,RODRIGUES F. Bioactivity,phytochemical profile and pro-healthy properties of Actinidia arguta:A review[J]. Food Research International,2020,136:109449.

[2] 齊秀娟,郭丹丹,王然,鐘云鵬,方金豹. 我國獼猴桃產業發展現狀及對策建議[J]. 果樹學報,2020,37(5):754-763.

QI Xiujuan,GUO Dandan,WANG Ran,ZHONG Yunpeng,FANG Jinbao. Development status and suggestions on Chinese kiwifruit industry[J]. Journal of Fruit Science,2020,37(5):754-763.

[3] 張效星,樊毅,崔寧博,李晨,胡笑濤,龔道枝. 不同灌水量對滴灌獼猴桃光合、產量與水分利用效率的影響[J]. 灌溉排水學報,2019,38(1):1-7.

ZHANG Xiaoxing,FAN Yi,CUI Ningbo,LI Chen,HU Xiaotao,GONG Daozhi. The effects of drip-irrigation amount on photosynthesis,yield and water use efficiency of kiwifruit[J]. Journal of Irrigation and Drainage,2019,38(1):1-7.

[4] 甘雨康,施浩然,崔寧博,康佳輝. 不同微灌方式下水分調控對獼猴桃光合特性及產量的影響[J]. 灌溉排水學報,2020,39(4):17-25.

GAN Yukang,SHI Haoran,CUI Ningbo,KANG Jiahui. Effects of water regulation on photosynthetic characteristics and yield of kiwifruit leaves under different micro-irrigation methods[J]. Journal of Irrigation and Drainage,2020,39(4):17-25.

[5] 羅良國,任愛勝,王瑞梅,郭鴻鵬. 我國農業可持續發展的水危機及廣泛開展節水農業前景初探[J]. 節水灌溉,2000(5):6-9.

LUO Liangguo,REN Aisheng,WANG Ruimei,GUO Hongpeng. An elementary study on water resource crisis and agricultural WS foreground for agriculture sustainable development in China[J]. Water Saving Irrigation,2000(5):6-9.

[6] 梁金霞. 現代節水農業技術探討[J]. 現代農業科技,2022(23):139-142.

LIANG Jinxia. Discussion on modern water-saving agricultural technology[J]. Modern Agricultural Science and Technology,2022(23):139-142.

[7] 謝小玉,鄒志榮,江雪飛,妙曉莉. 中國蔬菜無土栽培基質研究進展[J]. 中國農學通報,2005,21(6):280-283.

XIE Xiaoyu,ZOU Zhirong,JIANG Xuefei,MIAO Xiaoli. Research advances of substrates in soil-less culture of vegetables in China[J]. Chinese Agricultural Science Bulletin,2005,21(6):280-283.

[8] 晏瓊,劉曉宇,虞昊安,李翎慈,劉瀟漪,張育新,戴昊鳴,陳斯琳,成喜雨. 植物無土栽培技術研究進展[J]. 中國農業大學學報,2022,27(5):1-11.

YAN Qiong,LIU Xiaoyu,YU Haoan,LI Lingci,LIU Xiaoyi,ZHANG Yuxin,DAI Haoming,CHEN Silin,CHENG Xiyu. Recent advances in plant soilless cultivation[J]. Journal of China Agricultural University,2022,27(5):1-11.

[9] 孫錦,李謙盛,岳冬,高洪波,康云艷,田婧,李晶,郭世榮. 國內外無土栽培技術研究現狀與應用前景[J]. 南京農業大學學報,2022,45(5):898-915.

SUN Jin,LI Qiansheng,YUE Dong,GAO Hongbo,KANG Yunyan,TIAN Jing,LI Jing,GUO Shirong. Research status and application prospects of soilless culture technology in the world[J]. Journal of Nanjing Agricultural University,2022,45(5):898-915.

