



【摘要】 去泛素化修飾是由去泛素化酶(DUBs)介導的一類重要的蛋白質翻譯后修飾,其主要機制是DUBs與泛素化靶蛋白相互作用,切割或去除靶蛋白的泛素鏈,進而恢復蛋白的表達水平和功能活性。本文系統性地綜述了去泛素化修飾在衰老相關疾病中的最新研究進展,涵蓋了DUBs的種類、DUBs在細胞衰老中的作用,以及不同機制對衰老相關疾病的調控,并總結了針對DUBs小分子藥物開發以及相關機制的研究進展。本文表明,隨著機體的衰老,蛋白更新功能減慢、氧化損傷等因素導致泛素化蛋白累積等,進而細胞出現功能障礙。DUBs通過調節衰老細胞的蛋白質穩態、線粒體功能、細胞周期等機制,在衰老相關疾病中發揮重要且復雜的調控作用。
【關鍵詞】 衰老;衰老相關疾病;去泛素化修飾;去泛素酶類;蛋白質質量控制;線粒體功能
【中圖分類號】 R 33 R 349.1 【文獻標識碼】 A DOI:10.12114/j.issn.1007-9572.2024.0357
The Roles of Deubiquitination in Age-related Diseases
XU Linhui1,2,LI Pengfei1,2,WU Miaomiao1,2,KANG Lihua1,2,JI Min1,2,YU Ying1,2*,GUAN Huaijin1,2*
1.Nantong University,Nantong 226001,China
2.Eye Institute,Affiliated Hospital of Nantong University,Nantong 226001,China
*Corresponding authors:GUAN Huaijin,Professor/Doctoral supervisor;E-mail:guanhjeye@163.com
YU Ying,Associate chief physician;E-mail:yuying.2009@163.com
【Abstract】 Deubiquitination,mediated by deubiquitinating enzymes(DUBs),represents a crucial class of post-translational protein modifications. Its primary mechanism involves in the interaction of DUBs with ubiquitinated target proteins,whereby the DUBs cleave or remove ubiquitin chains from these targets,subsequently restoring their expression levels and functional activities. This article systematically reviews the latest research progress on deubiquitination in age-related diseases,covering the types of DUBs,their roles in cellular aging,and the regulatory mechanisms in age-related diseases through different pathways. It also summarizes the research progress in the development of small-molecule drugs targeting DUBs and related mechanisms. This review demonstrates that as the body ages,factors such as decreased protein renewal function and oxidative damage lead to the accumulation of ubiquitinated proteins,resulting in cellular dysfunction. DUBs play an important and complex regulatory role in age-related diseases by modulating mechanisms such as protein homeostasis,mitochondrial function,and cell cycle in aging cells.
