


摘要:細菌耐藥性已成為臨床抗感染的巨大阻力,抗生素的不合理使用是耐藥性出現的重要原因,因此需要尋求降低抗生素用量的抗感染方案。本文梳理了抗生素和宿主免疫的關系:發現不同抗生素可直接影響免疫細胞和免疫分子的功能,也可以通過調節腸道菌群等間接影響宿主免疫;而補體系統和細菌特異性抗體往往可以促進抗生素的抗菌作用。總結認為:抗生素對宿主免疫的影響具有復雜性;激活宿主自身免疫將有助于對抗細菌感染,同時會減少抗生素的使用,進而減緩細菌耐藥性的發展,有效利用宿主免疫也是應對耐藥細菌的積極策略。
關鍵詞:抗生素;宿主免疫;抗感染;相互影響
中圖分類號:R978.1 文獻標志碼:A
Interaction and regulatory mechanisms of antibiotics and host immunity
Zhang Xue, Zhang Xinyang, Wang Bowen, Su Jie, Xue Yunxin, Zhao Xilin, and Zhu Weiwei
(State Key Laboratory of Vaccines for Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102)
Abstract The resistance of bacteria to antibiotics poses a significant challenge to clinical anti-infection efforts, and the unreasonable use of antibiotics is an important contributor to the emergence of resistance. Therefore, there is a pressing need to explore anti-infective alternatives that can mitigate antibiotic usage. This review focused on the association between antibiotics and host immunity, and found that various antibiotics could directly impact the function of immune cells and molecules, as well as indirectly affect host immunity by regulating the intestinal flora, among other factors. The review also summarized that the complement system and bacterial-specific antibodies often enhanced the antimicrobial effects of antibiotics. In conclusion, the paper underscored the complexity of the effects of antibiotics on host immunity. While the activation of host autoimmunity could aid in anti-infective therapy and reduce antibiotic use, thus slowing down the development of antibiotic resistance, leveraging host immunity effectively was also a proactive strategy for addressing antimicrobial-resistant bacteria.
Key words Antibiotics; Host immunity; Anti-infection; Interaction
抗生素的發現是20世紀醫學史上一項了不起的成就,在人類對抗細菌感染的過程中發揮了重大作用[1]。然而抗生素的過度使用導致了細菌耐藥性的出現和快速發展,再加上新型抗生素研發渠道的枯竭,將可能導致進入后抗生素時代(post-antibiotic era)[2-3]。
抗生素的治療效果不僅僅依賴于其抗菌活性,也依賴于宿主免疫,因為抗生素在免疫功能低下的個體中往往療效欠佳[4-5]。免疫系統是由免疫器官、免疫細胞和免疫分子組成的復雜而精細的網絡,其中免疫分子主要由抗體、補體和細胞因子等組成[6]。抗體在適應性免疫應答中發揮作用;補體可介導免疫應答和炎癥反應;細胞因子具有免疫調節功能,主要包括白細胞介素(IL)(例如IL-1β,IL-4和IL-6等)、干擾素-γ(IFN-γ)、腫瘤壞死因子-α(TNF-α)及一些趨化因子,這些細胞因子的水平能夠很好地代表整體免疫狀態[7],其中TNF-α和IL-1β是M1巨噬細胞作為先天免疫應答產生的促炎細胞因子,IFN-γ主要由T細胞產生,是對微生物病原體的先天和適應性免疫反應的關鍵介質,也可預測感染的發生[8]。
本文將圍繞宿主抗感染的兩大因素——抗生素與宿主免疫展開,主要闡述抗生素對宿主免疫的直接與間接調節作用,以及宿主免疫分子對抗生素功效的影響,期待對抗生素和宿主免疫關系的梳理能有助于抗感染策略的制定并為后續抗感染新方案的開發提供參考。
1 抗生素對宿主免疫的影響
1.1 抗生素直接調節宿主免疫
抗生素與宿主免疫系統的直接相互作用主要涉及巨噬細胞和中性粒細胞的吞噬作用和趨化性以及淋巴細胞功能。目前報道可直接調節宿主免疫的抗生素主要有大環內酯類、四環素類、喹諾酮類以及β-內酰胺類抗生素(表1)。
1.1.1 大環內酯類抗生素
大環內酯類抗生素是分子結構中有12~16碳內酯環的抗生素,通過與細菌50S核糖體亞基結合干擾蛋白質合成而發揮抗菌作用[9]。體外細胞實驗模型研究發現,羅紅霉素(roxithromycin)能夠抑制肥大細胞中IL-1β、IL-6和TNF-α的產生和分泌[10],并且在動物模型中發現羅紅霉素可明顯增強巨噬細胞的吞噬作用,增強遲發型超敏反應,對免疫功能低下小鼠有免疫增強作用[11]。薈萃分析發現治療劑量的羅紅霉素、阿奇霉素(azithromycin)、克拉霉素(clarithromycin)和紅霉素(erythromycin)可以通過抑制巨噬細胞活化和中性粒細胞炎癥因子的產生,降低Th2細胞因子水平,具有免疫調節作用[12]。巨噬細胞可分為M1型巨噬細胞(促炎)和M2型巨噬細胞(抗炎),小鼠在急性心肌梗死前3 d口服阿奇霉素可以誘導巨噬細胞前體和現有M1型向M2型轉變,有利于抗炎M2巨噬細胞的產生,并隨后改變巨噬細胞細胞因子的產生,誘導中性粒細胞凋亡[13]。此外,阿奇霉素會顯著降低人T細胞分泌IL-17水平,抑制趨化因子產生[14]。紅霉素能夠抑制影響中性粒細胞功能的趨化因子的產生并誘導中性粒細胞的脫粒[15],調節氧化應激并抑制促炎細胞因子的產生,發揮抗炎作用[16],還可以抑制IgE和IgG的產生、減弱黏液分泌和調節細胞因子的表達,從而減輕鼻腔炎癥[17]。
1.1.2 四環素類抗生素
