




【摘要】帶電粒子在勻強(qiáng)磁場中的運(yùn)動(dòng)類型有很多,其中“放縮圓”模型適用于粒子射入點(diǎn)的速度方向不變、速度大小變化的情境.對于該模型的教學(xué)指導(dǎo),建議從原理出發(fā)梳理模型,講解分析方法,并結(jié)合實(shí)例,指導(dǎo)學(xué)生進(jìn)行應(yīng)用強(qiáng)化.
【關(guān)鍵詞】放縮圓;帶電粒子;高中物理
1引言
帶電粒子在勻強(qiáng)磁場中的運(yùn)動(dòng)問題十分常見,問題解析需要融合物理與幾何知識,即利用物理定理分析運(yùn)動(dòng),結(jié)合幾何來確定運(yùn)動(dòng)軌跡.“放縮圓”模型在該類問題的解決中運(yùn)用廣泛,可通過放縮幾何圓的方式來分析、確認(rèn)帶電粒子的軌跡邊界.
2模型講解
如圖1所示,帶正電的粒子在勻強(qiáng)磁場中運(yùn)動(dòng)的軌跡圓,其運(yùn)動(dòng)半徑與速度相關(guān),且速度v越大,運(yùn)動(dòng)半徑也越大.經(jīng)分析觀察可知,這些帶電粒子射入磁場后,它們運(yùn)動(dòng)軌跡的圓心在垂直初速度方向的直線PP′上.從放縮視角來看,其軌跡可視為從射入點(diǎn)開始進(jìn)行的幾何圓放縮.
結(jié)合物理知識分析軌跡半徑和運(yùn)動(dòng)周期,可知r=mvqB,T=2πmqB,則放縮圓具有如下特點(diǎn):速度方向相同、大小不同的粒子源(同種)的運(yùn)動(dòng)軌跡半徑r與速度v成正比,運(yùn)動(dòng)周期T與速度v無關(guān).
3方法講解
“放縮圓”模型適用于速度方向不變的帶電粒子在勻強(qiáng)磁場中的圓周運(yùn)動(dòng)問題,其軌道半徑隨射入速度的v變化而變化.分析確認(rèn)其運(yùn)動(dòng)的臨界情境時(shí),把握其核心:粒子剛好飛出磁場或剛好飛不出磁場.
分析問題時(shí)需要關(guān)注臨界軌跡的兩大特點(diǎn):(1)軌跡與磁場邊界相切;(2)切點(diǎn)速度方向與邊界重合.可以入射點(diǎn)為定點(diǎn),對軌道半徑進(jìn)行放縮,從而作出一系列的軌跡,探索出臨界條件,如圖2所示.
4解題指導(dǎo)
例題如圖3所示,在正方形abcd區(qū)域內(nèi),有垂直于紙面向里的勻強(qiáng)磁場,O點(diǎn)是cd邊的中點(diǎn).現(xiàn)有一個(gè)帶正電的粒子(重力忽略不計(jì))從O點(diǎn)沿紙面以垂直于cd邊的某一速度射入正方形內(nèi),經(jīng)過時(shí)間t0剛好從c點(diǎn)射出磁場.
(1)現(xiàn)設(shè)法使該帶電粒子從O點(diǎn)沿紙面以與Od成30°角的方向,以各種不同的速率射入正方形內(nèi),判斷:粒子能否從正方形的四個(gè)頂點(diǎn)射出;
(2)在(1)問的條件下,若該帶電粒子從cd邊射出磁場,計(jì)算帶電粒子在磁場中經(jīng)歷的時(shí)間.
解析上述為典型的帶電粒子在磁場中的圓周運(yùn)動(dòng)問題,其特點(diǎn)為粒子射入時(shí)的速度方向一致,速度大小可變.分析可知,粒子在磁場中的運(yùn)動(dòng)軌跡為圓,其半徑與速度大小相關(guān),問題分析可借助“放縮圓”模型.