【Key words】 Aging;Age-related diseases;Deubiquitination;Deubiquitinating enzymes;Protein quality control;Mitochondrial function
泛素作為一種由76個氨基酸組成的高度保守蛋白質,普遍存在于真核生物,是細胞調控機制中的關鍵分子[1]。泛素化是一種重要的蛋白質翻譯后修飾過程,通過E1激活酶、E2結合酶及E3連接酶的級聯反應,將泛素分子以共價鍵形式連接至底物蛋白。在這一過程中,泛素通過其7個賴氨酸殘基(K6、K11、K27、K29、K33、K48和K63)中的任一或多個作為連接點,形成結構多樣的多聚泛素鏈,從而以多樣化的功能調控模式對底物蛋白發揮作用[2]。這種高度特異性的修飾機制不僅調控著底物蛋白的穩定性、亞細胞定位、蛋白質間相互作用及功能活性,還與細胞內的多種生理過程密切相關(圖1)。
泛素系統的動態平衡是維持細胞內環境穩態與正常生理功能不可或缺的基石。然而,隨著年齡的增長,這一平衡狀態被打破,導致細胞內多種生理過程紊亂,進而成為多種衰老相關疾病的重要誘因[3-4]。近年來,去泛素化修飾作為泛素化過程的可逆反應,其在衰老相關疾病中的作用日益受到重視。去泛素化酶(deubiquitinating enzymes,DUBs)通過移除底物蛋白上的泛素鏈,恢復蛋白質的原始狀態,從而在維持泛素系統動態平衡中扮演關鍵角色[5]。針對去泛素化修飾的研究,不僅為揭示衰老相關疾病的發病機制提供了新的視角,也為開發新型治療策略提供了潛在靶點。本文旨在綜述去泛素化修飾在衰老相關疾病中的最新研究進展,以期為相關領域的研究者提供新的思路與方向。
1 文獻檢索策略
計算機檢索PubMed、Web of Science等數據庫,檢索時間設置為建庫至2024年7月,英文檢索詞包括“aging”“age-related diseases”“Deubiquitinating enzymes”“protein quality control” “mitochondrial function”等。納入標準:文獻內容涉及去泛素化修飾對衰老及相關疾病的影響、衰老及相關疾病的產生機制,以及去泛素化參與其中的具體機制。排除標準:與本文主題無關聯、質量低的文獻。最終納入文獻158篇。
2 DUBs的種類和作用特點
為了維持泛素化系統的平衡,去泛素化修飾應運而生,這一過程主要由DUBs負責執行。DUBs具有高度的特異性,能夠識別并精確切割靶蛋白上的泛素鏈,進而改變蛋白質的泛素化狀態(圖1)。根據結構和作用機制的不同,DUBs分為6個家族,包括泛素特異性蛋白酶(ubiquitin specific protease,USPs)、泛素C末端水解酶(ubiquitin C-terminal hydrolases,UCHs)、卵巢腫瘤蛋白酶(ovarian tumor-related protease,OTUs)、Machado-Joseph結構域蛋白酶(Machado-Joseph disease proteases,MJDs)、Jab1/Mov34/Mpr1金屬蛋白酶(Jab1/Mov34/Mpr1 metalloproteases,JAMM)[6]以及其他類型的DUBs[7]。
2.1 USPs
USPs家族是已知最大的DUBs家族,包含超過50個成員[8]。在該家族中,所有成員擁有一個高度保守的USPs結構域,該結構域由“手指”(Fingers)、“手掌”(Palm)和“拇指”(Thumb)這3個子結構共同構成了USP的催化核心,使其能夠特異性地識別和去除蛋白質底物上的泛素分子[9]。USPs家族成員與蛋白酶體途徑密切相關,通過從蛋白酶體結合的底物中去除泛素鏈來保護底物蛋白免于降解[10-11],從而恢復底物蛋白的表達以及功能。
2.2 UCHs