四環素類抗生素與細菌核糖體30S亞基結合,抑制蛋白質合成發揮抗菌作用[18]。體外細胞模型發現,0.1 μg/mL的多西環素(doxycycline)能顯著抑制哮喘兒童外周血單個核細胞中肺炎衣原體誘導的細胞因子(如IFN-γ)的產生[19],并且動物實驗發現多西環素可以顯著降低小鼠血漿和肺部促炎細胞因子水平,改善嚴重膿毒癥后因促炎細胞因子分泌過多而發生的急性肺損傷,通過調節免疫反應提高膿毒癥小鼠的存活率[20]。此外,多西環素可以抑制多發性硬化癥患者產生IFN-γ和IL-17等細胞因子[21]。急性肺損傷小鼠模型中發現四環素(tetracycline)能降低急性呼吸窘迫綜合征小鼠肺泡白細胞促炎細胞因子IL-1β和IL-18的產生,顯著減輕肺損傷和肺部炎癥,從而提高小鼠生存率[22]。米諾環素(minocycline)抑制促炎細胞因子(如IL-1β,TNF-α和IL-6)的產生[23],還能通過多種信號通路抑制脂多糖刺激后THP-1細胞增殖及其細胞因子和趨化因子的產生[24],也可以通過抑制小鼠大腦海馬體中小膠質細胞激活,抑制促炎酶(如誘導型一氧化氮合成酶,iNOS)的活性,減輕小鼠抑郁樣癥狀[25]。奧馬環素(omadacycline)作為一種新型四環素類藥物,在0.5~64 μg/mL濃度范圍內能夠劑量依賴性地抑制脂多糖誘導的多種細胞因子(IFN-γ、TNF-α、IL-4和IL-10等)的產生[26]。因此,四環素類抗生素因其良好的抗炎作用和免疫調節特性可能可以應用到危重患者的免疫穩態恢復干預中[27]。
1.1.3 喹諾酮類抗生素
喹諾酮類藥物屬于合成型廣譜抗菌劑,在體內外都被證明可以調節免疫和炎癥反應[28]。Qiu等[29]發現莫西沙星(moxifloxacin)可通過影響人類和小鼠白細胞中TNF-α和IL-6等多種細胞因子的產生介導對免疫反應激活和抑制的雙向作用,低濃度的莫西沙星可以抑制脂多糖刺激后巨噬細胞中NF-κB和Toll樣受體(TLR)等關鍵調控因子的表達,抑制促炎細胞因子的釋放,而較高濃度的莫西沙星會促進巨噬細胞中炎性因子的釋放。環丙沙星(ciprofloxacin)和左氧氟沙星(levofloxacin)可以抑制小膠質細胞中促炎細胞因子的分泌和NF-kB的激活,減弱炎癥反應[30],Liu等[31]后續研究表明亞致死水平的環丙沙星誘導線粒體功能障礙和促炎細胞因子IL-8的產生。此外,對人類白血病細胞系的研究表明,左氧氟沙星處理細胞中趨化因子(如CCL2和CXCL8)和細胞因子(如TNF-α)的mRNA表達增加[32]。吉米沙星(gemifloxacin)作為第四代氟喹諾酮類藥物,能夠減輕小鼠銀屑病模型中銀屑病紅斑、增厚和鱗狀病變,并抑制細胞因子、趨化因子以及嗜酸性粒細胞和中性粒細胞趨化性的產生[33]。奈諾沙星(nemonoxacin)可以提高巨噬細胞RAW264.7吞噬肺炎克雷伯菌的能力,抑制宿主感染后產生過度免疫反應[34]。
1.1.4 β-內酰胺類抗生素
β-內酰胺類抗生素主要由頭孢菌素類,青霉素類和其他臨床上重要的結構亞類共同組成[35]。頭孢曲松(ceftriaxone)可以促進鼠傷寒沙門菌對巨噬細胞的黏附,顯著增加IL-1β和TNF等細胞因子的生成[36],而在對肺炎鏈球菌感染患者使用頭孢曲松治療后,患者血液中促炎細胞因子(TNF、IL-1β、IL-6、IL-8和IL-10)的濃度會隨著時間的推移而降低[37]。頭孢地爾(cefiderocol)可以降低脂多糖刺激后外周血單個核細胞中IL-6、IL-1β和TNF-α的釋放[38],頭孢地嗪(cefodizime)可以增強粒細胞和巨噬細胞的吞噬作用,誘導趨化性,促進抗體產生和淋巴細胞增殖,可以顯著增強宿主免疫[39],頭孢唑林(ceftazolin)在治療金黃色葡萄球菌(金葡菌)菌血癥患者時會促進IL-1β的產生并抑制IL-10的分泌,產生良好的免疫反應[40],而當頭孢唑林與厄他培南(etapenem)組合時可以在體外刺激外周血單個核細胞中IL-1β的分泌[41]。分析發現,長期使用頭孢曲松和青霉素(penicillin)等β-內酰胺類抗生素可引起嚴重的中性粒細胞減少癥[42]。多尼培南(doripenem)可以提高小鼠下呼吸道感染模型血液中IFN-γ的水平,激活巨噬細胞和中性粒細胞的殺傷作用,減輕炎癥和組織損傷[43]。
1.1.5 其他抗生素
磺胺類抗生素磺胺甲惡唑(sulfamethoxazole)可影響斑馬魚中性粒細胞的功能,促進IL-1β、IFN-γ和IL-11等幾種關鍵促炎細胞因子的產生,早期暴露于磺胺甲惡唑可能會引起健康魚類的炎癥反應[44]。氨基糖苷類抗生素新霉素(neomycin)可以抑制巨噬細胞的活化和促進促炎細胞因子IL-1β的產生[45]。林可酰胺類抗生素克林霉素(clindamycin)可以增強中性粒細胞吞噬作用,誘導趨化性,增強宿主免疫[39,46]。夫地西酸(fusidic acid)可以顯著降低TNF-α等促炎細胞因子的釋放,發揮抗炎作用[47]。
1.2 抗生素間接調節宿主免疫
除直接作用外,抗生素還可能通過藥物誘發的抗原性、介導細菌死亡和內毒素釋放、調節免疫相關的微生物效應以及影響腸道菌群等方面來間接影響宿主免疫(表2)。
1.2.1 抗生素誘發的抗原性
(1)抗生素的半抗原屬性
半抗原是指具有反應原性而無免疫原性的物質,并不會引起免疫反應,但是當其與蛋白質結合后,可能會變成完全抗原,進而刺激免疫系統產生抗體[48]。
青霉素和頭孢菌素都是通過β-內酰胺環與血清蛋白中游離氨基(如賴氨酸殘基)結合形成完全抗原,并刺激機體產生抗體。多數情況下,形成的抗體是無害的,但某些情況(比如過敏體質再次接觸同一抗原)下可能會引起如皮疹、蕁麻疹以及過敏性休克等過敏反應[49-50]。因為青霉素和頭孢菌素的結構相似且都含有β-內酰胺環和側鏈R1,多項研究發現含有相同側鏈R1的青霉素與頭孢菌素在臨床中存在交叉過敏反應[51],而當使用與青霉素不同側鏈的頭孢菌素進行治療時,患者均未見過敏反應報道[52]。因此認為,青霉素和頭孢菌素發生交叉過敏反應與β-內酰胺環無關,而是因為相同或相似的側鏈R1[53]。此外,研究發現結核病治療常用藥物異煙肼(isoniazid)通過自身氧化途徑與人血清白蛋白中的賴氨酸殘基形成異煙堿酰胺加合物,從而引起異質性免疫反應[54]。利福平(rifampicin)作為合成的半抗原物質,同樣在體內結合血清蛋白后形成完全抗原,刺激機體產生抗體,從而發生過敏反應,過敏反應主要表現為皮疹,嚴重時可出現藥物超敏反應綜合征[55]。
(2)抗生素刺激細菌表面抗原暴露
除作為半抗原與血清蛋白結合形成完全抗原外,抗生素也可改變細菌表面結構,導致通常隱藏的深層抗原表位暴露,促進宿主免疫反應中不同成分(如急性期蛋白)的活化,增強特異性吞噬細胞對病原菌的識別[56]。正五聚蛋白[如血清淀粉樣蛋白P成分(SAP)和C反應蛋白(CRP)]是人類和小鼠感染時產生的主要急性期反應蛋白[57]。在宿主防御入侵病原體的過程中,SAP和CRP最重要的功能之一是識別并促進巨噬細胞或粒細胞對細菌的吞噬作用[58-59]。已有研究發現,利用含亞抑菌濃度β-內酰胺類抗生素[頭孢托侖(cefditoren)0.5 μg/mL和頭孢曲松1 μg/mL]的血清對不同臨床來源分離的肺炎鏈球菌進行拮抗時,SAP和CRP對肺炎鏈球菌的識別能力增強,表明這些抗生素允許正五聚蛋白以更有效的方式識別肺炎鏈球菌,從而增加吞噬能力[60-61]。
1.2.2 抗生素介導的細菌內毒素釋放
抗生素治療通過殺死或抑制細菌生長進而減少細菌總量。但有時抗生素的使用反而會使感染癥狀惡化,比如早在抗生素應用初期人們就發現,頭孢他啶作用后細菌的迅速溶解死亡會導致大腸埃希菌釋放大量內毒素,從而造成嚴重的內毒素血癥[62-63],當細菌死亡釋放的內毒素進入血液后,會與單核吞噬細胞和中性粒細胞等免疫細胞表面受體結合,誘導IL-1、TNF、INF-γ和趨化因子等多種炎癥分子的表達,導致機體組織和細胞損害[64]。抗生素在健康宿主中誘導內毒素血癥后,巨噬細胞和樹突狀細胞等免疫細胞分泌大量的IL-1、IL-6和TNF-α等細胞因子會進一步加重內毒素血癥病情[65]。
1.2.3 通過影響微生物而影響宿主免疫