[10] 殷學云,張國森,劉華. 戈壁日光溫室西葫蘆—菜豆有機生態型無土栽培技術[J]. 中國蔬菜,2020(11):113-115.

YIN Xueyun,ZHANG Guosen,LIU Hua. Gobi solar greenhouse zucchini-bean organic ecotype soilless cultivation technology[J]. China Vegetables,2020(11):113-115.

[11] 張曉斌,馮俊杰,劉楊,韓啟彪,婁和,王明. 灌溉流量自調節閥的結構設計與性能分析[J]. 節水灌溉,2020(6):56-60.

ZHANG Xiaobin,FENG Junjie,LIU Yang,HAN Qibiao,LOU He,WANG Ming. Structural design and performance analysis of irrigation flow auto-regulating valve[J]. Water Saving Irrigation,2020(6):56-60.

[12] 崔文軍,李大山,劉祖貴,張寄陽,高陽,申孝軍. 幾種墑情監測設備的測量精度對比研究[J]. 中國農村水利水電,2014(5):61-63.

CUI Wenjun,LI Dashan,LIU Zugui,ZHANG Jiyang,GAO Yang,SHEN Xiaojun. An analysis of measuring accuracy of different kinds of soil moisture monitoring equipment[J]. China Rural Water and Hydropower,2014(5):61-63.

[13] ALIZADEH Z,GHASEMNEZHAD M,SANGANI M F,ATAK A. The effects of high concentration of bicarbonate applications on kiwifruit genotypes with different ploidy levels on some growth parameters of leaves[J]. Turkish Journal of Agriculture and Forestry,2023,47(4):436-447.

[14] PUROHIT S,RAWAT J M,PATHAK V K,SINGH D K,RAWAT B. A hydroponic-based efficient hardening protocol for in vitro raised commercial kiwifruit (Actinidia deliciosa)[J]. In Vitro Cellular amp; Developmental Biology - Plant,2021,57(3):541-550.

[15] PENG D D,CHEN D G,XU K W,PENTTINEN P,YOU H Y,LIAO H P,YANG R,CHEN Y X. Optimal substrate moisture content for kiwifruit (Actinidia valvata Dunn) seedling growth based on analyses of biomass,antioxidant defense,and photosynthetic response[J]. Agronomy,2023,13(7):1858.

[16] WOZNICKI T,KUSNIEREK K,VANDECASTEELE B,S?NSTEBY A. Reuse of coir,peat,and wood fiber in strawberry production[J]. Frontiers in Plant Science,2024,14:1307240.

[17] ?IRIN U,ERTAN E,ERTAN B. Growth substrates and fig nursery tree production[J]. Scientia Agricola,2010,67(6):633-638.

[18] 李智琪,李晴,董相潔,乜蘭春,趙文圣,趙麗平,王磊,劉淑芹. 以醋糟為主要成分的無土栽培基質篩選及其對甜瓜生長和果實品質的影響[J]. 山東農業科學,2023,55(9):72-78.

LI Zhiqi,LI Qing,DONG Xiangjie,NIE Lanchun,ZHAO Wensheng,ZHAO Liping,WANG Lei,LIU Shuqin. Selection of soilless cultivation substrate with vinegar dregs as main component and its effect on melon growth and fruit quality[J]. Shandong Agricultural Sciences,2023,55(9):72-78.

[19] 鄧輝茗,龍聰穎,蔡仕珍,宋宇,鄢如霞,車亦然,王長見,肖瑤. 不同水分脅迫對綿毛水蘇幼苗形態和生理特性的影響[J]. 西北植物學報,2018,38(6):1099-1108.

DENG Huiming,LONG Congying,CAI Shizhen,SONG Yu,YAN Ruxia,CHE Yiran,WANG Changjian,XIAO Yao. Morphology and physiological characteristics of Stachys lanata seedling under water stress[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38(6):1099-1108.

[20] 王佳嵐,李春杰. 不同水分梯度對堿茅農藝性狀的影響[J]. 草地學報,2021,29(7):1584-1588.