UCHs家族共有4個成員,分別是UCH?L1、UCH?L3、UCH37和BRCA1相關蛋白1(BRCA1-associated protein 1,BAP1)[9]。UCHs通常包含多個結構域,如泛素結合結構域(ubiquitin-binding domain,UBD)、催化結構域(ubiquitin C-terminal hydrolase,UCH)和泛素樣結構域(ubiquitin-like domain,UBL)等,而UCH結構域是其酶活性的關鍵位點[12]。UCHs常通過調節底物蛋白的泛素-蛋白酶體系統(ubiquitin-proteasome system,UPS)和自噬-溶酶體途徑(autophagy lysosomal pathway,ALP)降解,以調控細胞氧化應激、DNA損傷修復等過程[13-14]。
2.3 OTUs
OTUs可分為4個不同的亞家族,包括OTUB亞家族、OTUD亞家族、A20類亞家族以及OTULIN亞家族[15]。與其他DUBs不同,OTUs家族成員對不同類型的泛素化具有選擇性[16]。例如,在OTUs家族中,OTUB1顯示出明顯的K48連接泛素鏈的特異性,而OTUB2切割更廣泛的多泛素鏈,偏好K63、K11連接的泛素鏈[13-14]。近年來,OTUs已成為信號傳導和DNA損傷反應等多種生理過程的重要調節因子,這些過程的失調可能會增加衰老相關疾病的多個方面的風險,包括神經退行性疾病、慢性腎臟疾病和肺纖維化等[17-20]。
2.4 MJDs
MJDs家族是已知最小的DUBs家族,主要由ATXN3、ATXN3L、JOSD1和JOSD2這4個成員組成[21]。MJDs家族成員均包含Josephin結構域,該結構域由大約180個氨基酸構成,在真核生物中高度保守[21]。MJDs被認為與腫瘤的進展密切相關,其中,JOSD1和JOSD2在多種癌癥中過表達,可能是促進癌癥發展的癌基因因子[21]。
2.5 JAMM
與其他家族相比,JAMM家族的獨特之處在于其是金屬蛋白酶[22]。JAMM家族成員在結構上具有保守的JAMM結構域,該結構域包含1個鋅指基序和1個催化核心,這對于其去泛素化活性至關重要[23]。然而,目前關于JAMM家族蛋白酶功能的研究仍處于初步階段,尚需更多的實驗證據來證實他們之間的關系。
2.6 其他類型的DUBs
除了上述幾類主要的DUBs外,還包括MINDY家族、ZUFSP家族等。其中,MINDY1和MINDY2是MINDY家族的成員,對切割K48-poly Ub具有良好的特異性,但目前對其催化機制知之甚少[24]。而ZUFSP家族則與任何已知DUB均無同源性,被認為是第7個DUB家族[25]。最新研究顯示,ZUFSP定位于DNA損傷,在基因組穩定途徑中發揮重要作用,可應對外源性DNA損傷時促進細胞存活[26]。鑒于細胞衰老與DNA損傷的密切關系,表明ZUFSP很有可能成為衰老過程中新的調控因子。
3 DUBs與細胞衰老
衰老被定義為隨著年齡增長,體內各種分子和細胞損傷逐漸累積,進而導致機體功能下降的過程。細胞作為器官和生物體的基本單元,是器官和生物體衰老的主要驅動力。近期,有學者總結了細胞衰老的十大典型生物標志物,涵蓋了線粒體功能障礙、蛋白質穩態應激、細胞周期停滯、信號通路異常等[27]。泛素平衡系統由E1激活酶、E2結合酶及E3連接酶和DUBs組成,廣泛參與了細胞內的各種生命進程,鑒于DUBs在泛素平衡系統中的核心地位,本文將從細胞衰老的生物標志物與DUBs的角度出發,探討二者之間的內在聯系及機制。
3.1 DUBs與蛋白質穩態應激
蛋白質穩態網絡是維持細胞內蛋白質穩態的核心調控體系,由分子伴侶、UPS和ALP共同構成[28]。其中,UPS和ALP是蛋白質降解的主要途徑,通過調控受損蛋白以及錯誤折疊蛋白的識別與清除過程發揮關鍵作用[29]。
在正常生理條件下,UPS和ALP緊密合作,共同組成高效的蛋白質降解網絡,以維持細胞內蛋白穩態。然而,在衰老等應激條件下,二者功能失調,進而導致蛋白質的錯誤折疊和異常聚集,這一現象是蛋白質構象紊亂和細胞衰老的重要標志之一[30-31]。而泛素平衡系統不僅是UPS的主要構成部分,還能作為UPS和ALP溝通的關鍵橋梁[32]。BLASIAK等[33]在對視網膜色素上皮細胞衰老的相關研究中發現,E3連接酶通過調控UPS和ALP之間的串聯發揮作用。此外,在神經元細胞衰老的過程中,泛素平衡系統的功能障礙會導致受損蛋白如微管相關蛋白Tau(microtubule-associated protein tau,Tau)、β-淀粉樣蛋白(amyloid β-protein,Aβ)等的異常積累,進而導致神經元細胞的衰老和變性[34-35]。