細菌群體感應(quorum sensing)是廣泛存在于細菌群體中的重要信號感受系統[66],不僅可以調節微生物自身的群體行為,還可通過跨種間信號傳遞,調節宿主免疫反應[67]。比如,銅綠假單胞菌的群體感應信號分子N-3-氧代十二烷酰基-L-高絲氨酸內酯(N-3-oxo-dodecanoyl-L-homoserine lactone, 3-oxo-C12-HSL)能顯著增強人中性粒細胞和巨噬細胞的趨化性和吞噬能力[68]。3-oxo-C12-HSL還會影響促炎和抗炎反應,抑制細胞因子TNF-α和IL-12的產生[69],并促進白細胞介素IL-1β、IL-6、IL-8[70]和IL-10[69-70]的分泌,在調節免疫應答中發揮重要作用。另一種群體感應分子3-oxo-C12:2-HSL(結構上接近3-oxo-C12-HSL)的濃度在25~100 μmol/L之間時以劑量依賴的方式降低巨噬細胞RAW264.7促炎細胞因子如IL-1β和TNF-α的表達,并降低人外周血單個核細胞中TNF的分泌[71]。不同研究表明,β-內酰胺類、大環內酯類、氨基糖苷類和喹諾酮類抗生素均對銅綠假單胞菌有不同程度的群體感應抑制作用[72-73],提示抗生素可能通過影響細菌群體感應間接影響宿主免疫反應。
細菌毒力因子除了能夠促進細菌對宿主細胞的黏附和侵襲外,同樣表現出免疫調節活性。毒力因子可以抑制補體活化和巨噬細胞的吞噬作用等[74],具有調節宿主先天和適應性免疫反應的能力[75]。Akoolo等[76]在小鼠急性肺損傷模型中發現,鮑曼不動桿菌的莢膜不僅可以幫助細菌抵抗肺泡巨噬細胞的攝取和殺傷,也可以防止鮑曼不動桿菌激活促炎細胞因子和趨化因子,從而幫助鮑曼不動桿菌逃避先天免疫反應。此外,不同研究揭示了抗生素對細菌毒力的影響,比如利奈唑胺(linezolid)和克林霉素可以降低金葡菌的毒力,而β-內酰胺類可以增加金葡菌外毒素的產生[77-78]。螺旋霉素(spiramycin)可使銅綠假單胞菌鐵載體和綠膿素的產生明顯減少[79];這些抗生素對不同細菌毒力的影響均可能介導對宿主免疫的間接調節。
生物膜(biological membrane)是微生物附著在接觸物表面生長而產生的一種膜狀物,由多糖、細胞外DNA以及包裹在細菌聚集體中的蛋白質構成[80]。研究報道亞抑菌濃度的阿奇霉素(0.125 μg/mL)可以影響多重耐藥鮑曼不動桿菌生物膜DNA及蛋白的合成,從而抑制生物膜的形成[81],阿奇霉素聯合左氧氟沙星對肺炎克雷伯菌生物膜具有較好的抑制作用[82],克林霉素能在體外抑制金葡菌的生物膜形成[83]。相反的是,當黏菌素(colistin)和多黏菌素B(polymyxin B)濃度低于最小抑菌濃度(2 μg/mL)時可促進鮑曼不動桿菌生物膜的形成[84],0.25 μg/mL氟苯尼考(florfenicol)和0.0625 μg/mL土霉素(oxytetracycline)也會增加非典型殺鮭氣單胞菌的生物膜的形成[85]。同時,Kaya等[86]的研究證明,銅綠假單胞菌生物膜可誘導人外周血單個核細胞的顯著激活和細胞因子(IL-1β,IFN-γ,IL-6和TNF-α)分泌增加。W?chter等[87]研究了不同傷口模型對銅綠假單胞菌生物膜感染的先天免疫反應,感染組與未感染的對照組相比,促炎因子IL-1β和IL-6和趨化因子IL-8的基因表達水平均顯著升高。而金葡菌生物膜小鼠感染模型發現金葡菌生物膜會阻礙中性粒細胞趨化性[88]。肺炎克雷伯菌生物膜會抑制小鼠單核巨噬細胞的吞噬和IL-1β,IFN-γ,IL-12, IL-4, TNF-α等細胞因子的表達[89]。這些案例同樣提示,抗生素可能也會通過影響細菌生物膜的形成間接影響宿主免疫。
1.2.4 抗生素通過影響腸道菌群調節宿主免疫
健康人體腸道菌群結構能維持一定的穩定性,但抗生素進入宿主腸道后可明顯改變腸道菌群的組成和結構,影響宿主免疫系統的成熟和功能[90-91],以及腸道相關免疫系統的穩態[92]。
(1)抗生素通過腸道菌群影響宿主先天性免疫
研究證明長期使用抗生素會導致腸道生態系統失調,并通過影響宿主先天性免疫分子加劇炎癥性疾病惡化。例如,Jia等[93]用0.5 mg/mL萬古霉素(vancomycin)、1 mg/mL新霉素和0.3 mg/mL多黏菌素B組合處理小鼠后發現抗生素可抑制結腸TLR4/NLRP3炎癥小體通路的激活,且NLRP3的下調導致結腸促炎因子(IL-1β、IL-6、MCP-1)水平降低。claudia等[94]用0.5 mg/mL萬古霉素、1 mg/mL甲硝唑(metronidazole)、1 mg/mL氨芐西林(ampicillin)和1 mg/mL新霉素組合處理健康小鼠2周后發現抗生素會促進結腸恒定自然殺傷T細胞(invariant natural killer T cells)中促炎細胞因子Th1和Th17產生和CXC趨化因子表達水平增加,促進炎癥激活。用150 mg/kg利福昔明(rifaximin)灌胃輕度應激大鼠4周后發現,利福昔明可以通過調節腸道菌群,促進大腦中關鍵的先天免疫細胞——小膠質細胞的吞噬作用,抑制IL-1β和TNF-α等促炎細胞因子的產生,促進抗炎功能[95]。
(2)抗生素通過腸道菌群影響宿主適應性免疫
IgG是機體適應性免疫的重要組成部分,其在機體抵抗微生物感染中發揮著重要的作用[96]。Guo等[97]發現每天灌胃不同劑量(100、200和400 mg/mL)的頭孢曲松持續150 d會明顯改變小鼠腸道菌群的多樣性,并且能夠導致小鼠小腸中血清IgG濃度出現顯著下降。Kishida等[98]發現使用治療劑量的卡那霉素(kanamycin)和鏈霉素(streptomycin)等抗生素可改變大鼠腸道微生物組成,使脾臟中CD4+、CD8+T淋巴細胞水平均發生顯著下降,影響宿主免疫。腸道菌群改變后,腸道中微生物的代謝物如短鏈脂肪酸(short-chain fatty acid,SCFAs)也會改變,比如用0.5 mg/mL萬古霉素處理3周可導致小鼠腸道微生物群中產生的SCFAs(乙酸、丙酸、和丁酸)顯著減少[99]。SCFAs可以對上皮細胞、樹突狀細胞和T細胞中多種細胞通路進行調節,并影響淋巴細胞的免疫代謝,這些特性可能使得SCFAs在調節宿主腸道免疫系統方面具有關鍵作用[100-101]。總之,抗生素可以通過改變腸道菌群影響機體的適應性免疫,進而引發或加重腸道炎癥。
2 宿主免疫對抗生素的影響
在免疫功能低下的患者中,抗生素療效不足是非常普遍的,這表明細菌感染的清除是患者體內宿主免疫防御和抗生素功效共同作用的結果。免疫系統也會影響抗生素的效力(表3),這可以解釋為什么在實驗室環境中有效的抗生素在宿主抗感染方面就變得沒有那么有效,因此了解免疫系統如何深刻影響抗生素的活性,對今后抗感染治療具有重要的借鑒意義。
2.1 抗體的增效作用
目前的研究認為,抗體通過促進吞噬、激活補體以及中和毒素和病毒來介導對微生物的防御作用[103]。吞噬細胞(主要是中性粒細胞和巨噬細胞)內不能被完全清除的金葡菌已被證明會破壞宿主先天免疫反應并誘導隨后的中性粒細胞溶解死亡[104],因此清除細胞內金葡菌是臨床上成功治療該菌感染的關鍵。Lehar等[105]將利福霉素衍生物與抗金葡菌抗體結合,靶向殺滅躲避在宿主細胞中的金葡菌,治療效果明顯優于萬古霉素。Meeker等[106]證明,達托霉素和慶大霉素在與金葡菌外膜脂蛋白特異性抗體相結合后都可以有效殺死耐甲氧西林金葡菌(MRSA)。Behnoush等[107]利用對人源單鏈變量片段(single-chain fragment variable,scFv)庫富集篩選獲得的抗金葡菌抗體,不僅在體外實驗中可以明顯降低金葡菌的生存能力,并且在小鼠菌血癥模型中發現,與生理鹽水處理的對照組相比,篩選出的抗體可以延長MRSA菌血癥小鼠的存活率,還可以防止其腎臟和脾臟的炎癥和組織破壞。另外,抗鮑曼不動桿菌外膜囊泡抗體能夠顯著降低鮑曼不動桿菌的體外耐藥性,特別是對喹諾酮類抗生素的耐藥性[108]。因此抗體與抗生素聯用是提高抗生素治療效果和治療多重耐藥病原體的一種有前景的策略。
2.2 補體的增效作用