(1)該粒子從O點(diǎn)以與Od成30°角的方向射入磁場,隨著粒子速度逐漸增大,軌跡由①→②→③→④依次漸變,如圖4所示,則粒子在四個(gè)邊射出時(shí),射出范圍分別為OG、FE、DC、BA之間,顯然不能從四個(gè)頂點(diǎn)射出.
(2)結(jié)合題意可知,帶電粒子的運(yùn)動(dòng)周期T=2t0,結(jié)合圖分析,從cd邊射出的粒子圓心角均為300°,則所用時(shí)間為56T=53t0.
點(diǎn)評上述問題解析過程中,充分結(jié)合了“放縮圓”模型,結(jié)合模型的結(jié)論直接確定運(yùn)動(dòng)軌跡與速度大小的關(guān)系,從而確定粒子最終的射出范圍.利用模型分析判斷,避免了復(fù)雜的推理計(jì)算,可直觀確定其運(yùn)動(dòng)軌跡.
5教學(xué)建議
本文圍繞磁場中的“放縮圓”模型開展應(yīng)用教學(xué)探究,總結(jié)了模型結(jié)論,以及對應(yīng)的解析思路,并結(jié)合實(shí)例講解應(yīng)用方法.下面,結(jié)合教學(xué)實(shí)踐提出幾點(diǎn)建議.
建議1數(shù)形結(jié)合,直觀解讀
物理模型的應(yīng)用教學(xué)中,建議采用數(shù)形結(jié)合的方法策略,即繪制直觀的圖示,引導(dǎo)學(xué)生分析圖形特點(diǎn),提取特征,后續(xù)再結(jié)合物理知識計(jì)算推理,總結(jié)規(guī)律.具體教學(xué)中可分為三個(gè)階段:階段1,示例呈現(xiàn),引導(dǎo)解讀;階段2,數(shù)形分析,提取特征規(guī)律;階段3,總結(jié)結(jié)論,生成模型策略.
建議2實(shí)例指導(dǎo),思路引導(dǎo)
模型應(yīng)用教學(xué)的核心內(nèi)容為實(shí)例指導(dǎo),即結(jié)合具體問題講解模型的應(yīng)用思路.該環(huán)節(jié)中,需要注意思路引導(dǎo),指導(dǎo)學(xué)生掌握模型的應(yīng)用思路.教學(xué)中需要注意三點(diǎn):一是問題分析,引導(dǎo)學(xué)生分析問題條件、圖示特征,確定適用的模型;二是結(jié)合模型策略,構(gòu)建解題思路,可合理設(shè)問,引導(dǎo)學(xué)生思考;三是結(jié)合物理知識來計(jì)算,得出結(jié)論.
建議3深度反思,模型深化
模型教學(xué)中還需注意解后反思,即完成解題指導(dǎo)后,引導(dǎo)學(xué)生反思解題過程,總結(jié)模型應(yīng)用思路,積累解題經(jīng)驗(yàn).該環(huán)節(jié)中還需注意引導(dǎo)學(xué)生感悟模型,深化提升能力.反思感悟過程可從以下三個(gè)方面進(jìn)行:一是解題思路視角,引導(dǎo)學(xué)生反思過程,簡化思路;二是模型應(yīng)用視角,引導(dǎo)學(xué)生思考模型應(yīng)用的步驟,形成分步策略;三是知識拓展視角,基于模型合理拓展,引導(dǎo)學(xué)生總結(jié)關(guān)聯(lián)模型,深刻認(rèn)識模型規(guī)律.
6結(jié)語
運(yùn)用“放縮圓”來解決帶電粒子在勻強(qiáng)磁場中的運(yùn)動(dòng)問題,需從物理規(guī)律出發(fā)分析其運(yùn)動(dòng)特點(diǎn),建立并解讀模型,總結(jié)適用范圍及構(gòu)建思路,并結(jié)合實(shí)例來指導(dǎo)強(qiáng)化.上述總結(jié)的方案也適用于其他模型的教學(xué).在實(shí)際教學(xué)中,建議結(jié)合直觀模型,引導(dǎo)學(xué)生逐步理解.