WANG Jialan,LI Chunjie. Effect of different water gradients on agronomic characters of Puccinellia distans[J]. Acta Agrestia Sinica,2021,29(7):1584-1588.

[21] 鐘海霞,張付春,潘明啟,張雯,韓守安,謝輝,王敏,周曉明,艾爾買克·才卡斯木,伍新宇. 不同灌水量對赤霞珠葡萄光合作用的影響[J]. 新疆農業科學,2020,57(3):492-497.

ZHONG Haixia,ZHANG Fuchun,PAN Mingqi,ZHANG Wen,HAN Shouan,XIE Hui,WANG Min,ZHOU Xiaoming,Ermek·Cakasim,WU Xinyu. Effects of different irrigation amounts on photosynthesis of Cabernet Sauvignon grapes[J]. Xinjiang Agricultural Sciences,2020,57(3):492-497.

[22] CALVO F E,TRENTACOSTE E R,SILVENTE S T. Vegetative growth,yield,and crop water productivity response to different irrigation regimes in high density walnut orchards (Juglans regia L.) in a semi-arid environment in Argentina[J]. Agricultural Water Management,2022,274:107969.

[23] HUSSAIN M,MALIK M A,FAROOQ M,ASHRAF M Y,CHEEMA M A. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower[J]. Journal of Agronomy and Crop Science,2008,194(3):193-199.

[24] 張玉,冷海楠,曹宏杰,徐明怡. 干旱脅迫對植物的影響研究[J]. 黑龍江科學,2022,13(14):22-24.

ZHANG Yu,LENG Hainan,CAO Hongjie,XU Mingyi. Study on the influence of drought stress on botany[J]. Heilongjiang Science,2022,13(14):22-24.

[25] 馬福林,馬玉花. 干旱脅迫對植物的影響及植物的響應機制[J]. 寧夏大學學報(自然科學版),2022,43(4):391-399.

MA Fulin,MA Yuhua. Effect of drought stress on plants and their response mechanism[J]. Journal of Ningxia University (Natural Science Edition),2022,43(4):391-399.

[26] 陸日惠,徐力興,周曉星,盛世紅,馮晨,陳釧,唐麗. 淹水脅迫對福建山櫻花幼苗生長和光合特性的影響[J]. 江西農業大學學報,2022,44(4):871-881.

LU Rihui,XU Lixing,ZHOU Xiaoxing,SHENG Shihong,FENG Chen,CHEN Chuan,TANG Li. Effects of flooding stress on growth and photosynthesis of Cerasus campanulate seedlings[J]. Acta Agriculturae Universitatis Jiangxiensis,2022,44(4):871-881.

[27] WANG D,ZHANG H H,GARTUNG J. Long-term productivity of early season peach trees under different irrigation methods and postharvest deficit irrigation[J]. Agricultural Water Management,2020,230:105940.

[28] 唐洋,溫仲明,王楊,劉靜. 土壤水分脅迫對刺槐幼苗生長、根葉性狀和生物量分配的影響[J]. 水土保持通報,2019,39(6):98-105.

TANG Yang,WEN Zhongming,WANG Yang,LIU Jing. Effects of soil water stress on growth,root and leaf traits,and biomass allocation of Robinia pseudoacacia seedlings[J]. Bulletin of Soil and Water Conservation,2019,39(6):98-105.

[29] 王海珍,韓路,徐雅麗,牛建龍,于軍. 土壤水分梯度對灰胡楊光合作用與抗逆性的影響[J]. 生態學報,2017,37(2):432-442.

WANG Haizhen,HAN Lu,XU Yali,NIU Jianlong,YU Jun. Effects of soil water gradient on photosynthetic characteristics and stress resistance of Populus pruinosa in the Tarim Basin,China[J]. Acta Ecologica Sinica,2017,37(2):432-442.