補體系統是先天免疫的重要組成部分,用于檢測和清除入侵的病原體,也通過其指導B細胞和T細胞反應的能力在適應性免疫中發揮關鍵作用[109]。補體系統包括多種蛋白(如C1至C9),補體被激活后會產生膜攻擊復合物(membrane attack complexes,MAC),通過MAC特異性識別病原菌細胞膜并在細菌外膜上形成孔(這個孔會導致細胞內離子和水分子大量流出,細胞內外滲透壓增大,最終導致細胞破裂死亡)殺死革蘭陰性細菌[110]。Heesterbeek等[111]的研究證明了MAC誘導的外膜損傷使革蘭陰性細菌對革蘭陽性特異性抗菌劑敏感,由于補體系統的存在,被認為對治療革蘭陰性菌感染無效的抗生素可能在臨床中呈現出不同的治療結果。補體成分C9是補體介導大腸埃希菌快速死亡所必需的,研究表明C9可以顯著增強β-內酰胺類抗生素體外和體內殺滅大腸埃希菌的能力,且腹腔注射C9可提高大腸埃希菌敗血癥新生兒的存活率[112]。另外,激活血清補體可恢復臨床耐阿奇霉素淋病奈瑟菌菌株對阿奇霉素的敏感性,增強抗菌活性[113]。除特異性抗體與補體蛋白外,其他蛋白質結合也會影響抗生素的抗菌活性,因為抗生素的藥理活性取決于感染部位的游離或未結合濃度[114-115],比如血漿蛋白結合限制了游離藥物的血漿濃度,從而影響頭孢菌素類抗生素抗菌效果[116]。
2.3 活性化物的影響
活性氧(reactive oxygen species,ROS)和一氧化氮(nitric oxide,NO)作為免疫的關鍵介質在免疫系統中發揮重要的作用[117-118]。ROS是一組高活性的含氧化學物質,對細胞存活、增殖分化和免疫應答等多種生物學機能至關重要[119-120],巨噬細胞中的ROS對抗生素殺菌作用有抑制和促進雙重影響,一方面ROS有助于巨噬細胞和中性粒細胞的吞噬功能[121],可以增加抗生素對細菌細胞的致死性[122-123],提高抗生素清除高度耐藥細菌的能力[118],并且一直刺激巨噬細胞中ROS的產生可以根除持續性感染[124]。另一方面巨噬細胞不僅不能有效殺死被吞噬的金葡菌,還會通過巨噬細胞中產生的ROS誘導感染小鼠后金葡菌的抗生素耐藥性,降低抗生素的效果并使感染惡化[125]。
NO是一種眾所周知的抗微生物物質,是免疫系統應對感染產生的一種分子[126]。但NO可以通過阻斷藥物攝取來保護腸沙門菌、銅綠假單胞菌和金葡菌免受氨基糖苷類抗生素的殺傷,比如IFN-γ引發的巨噬細胞誘導NO合成酶表達產生的NO有助于細胞內沙門菌抵抗慶大霉素的治療[127]。最近肯特大學的一項研究也發現,NO可使氨基糖苷類抗生素對從感染人體中分離出來的大腸埃希菌無效,并且NO還可能降低治療耐藥性大腸埃希菌一線抗生素(如阿莫西林,環丙沙星,甲氧芐啶等)的功效[128]。
3 結語與展望
綜上所述,大環內酯類等多種抗生素可對宿主免疫產生影響,不僅不同類型的抗生素對宿主免疫的調節存在差異,同類型中不同抗生素對宿主免疫的影響也不盡相同,甚至同一抗生素的高低劑量會對同一免疫反應產生相反的效應[29],這展示了抗生素直接調節宿主免疫的復雜性。抗生素的分子結構和誘發的抗原性可能介導了這種復雜性,比如β-內酰胺類抗生素的側鏈結構可能與免疫反應相關[53],抗生素的半抗原屬性和誘發的細菌抗原暴露引發不同的免疫反應[56,131]。整體而言,抗生素直接調節宿主免疫的詳細分子機制尚不十分清楚,更多的是關聯性表征。外源藥物分子的免疫原性誘導機體免疫應答是可想而知的,故抗生素對宿主免疫的影響不僅在感染領域,抗生素對腫瘤免疫治療的影響也備受關注[132],
但是抗生素如何直接引起免疫調節以及后續的免疫級聯調控途徑如何展開仍有待研究,另外抗生素對健康人體和感染患者的免疫調節是否存在差異同樣未見報道,而這些對抗感染策略的綜合考量是十分必要的。
在免疫影響抗生素功效的研究中,抗體和補體系統對抗生素的增效作用是比較明確的[106,112-113,129],盡管免疫細胞釋放的ROS或NO有時候會抑制抗生素的作用[125,127-128]。因此,具備抗菌和激活有益免疫調節的“雙作用”抗生素可能會在抗感染治療過程中發揮更大的功效。人工智能最近被用于發掘新型抗生素,并取得了一定成果[133-134],當抗生素對宿主免疫調節的具體機制被完全闡明后,將有助于人工智能對“雙作用”抗生素的篩選,并可能指導現有抗生素的改造和優化。
“雙作用”抗生素要求對免疫的調節必須是促進抗感染治療,這可能會增加潛在抗生素篩選的難度。因此,“激活有益免疫+抗生素作用”的聯合類模式更多地被嘗試和報道。比如,金葡菌相關抗體可以促進不同抗生素對金葡菌的抗菌作用[105-107];注射補體C9蛋白可提高大腸埃希菌敗血癥新生兒的存活率[112]。在結核病的治療中,靶向宿主免疫系統的宿主導向治療(host-directed therapies,HDT)成為研究熱點。HDT主要通過提高宿主免疫水平增強宿主的抗菌活性,以控制結核分枝桿菌感染,減輕過度炎癥,以盡量減少組織損傷[135]。最重要的是HDT與當前抗結核藥物方案的聯合使用不僅可以有更好的治療結果,還可以減少復發或再次感染的幾率[136]。
以上闡述表明,激發和利用宿主自身免疫的力量不僅有助于對抗細菌感染,同時會減少抗生素的使用,進而減緩細菌耐藥性的發展。在新型抗生素發掘困難時期,有效利用宿主免疫也是應對耐藥細菌的有效策略。此外,根據細菌抗體聯合抗生素治療的成功案例[106,108,129],倡導更全面的細菌疫苗研發和更廣泛的細菌疫苗接種。一般認為,疫苗接種后機體產生的特異性抗體有助于預防相應細菌感染,而把這個范疇放大來看,機體內存在的抗體可能有助于感染后的抗生素治療。疫苗在預防和治療中的雙重作用,展示出細菌疫苗應對耐藥細菌的良好應用前景。
參 考 文 獻
Uddin T M, Chakraborty A J, Khusro A, et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects[J]. J Infect Public Health, 2021, 14(12): 1750-1766.
Kwon J H, Powderly W G. The post-antibiotic era is here[J]. Science, 2021, 373(6554): 471.
Morrison L, Zembower T R. Antimicrobial resistance[J]. Gastrointest Endosc Clin N Am, 2020, 30(4): 619-635.
Periti P, Mazzei T. Infections in immunocompromised patients. II. Established therapy and its limitations[J]. Clin Ther, 1985, 8(1): 100-117.
Wolf A J, Liu G Y, Underhill D M. Inflammatory properties of antibiotic-treated bacteria[J]. J Leukoc Biol, 2017, 101(1): 127-134.
Parkin J, Cohen B. An overview of the immune system[J]. Lancet, 2001, 357(9270): 1777-1789.
Tomar N, De R K. A brief outline of the immune system[J]. Methods Mol Biol, 2014, 1184: 3-12.
Mian M, Natori Y, Ferreira V, et al. Evaluation of a novel global immunity assay to predict infection in organ transplant recipients[J]. Clin Infect Dis, 2018, 66(9): 1392-1397.
Dinos G P. The macrolide antibiotic renaissance[J]. Br J Pharmacol, 2017, 174(18): 2967-2983.