作為泛素平衡系統中唯一的可逆調控元件,DUBs在此過程中也展現出重要作用。研究發現,DUBs活性的變化能夠顯著影響UPS和ALP的功能[36-37]。BENVEGNù等[38]表示,衰老神經元的存活能力高度依賴于泛素化-去泛素化過程的精細調控。此外,在衰老的秀麗隱桿線蟲全蛋白質組泛素特征分析中,KOYUNCU等[39]觀察到衰老組織14種DUBs表達普遍上升和異常的蛋白聚集。這些發現均提示,DUBs可能通過參與泛素平衡系統對UPS及ALP等降解途徑的調控過程,在衰老過程中發揮關鍵作用。
3.2 DUBs與線粒體功能障礙
線粒體功能障礙是衰老的重要驅動因素之一,不僅直接影響細胞的功能和壽命,還決定了生物體的衰老速度和健康狀況[40-41]。由于線粒體是一個高蛋白含量的細胞器,線粒體蛋白質量控制(mitochondrial protein quality control,MPQC)確保線粒體蛋白的正確輸入、折疊以及周轉,維持線粒體的健康和完整性[42]。MPQC涵蓋多種過程,包括UPS、線粒體自噬、線粒體未折疊蛋白反應等[43],這些機制協同作用,有效抵御毒性損害,并清除受損蛋白質甚至整個線粒體,以維持線粒體穩態。
泛素平衡系統在MPQC中發揮重要作用,主要體現在線粒體自噬以及線粒體蛋白UPS降解兩方面。線粒體自噬,特別是PINK1/PRKN依賴性的形式,高度依賴于泛素化過程,通過清除受損的線粒體以維持細胞內線粒體網絡的正常運行[44]。USP30作為DUBs的一員,通過特異性去除線粒體蛋白上K6連接的Ub鏈,拮抗PRKN介導的線粒體自噬[45-49]。這一發現提示了DUBs在MPQC中的潛在作用。進一步研究表明,敲除USP30可減輕D-半乳糖(D-galactose,D -gal)誘導的線粒體損傷及心肌細胞衰老,且這一效應在大鼠模型中得到了驗證[50]。另一方面,線粒體外膜上受損的蛋白質也會通過泛素平衡系統,隨后經UPS途徑降解,以維持線粒體功能的持續穩定。然而,關于DUBs在這一過程中的具體貢獻仍需進一步探索,以全面揭示DUBs通過線粒體與衰老之間的復雜聯系。
除了參與MPQC過程以外,DUBs還參與調控線粒體氧化還原平衡以及線粒體動力學變化。作為細胞內活性氧(reactive oxygen species,ROS)的主要來源,線粒體產生的ROS常引發線粒體DNA(Mitochondrial DNA,mtDNA)損傷以及氧化應激,進而形成惡性循環,加劇線粒體功能障礙和細胞衰老[40,51-52]。DUBs的酶活性與ROS水平和氧化應激密切相關。DUBs作為氧化還原狀態的敏感指標,通過感知ROS異常來調節氧化還原信號傳導和保護細胞免受DNA損傷[53-54],從而維持細胞的氧化還原穩態。此外,在衰老過程中,線粒體動力學常受到顯著干擾,導致線粒體功能逐漸衰退[55]。YAN等[56]的研究指出,特異性敲除USP7會導致心肌細胞線粒體生物發生和動力學紊亂[56]。綜上所述,DUBs通過精細調控MPQC及線粒體動力學等多個層面,在線粒體功能和細胞衰老中發揮復雜的調控作用。
3.3 DUBs與p53/p21 Cip1/Waf1通路
研究發現,p53/p21 Cip1/Waf1通過精細的分子網絡調控細胞周期進程和DNA損傷以參與衰老的進程[57]。近年來,DUBs在調節p53功能及細胞周期停滯中的作用受到了廣泛關注。DUBs通過直接或間接影響p53的泛素化水平,進而調控包括細胞周期停滯在內的多種過程。其中,USP7作為p53的穩定劑[58-59],其上調可以激活p53-p21通路,誘導細胞發生過早衰老[60];同期研究也發現,抑制USP7活性能夠選擇性地消除衰老細胞[61]。此外,其他DUBs如USP5、USP14與USP22也被發現參與調控p53依賴的衰老過程[62-64]。
3.4 DUBs與異常信號通路以及其他