[30] PéREZ-áLVAREZ E P,INTRIGLIOLO M D S,VIVALDI G A,GARCíA-ESPARZA M J,LIZAMA V,áLVAREZ I. Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate:I. water relations,vine performance and grape composition[J]. Agricultural Water Management,2021,248:106772.

[31] PENG S Z,GAO X L,YANG S H,YANG J,ZHANG H X. Water requirement pattern for tobacco and its response to water deficit in Guizhou Province[J]. Water Science and Engineering,2015,8(2):96-101.

[32] 梁銀麗,康紹忠. 節水灌溉對冬小麥光合速率和產量的影響[J]. 西北農業大學學報,1998,26(4):16-19.

LIANG Yinli,KANG Shaozhong. Effects of water saving irrigation on photosynthesis and yield of winter wheat (Triticum aestivum L.)[J]. Acta University Agriculture Boreali-occidentalis,1998,26(4):16-19.

[33] GONZALEZ-DUGO V,RUZ C,TESTI L,ORGAZ F,FERERES E. The impact of deficit irrigation on transpiration and yield of mandarin and late oranges[J]. Irrigation Science,2018,36(4):227-239.

主站蜘蛛池模板: 欧美另类视频一区二区三区| 亚洲第一成年人网站| 久久久久免费精品国产| 亚洲人精品亚洲人成在线| 国产精品久久久久婷婷五月| 看国产一级毛片| 久996视频精品免费观看| 免费jjzz在在线播放国产| 亚洲综合久久成人AV| 国产又粗又猛又爽视频| 亚洲国产理论片在线播放| 免费在线国产一区二区三区精品| 国产青青草视频| 国产精品无码一区二区桃花视频| 波多野结衣爽到高潮漏水大喷| 久久国产乱子| 1024你懂的国产精品| 热久久国产| 久久成人18免费| www成人国产在线观看网站| 久久精品无码专区免费| 97久久超碰极品视觉盛宴| 亚洲大学生视频在线播放| 人妻21p大胆| 伊人蕉久影院| 在线观看亚洲人成网站| 婷婷午夜影院| 亚洲美女一级毛片| 欧美怡红院视频一区二区三区| 伊人查蕉在线观看国产精品| 亚洲乱码在线视频| 亚洲视频四区| 99偷拍视频精品一区二区| 国产精品视频白浆免费视频| 免费 国产 无码久久久| 四虎国产在线观看| 91精品国产一区| 日韩欧美中文| 亚洲精品亚洲人成在线| 久久综合色播五月男人的天堂| h网址在线观看| 国产亚洲精品97AA片在线播放| 欧美97欧美综合色伦图| 亚洲欧洲日韩综合色天使| 九九这里只有精品视频| 亚洲91在线精品| 亚洲精品天堂自在久久77| 亚洲成人在线免费| 亚洲精品成人片在线观看| 国产欧美日韩在线在线不卡视频| 色噜噜狠狠狠综合曰曰曰| 国产无遮挡猛进猛出免费软件| 亚洲 欧美 中文 AⅤ在线视频| 看国产毛片| 午夜色综合| 亚洲第一区欧美国产综合| 亚洲不卡影院| 伊人查蕉在线观看国产精品| 五月激情综合网| 欧洲免费精品视频在线| 欧美激情网址| 好吊色妇女免费视频免费| 成人免费午夜视频| 国产精品香蕉| 伦伦影院精品一区| 又大又硬又爽免费视频| 免费观看精品视频999| 国产自在线拍| 亚洲色图欧美在线| 亚洲精品亚洲人成在线| 茄子视频毛片免费观看| 青青久久91| 九九这里只有精品视频| 国产欧美日韩va| 精品撒尿视频一区二区三区| 亚洲永久精品ww47国产| 国产aⅴ无码专区亚洲av综合网| 亚洲大学生视频在线播放 | 乱色熟女综合一区二区| 精品人妻AV区| 午夜a级毛片| 一级片一区|