Shimane T, Asano K, Suzuki M, et al. Influence of a macrolide antibiotic, roxithromycin, on mast cell growth and activation in vitro[J]. Mediators Inflamm, 2001, 10(6): 323-332.
何曉靜, 邱楓, 肇麗梅. 小劑量羅紅霉素對免疫低下小鼠的免疫調節作用[J]. 中國醫院藥學雜志, 2011, 31(08): 630-632.
Zimmermann P, Ziesenitz V C, Curtis N, et al. The immunomodulatory effects of macrolides-a systematic review of the underlying mechanisms[J]. Front Immunol, 2018, 9: 302.
Al-Darraji A, Haydar D, Chelvarajan L, et al. Azithromycin therapy reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction: Potential therapeutic targets in ischemic heart disease[J]. PLoS One, 2018, 13(7): e0200474.
Weng D, Wu Q, Chen X Q, et al. Azithromycin treats diffuse panbronchiolitis by targeting T cells via inhibition of mTOR pathway[J]. Biomed Pharmacother, 2019, 110: 440-448.
Schultz M J, Speelman P, Hack C E, et al. Intravenous infusion of erythromycin inhibits CXC chemokine production, but augments neutrophil degranulation in whole blood stimulated with Streptococcus pneumoniae[J]. J Antimicrob Chemother, 2000, 46(2): 235-240.
Teixeira D S, Louzeiro G C, Figueiredo M A, et al. Erythromycin: an alternative for the management of oral mucositis?[J]. Med Oral Patol Oral Cir Bucal, 2022, 27(5): e452-e459.
Yen T T, Jiang R S, Chang C Y, et al. Erythromycin reduces nasal inflammation by inhibiting immunoglobulin production, attenuating mucus secretion, and modulating cytokine expression[J]. Sci Rep, 2021, 11(1): 21737.
Griffin M O, Fricovsky E, Ceballos G, et al. Tetracyclines: A pleitropic family of compounds with promising therapeutic properties. Review of the literature[J]. Am J Physiol Cell Physiol, 2010, 299(3): C539-C548.
Smith-Norowitz T A, Weaver D, Norowitz Y M, et al. Doxycycline suppresses Chlamydia pneumoniae induced interferon-gamma responses in peripheral blood mononuclear cells in children with allergic asthma[J]. J Infect Chemother, 2018, 24(6): 470-475.
Patel A, Khande H, Periasamy H, et al. Immunomodulatory effect of doxycycline ameliorates systemic and pulmonary inflammation in a murine polymicrobial sepsis model[J]. Inflammation, 2020, 43(3): 1035-1043.
Florou D T, Mavropoulos A, Dardiotis E, et al. Tetracyclines diminish in vitro IFN-γ and IL-17-producing adaptive and innate immune cells in multiple sclerosis[J]. Front Immunol, 2021, 12: 739186.
Peukert K, Fox M, Schulz S, et al. Inhibition of caspase-1 with tetracycline ameliorates acute lung injury[J]. Am J Respir Crit Care Med, 2021, 204(1): 53-63.
Singh S, Khanna D, Kalra S. Minocycline and doxycycline: More than antibiotics[J]. Curr Mol Pharmacol, 2021, 14(6): 1046-1065.
Sun J, Shigemi H, Cao M, et al. Minocycline induces autophagy and inhibits cell proliferation in lps-stimulated thp-1 cells[J]. Biomed Res Int, 2020, 2020: 5459209.
Bassett B, Subramaniyam S, Fan Y, et al. Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis[J]. Brain Behav Immun, 2021, 91: 519-530.
Bryant A E, Stevens D L. Investigating the immunomodulatory activities of omadacycline[J]. J Antimicrob Chemother, 2023, 78(1): 78-83.
Sauer A, Putensen C, Bode C. Immunomodulation by tetracyclines in the critically Ill: An emerging treatment option[J]? Crit Care, 2022, 26(1): 74.
Haruki T, Miyazaki D, Matsuura K, et al. Comparison of toxicities of moxifloxacin, cefuroxime, and levofloxacin to corneal endothelial cells in vitro[J]. J Cataract Refract Surg, 2014, 40(11): 1872-1878.
Qiu Z, Yuan H, Li N, et al. Bidirectional effects of moxifloxacin on the pro?inflammatory response in lipopolysaccharide?stimulated mouse peritoneal macrophages[J]. Mol Med Rep, 2018, 18(6): 5399-5408.
Zusso M, Lunardi V, Franceschini D, et al. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway[J]. J Neuroinflammation, 2019, 16(1): 148.
Liu X, Liu F, Ding S, et al. Sublethal levels of antibiotics promote bacterial persistence in epithelial cells[J]. Adv Sci (Weinh), 2020, 7(18): 1900840.
Nakajima A, Sato H, Oda S, et al. Fluoroquinolones and propionic acid derivatives induce inflammatory responses in vitro[J]. Cell Biol Toxicol, 2018, 34(1): 65-77.
Salman H R, Al-Zubaidy A A, Abbas A H, et al. The ameliorative effects of topical gemifloxacin alone or in combination with clobetasol propionate on imiquimod-induced model of psoriasis in mice[J]. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397(1): 599-616.
張昳馨, 陳楠燁, 馮美卿, 等. 奈諾沙星對巨噬細胞特異性免疫調控作用研究[J]. 中國感染與化療雜志, 2020, 20(4): 345-351.
Kim D, Kim S, Kwon Y, et al. Structural insights for β-lactam antibiotics[J]. Biomol Ther (Seoul), 2023, 31(2): 141-147.
Anuforom O, Wallace G R, Buckner M M, et al. Ciprofloxacin and ceftriaxone alter cytokine responses, but not toll-like receptors, to Salmonella infection in vitro[J]. J Antimicrob Chemother, 2016, 71(7): 1826-1833.
Calbo E, Alsina M, Rodríguez-Carballeira M, et al. Systemic expression of cytokine production in patients with severe pneumococcal pneumonia: effects of treatment with a beta-lactam versus a fluoroquinolone[J]. Antimicrob Agents Chemother, 2008, 52(7): 2395-2402.
Hildebrand D, B?hringer J, K?rner E, et al. Cefiderocol protects against cytokine- and endotoxin-induced disruption of vascular endothelial cell integrity in an in vitro experimental model[J]. Antibiotics (Basel), 2022, 11(5): 581.
Van Vlem B, Vanholder R, De Paepe P, et al. Immunomo-dulating effects of antibiotics: Literature review[J]. Infection, 1996, 24(4): 275-291.
Volk C F, Burgdorf S, Edwardson G, et al. Interleukin (IL)-1β and IL-10 host responses in patients with Staphylococcus aureus bacteremia determined by antimicrobial therapy[J]. Clin Infect Dis, 2020, 70(12): 2634-2640.
Smelter D, Hayney M, Sakoulas G, et al. Is the success of cefazolin plus ertapenem in methicillin-susceptible Staphylococcus aureus bacteremia based on release of interleukin-1 beta?[J]. Antimicrob Agents Chemother, 2022, 66(2): e0216621.
Cimino C, Allos B M, Phillips E J. A review of β-lactam-associated neutropenia and implications for cross-reactivity[J]. Ann Pharmacother, 2021, 55(8): 1037-1049.
Hilliard J J, Melton J L, Hall L, et al. Comparative effects of carbapenems on bacterial load and host immune response in a Klebsiella pneumoniae murine pneumonia model[J]. Antimicrob Agents Chemother, 2011, 55(2): 836-844.
Liu J, Wei T, Wu X, et al. Early exposure to environmental levels of sulfamethoxazole triggers immune and inflammatory response of healthy zebrafish larvae[J]. Sci Total Environ, 2020, 703: 134724.
Abou Assale T, Kuenzel T, Schink T, et al. 6'-sialyllactose ameliorates the ototoxic effects of the aminoglycoside antibiotic neomycin in susceptible mice[J]. Front Immunol, 2023, 14: 1264060.
Bongers S, Hellebrekers P, Leenen L P H, et al. Intracellular penetration and effects of antibiotics on Staphylococcus aureus inside human neutrophils: A comprehensive review[J]. Antibiotics, 2019, 8(2): 54.
Long J, Ji W, Zhang D, et al. Bioactivities and structure-activity relationships of fusidic acid derivatives: A review[J]. Front Pharmacol, 2021, 12: 759220.
Ariza A, Mayorga C, Fernandez T D, et al. Hypersensitivity reactions to β-lactams: Relevance of hapten-protein conjugates[J]. J Investig Allergol Clin Immunol, 2015, 25(1): 12-25.
Khan D A, Banerji A, Bernstein J A, et al. Cephalosporin allergy: Current understanding and future challenges[J]. J Allergy Clin Immunol Pract, 2019, 7(7): 2105-2114.
Green E A, Fogarty K, Ishmael F T. Penicillin allergy: Mechanisms, diagnosis, and management[J]. Prim Care, 2023, 50(2): 221-235.
Zagursky R J, Pichichero M E. Cross-reactivity in β-Lactam allergy[J]. J Allergy Clin Immunol Pract, 2018, 6(1): 72-81.e71.
Novalbos A, Sastre J, Cuesta J, et al. Lack of allergic cross-reactivity to cephalosporins among patients allergic to penicillins[J]. Clin Exp Allergy, 2001, 31(3): 438-443.
Minaldi E, Phillips E J, Norton A. Immediate and delayed hypersensitivity reactions to beta-lactam antibiotics[J]. Clin Rev Allergy Immunol, 2022, 62(3): 449-462.
Meng X, Maggs J L, Usui T, et al. Auto-oxidation of isoniazid leads to isonicotinic-lysine adducts on human serum albumin[J]. Chem Res Toxicol, 2015, 28(1): 51-58.
Fathallah N, Bellasfar N, Ammar H, et al. DRESS syndrome induced by rifampicin[J]. Therapie, 2018, 73(5): 441-443.
Domenech M, Sempere J, de Miguel S, et al. Combination of antibodies and antibiotics as a promising strategy against multidrug-resistant pathogens of the respiratory tract[J]. Front Immunol, 2018, 9: 2700.
Kumar N P, Moideen K, Nancy A, et al. Acute phase proteins are baseline predictors of tuberculosis treatment failure[J]. Front Immunol, 2021, 12: 731878.
Lu J, Mold C, Du Clos T W, et al. Pentraxins and Fc receptor-mediated immune responses[J]. Front Immunol, 2018, 9: 2607.
Li J, Bai H, Yin X, et al. Functional characterization of serum amyloid p component (SAP) in host defense against bacterial infection in a primary vertebrate[J]. Int J Mol Sci, 2022, 23(16): 9468.
Ramos-Sevillano E, Rodríguez-Sosa C, Cafini F, et al. Cefditoren and ceftriaxone enhance complement-mediated immunity in the presence of specific antibodies against antibiotic-resistant pneumococcal strains[J]. PLoS One, 2012, 7(9): e44135.
Ngwa D N, Singh S K, Agrawal A. C-reactive protein-based strategy to reduce antibiotic dosing for the treatment of pneumococcal infection[J]. Front Immunol, 2020, 11: 620784.
Horn D L, Opal S M, Lomastro E. Antibiotics, cytokines, and endotoxin: A complex and evolving relationship in gram-negative sepsis[J]. Scand J Infect Dis Suppl, 1996, 101: 9-13.
Luchi M, Morrison D C, Opal S, et al. A comparative trial of imipenem versus ceftazidime in the release of endotoxin and cytokine generation in patients with Gram-negative urosepsis. Urosepsis Study Group[J]. J Endotoxin Res, 2000, 6(1): 25-31.
Bode C, Diedrich B, Muenster S, et al. Antibiotics regulate the immune response in both presence and absence of lipopolysaccharide through modulation of toll-like receptors, cytokine production and phagocytosis in vitro[J]. Int Immunopharmacol, 2014, 18(1): 27-34.
Hantoushzadeh S, Anvari Aliabad R, Norooznezhad A H. Antibiotics, inflammation, and preterm labor: A missed conclusion[J]. J Inflamm Res, 2020, 13: 245-254.
Wu S, Liu J, Liu C, et al. Quorum sensing for population-level control of bacteria and potential therapeutic applications[J]. Cell Mol Life Sci, 2020, 77(7): 1319-1343.
Turkey A M, Barzani K K, Suleiman A A J, et al. Molecular assessment of accessory gene regulator (agr) quorum sensing system in biofilm forming Staphylococcus aureus and study of the effect of silver nanoparticles on agr system[J]. Iran J Microbiol, 2018, 10(1): 14-21.
Holm A, Vikstr?m E. Quorum sensing communication between bacteria and human cells: Signals, targets, and functions[J]. Front Plant Sci, 2014, 5: 309.
Glucksam-Galnoy Y, Sananes R, Silberstein N, et al. The bacterial quorum-sensing signal molecule N-3-oxo-dodecanoyl-L-homoserine lactone reciprocally modulates pro-and anti-inflammatory cytokines in activated macrophages[J]. J Immunol, 2013, 191(1): 337-344.
Holban A M, Bleotu C, Chifiriuc M C, et al. Role of Pseudomonas aeruginosa quorum sensing (QS) molecules on the viability and cytokine profile of human mesenchymal stem cells[J]. Virulence, 2014, 5(2): 303-310.
Coquant G, Aguanno D, Brot L, et al. 3-oxo-C12:2-HSL, quorum sensing molecule from human intestinal microbiota, inhibits pro-inflammatory pathways in immune cells via bitter taste receptors[J]. Sci Rep, 2022, 12(1): 9440.
高雅婷, 李曉霞, 段金菊. 銅綠假單胞菌的群體感應系統及其抑制劑研究進展[J]. 中國抗生素雜志, 2018, 43(11): 1338-1343.
Aleanizy F S, Alqahtani F Y, Eltayb E K, et al. Evaluating the effect of antibiotics sub-inhibitory dose on Pseudomonas aeruginosa quorum sensing dependent virulence and its phenotypes[J]. Saudi J Biol Sci, 2021, 28(1): 550-559.
Fang J Q, Ou Q, Pan J, et al. TcpC inhibits toll-like receptor signaling pathway by serving as an E3 ubiquitin ligase that promotes degradation of myeloid differentiation factor 88[J]. PLoS Pathog, 2021, 17(3): e1009481.
Fedele G, Bianco M, Ausiello C M. The virulence factors of Bordetella pertussis: Talented modulators of host immune response[J]. Arch Immunol Ther Exp (Warsz), 2013, 61(6): 445-457.
Akoolo L, Pires S, Kim J, et al. The capsule of Acinetobacter baumannii protects against the innate immune response[J]. J Innate Immun, 2022, 14(5): 543-554.
Hodille E, Rose W, Diep B A, et al. The role of antibiotics in modulating virulence in Staphylococcus aureus[J]. Clin Microbiol Rev, 2017, 30(4): 887-917.
Evans J J, Bolz D D. Regulation of virulence and antibiotic resistance in Gram-positive microbes in response to cell wall-active antibiotics[J]. Curr Opin Infect Dis, 2019, 32(3): 217-222.
Calcagnile M, Jeguirim I, Tredici S M, et al. Spiramycin disarms Pseudomonas aeruginosa without inhibiting growth[J]. Antibiotics (Basel), 2023, 12(3): 499.
Kim S K, Lee J H. Biofilm dispersion in Pseudomonas aeruginosa[J]. J Microbiol, 2016, 54(2): 71-85.
Camacho-Ortiz A, Lara-Medrano R, Martínez-Reséndez M F, et al. Azithromycin effect on multidrug resistant Acinetobacter baumannii biofilm production and composition[J]. Gac Med Mex, 2021, 157(5): 478-483.
曹若楠, 李小寧, 阮欣然, 等. 阿奇霉素聯合左氧氟沙星對不同ST型肺炎克雷伯菌生物膜的抑制和清除作用的研究[J]. 中國臨床藥理學與治療學, 2023, 28(12): 1347-1356.
Linklater D P, Juodkazis S, Crawford R J, et al. Mechanical inactivation of Staphylococcus aureus and Pseudomonas aeruginosa by titanium substrata with hierarchical surface structures[J]. Materialia, 2019, 5: 100197.
Sato Y, Unno Y, Ubagai T, et al. Sub-minimum inhibitory concentrations of colistin and polymyxin B promote Acinetobacter baumannii biofilm formation[J]. PLoS One, 2018, 13(3): e0194556.
Desbois A P, Cook K J, Buba E. Antibiotics modulate biofilm formation in fish pathogenic isolates of atypical Aeromonas salmonicida[J]. J Fish Dis, 2020, 43(11): 1373-1379.
Kaya E, Grassi L, Benedetti A, et al. In vitro interaction of Pseudomonas aeruginosa biofilms with human peripheral blood mononuclear cells[J]. Front Cell Infect Microbiol, 2020, 10: 187.
W?chter J, Vestweber P K, Planz V, et al. Unravelling host-pathogen interactions by biofilm infected human wound models[J]. Biofilm, 2023, 6: 100164.
Gries C M, Rivas Z, Chen J, et al. Intravital multiphoton examination of implant-associated Staphylococcus aureus biofilm infection[J]. Front Cell Infect Microbiol, 2020, 10: 574092.
Rathore S S, Cheepurupalli L, Gangwar J, et al. Biofilm of Klebsiella pneumoniae minimize phagocytosis and cytokine expression by macrophage cell line[J]. AMB Express, 2022, 12(1): 122.
Stecher B, Maier L, Hardt W D. 'Blooming' in the gut: How dysbiosis might contribute to pathogen evolution[J]. Nat Rev Microbiol, 2013, 11(4): 277-284.
de Vos W M, Tilg H, Van Hul M, et al. Gut microbiome and health: Mechanistic insights[J]. Gut, 2022, 71(5): 1020-1032.
Fishbein S R S, Mahmud B, Dantas G. Antibiotic perturbations to the gut microbiome[J]. Nat Rev Microbiol, 2023, 21(12): 772-788.
Jia L, Chen H, Yang J, et al. Combinatory antibiotic treatment protects against experimental acute pancreatitis by suppressing gut bacterial translocation to pancreas and inhibiting NLRP3 inflammasome pathway[J]. Innate Immun, 2020, 26(1): 48-61.
Burrello C, Garavaglia F, Cribiù F M, et al. Short-term oral antibiotics treatment promotes inflammatory activation of colonic invariant natural killer T and conventional CD4(+) T cells[J]. Front Med (Lausanne), 2018, 5: 21.
Li H, Xiang Y, Zhu Z, et al. Rifaximin-mediated gut microbiota regulation modulates the function of microglia and protects against cums-induced depression-like behaviors in adolescent rat[J]. J Neuroinflammation, 2021, 18(1): 254.
Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: How does IgG modulate the immune system?[J]. Nat Rev Immunol, 2013, 13(3): 176-189.
Guo Y, Yang X, Qi Y, et al. Long-term use of ceftriaxone sodium induced changes in gut microbiota and immune system[J]. Sci Rep, 2017, 7: 43035.
Kishida S, Kato-Mori Y, Hagiwara K. Influence of changes in the intestinal microflora on the immune function in mice[J]. J Vet Med Sci, 2018, 80(3): 440-446.
Dupraz L, Magniez A, Rolhion N, et al. Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells[J]. Cell Rep, 2021, 36(1): 109332.
Luu M, Monning H, Visekruna A. Exploring the molecular mechanisms underlying the protective effects of microbial SCFAs on intestinal tolerance and food allergy[J]. Front Immunol, 2020, 11: 1225.
Tan J K, Macia L, Mackay C R. Dietary fiber and SCFAs in the regulation of mucosal immunity[J]. J Allergy Clin Immunol, 2023, 151(2): 361-370.
Nakamura S, Ikeda-Dantsuji Y, Jin L, et al. Macrolides inhibit capsule formation of highly virulent Cryptococcus gattii and promote innate immune susceptibility[J]. Antimicrob Agents Chemother, 2019, 63(6): e02364-02318.
Wang H, Chen D, Lu H. Anti-bacterial monoclonal antibodies: next generation therapy against superbugs[J]. Appl Microbiol Biotechnol, 2022, 106(11): 3957-3972.
Greenlee-Wacker M C, Rigby K M, Kobayashi S D, et al. Phagocytosis of Staphylococcus aureus by human neutrophils prevents macrophage efferocytosis and induces programmed necrosis[J]. J Immunol, 2014, 192(10): 4709-4717.
Lehar S M, Pillow T, Xu M, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus[J]. Nature, 2015, 527(7578): 323-328.
Meeker D G, Wang T, Harrington W N, et al. Versatility of targeted antibiotic-loaded gold nanoconstructs for the treatment of biofilm-associated bacterial infections[J]. Int J Hyperthermia, 2018, 34(2): 209-219.
Soltanmohammadi B, Piri-Gavgani S, Basardeh E, et al. Bactericidal fully human single-chain fragment variable antibodies protect mice against methicillin-resistant Staphylococcus aureus bacteraemia[J]. Clin Transl Immunology, 2021, 10(7): e1302.
Huang W, Zhang Q, Li W, et al. Anti-outer membrane vesicle antibodies increase antibiotic sensitivity of pan-drug-resistant Acinetobacter baumannii[J]. Front Microbiol, 2019, 10: 1379.
West E E, Kolev M, Kemper C. Complement and the regulation of T cell responses[J]. Annu Rev Immunol, 2018, 36: 309-338.
Heesterbeek D A, Bardoel B W, Parsons E S, et al. Bacterial killing by complement requires membrane attack complex formation via surface-bound C5 convertases[J]. Embo J, 2019, 38(4): e99852.
Heesterbeek D A C, Martin N I, Velthuizen A, et al. Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specific antibiotics[J]. Sci Rep, 2019, 9(1): 3074.
Jung E, Feldhoff R C, Walz B M, et al. Complement component C9 enhances the capacity of beta-lactam antibiotics to kill Escherichia coli in vitro and in vivo[J]. Am J Med Sci, 1998, 315(5): 307-313.
Bettoni S, Maziarz K, Stone M R L, et al. Serum complement activation by C4BP-IgM fusion protein can restore susceptibility to antibiotics in Neisseria gonorrhoeae[J]. Front Immunol, 2021, 12: 726801.
Briscoe S E, McWhinney B C, Lipman J, et al. A method for determining the free (unbound) concentration of ten beta-lactam antibiotics in human plasma using high performance liquid chromatography with ultraviolet detection[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2012, 907: 178-184.
Beer J, Wagner C C, Zeitlinger M. Protein binding of antimicrobials: Methods for quantification and for investigation of its impact on bacterial killing[J]. Aaps J, 2009, 11(1): 1-12.
Jongmans C, Muller A E, Van Den Broek P, et al. An overview of the protein binding of cephalosporins in human body fluids: A systematic review[J]. Front Pharmacol, 2022, 13: 900551.
Matsuzawa A, Saegusa K, Noguchi T, et al. ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity[J]. Nat Immunol, 2005, 6(6): 587-592.
Courtney C M, Goodman S M, Nagy T A, et al. Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation[J]. Sci Adv, 2017, 3(10): e1701776.
Yang Y, Bazhin A V, Werner J, et al. Reactive oxygen species in the immune system[J]. Int Rev Immunol, 2013, 32(3): 249-270.
Covarrubias A, Byles V, Horng T. ROS sets the stage for macrophage differentiation[J]. Cell Res, 2013, 23(8): 984-985.
Geng S, Lin R, Wu Y, et al. Modulation of innate immune memory dynamics by subcellular reactive oxygen species[J]. Antioxid Redox Signal, 2023, 39(16-18): 1027-1038.
Kottur J, Nair D T. Reactive oxygen species play an important role in the bactericidal activity of quinolone antibiotics[J]. Angew Chem Int Ed Engl, 2016, 55(7): 2397-2400.
Liu X, Marrakchi M, Jahne M, et al. Real-time investigation of antibiotics-induced oxidative stress and superoxide release in bacteria using an electrochemical biosensor[J]. Free Radic Biol Med, 2016, 91: 25-33.
Grant S S, Kaufmann B B, Chand N S, et al. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals[J]. Proc Natl Acad Sci U S A, 2012, 109(30): 12147-12152.
Rowe S E, Wagner N J, Li L, et al. Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection[J]. Nat Microbiol, 2020, 5(2): 282-290.
Wink D A, Hines H B, Cheng R Y, et al. Nitric oxide and redox mechanisms in the immune response[J]. J Leukoc Biol, 2011, 89(6): 873-891.
McCollister B D, Hoffman M, Husain M, et al. Nitric oxide protects bacteria from aminoglycosides by blocking the energy-dependent phases of drug uptake[J]. Antimicrob Agents Chemother, 2011, 55(5): 2189-2196.
Ribeiro C A, Rahman L A, Holmes L G, et al. Nitric oxide (NO) elicits aminoglycoside tolerance in Escherichia coli but antibiotic resistance gene carriage and NO sensitivity have not co-evolved[J]. Archives of Microbiology, 2021, 203(5): 2541-2550.
Pachl J, Svoboda P, Jacobs F, et al. A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis[J]. Clin Infect Dis, 2006, 42(10): 1404-1413.
Matthews R C, Rigg G, Hodgetts S, et al. Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90[J]. Antimicrob Agents Chemother, 2003, 47(7): 2208-2216.
Pichler W J, Brüggen M C. Viral infections and drug hypersensitivity[J]. Allergy, 2023, 78(1): 60-70.
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97.
Stokes J M, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery[J]. Cell, 2020, 181(2): 475-483.
Wong F, Zheng E J, Valeri J A, et al. Discovery of a structural class of antibiotics with explainable deep learning[J]. Nature, 2024, 626(7997): 177-185.
Jeong E K, Lee H J, Jung Y J. Host-directed therapies for tuberculosis[J]. Pathogens, 2022, 11(11): 1291.
Guler R, Ozturk M, Sabeel S, et al. Targeting molecular inflammatory pathways in granuloma as host-directed therapies for tuberculosis[J]. Front Immunol, 2021, 12: 733853.