細胞衰老的復雜調控網絡涉及多種信號通路的協同作用,其中磷脂酰肌醇3激酶(PI3K)-蛋白激酶B(AKT)通路、腫瘤壞死因子α(TNF-α)信號傳導與衰老密切相關[65]。具體而言,TNF-α激活的核因子κB(NF-κB)信號通路是衰老過程中的關鍵節點,主要通過介導炎癥反應參與其中[66]。在這一背景下,DUBs家庭成員A20已被證實具有特異性抑制NF-κB信號通路的能力,并且能夠對TNF-α誘導的髓核細胞衰老發揮保護作用[67-68]。除了NF-κB信號通路外,PI3K-AKT通路在正常人類細胞中也被證實參與了衰老[69-70]。泛素通過影響AKT的活性與亞細胞定位進而調節整個環節,而USP14、USP18、USP33等已被證實能夠通過去泛素化AKT以調節該通路[71-73]。
4 DUBs與衰老相關疾病
4.1 DUBs與神經退行性疾病(neurodegenerative diseases,NDs)
NDs主要發生在老年人群中,包括阿爾茨海默病(Alzheimer's disease,AD)、帕金森病(Parkinson's disease,PD)和亨廷頓病(Huntington's disease,HD)等,尤其以前兩者較為常見,其發病率隨著年齡的增長而增加[74-75]。這些疾病的核心病理特征之一,是中樞神經系統中蛋白質的異常聚集,具體包括Aβ蛋白、Tau蛋白、α-突觸核蛋白(alpha-synuclein,α-Syn)、亨廷頓蛋白(huntingtin protein,HTT)[76]。這種蛋白質的異常聚集通常是由于蛋白穩態網絡失衡所導致,尤其與泛素平衡系統參與的UPS和ALP蛋白降解途徑的功能喪失相關[77-79]。鑒于上述DUBs在蛋白穩態應激中的作用,本綜述進一步探討了其在NDs中的相關機制。
Aβ蛋白沉積和Tau蛋白的異常磷酸化是AD的兩個核心病理特征,其相互作用,共同導致了神經元的損傷和死亡,DUBs異常表達或功能障礙可能是AD中Aβ蛋白和p-Tau蛋白異常聚集的主要原因。研究發現,USP8及USP25均可以通過去泛素化作用抑制β位淀粉樣蛋白前體蛋白切割酶1(recombinant beta-site app cleaving enzyme 1,BACE1)的ALP途徑降解,進而導致其下游產物Aβ蛋白的病理性聚集[80]。相較之下,UCH-L1對BACE1的調控則相反,其表達下降反而穩定了BACE1,增加了Aβ蛋白的進一步生成[81]。除了Aβ蛋白沉積,DUBs通過調節Tau的降解(USP13、OTUB1)和磷酸化(USP9X)過程來參與其中。LONSKAYA等[82]和LIU等[83]發現,USP13在AD患者腦皮層組織中的蛋白表達顯著上調,這一變化通過減少磷酸化Tau蛋白的泛素化水平,抑制其ALP及UPS途徑的降解,導致其積累。OTUB1則通過去除Tau蛋白的K48-Ub鏈以抑制其UPS降解,導致其病理性聚集[84]。同時,有研究也發現USP9X通過參與Tau蛋白的過度磷酸化過程,導致了AD的發生[85]。
PD是第二常見的神經退行性疾病,以α-Syn等蛋白的異常聚集以及路易小體(Lewy bodies,LBs)形成為主要特征。α-Syn蛋白的異常聚集很大程度上歸因于其降解減少,而該過程受到DUBs的嚴格調控。研究發現,α-Syn蛋白的穩定性與USP13以及USP8特異相關。研究者在PD中探討了USP13的作用,發現敲低USP13可以增加α-Syn蛋白的泛素化水平并促進其降解[82-83]。USP8廣泛存在于PD患者的LBs中,通過去除α-Syn蛋白上K63連接的泛素鏈以抑制其ALP途徑降解,進而導致其病理性積累[86]。此外,OTUB1被發現作為淀粉樣蛋白聚集存在于LBs中[17],這表明OTUB1具有神經毒性。進一步研究表明,OTUB1在氧化應激條件下會發生S-亞硝基化,這與其催化活性降低及淀粉樣蛋白聚集有關[17]。
另外,PINK1/Parkin介導的線粒體自噬異常被認為是PD發病的另一機制。有學者發現USP8可以通過去除Parkin上K6連接的泛素鏈以促進線粒體自噬的正常運行,在PD中起保護作用[87]。此外,USP30也通過調節線粒體質量控制系統參與PD的發生與發展過程[46]。FANG等[46]以USP30敲除小鼠為對象,發現 USP30缺失可以有效增加線粒體自噬并減少α-Syn的病理性聚集,同時,USP30特異性小分子抑制劑MTX115325可以有效恢復PD小鼠模型中的線粒體功能和多巴胺神經元的功能。這些研究成果為深入探討PD的發病機制及開發新型治療策略提供了有價值的啟示。
綜上所述,DUBs通過調節泛素系統的平衡,直接參與蛋白質降解過程的調控,其異常活動可能進一步加劇蛋白質的異常聚集;同時,DUBs還能夠發揮其在線粒體自噬中的獨特作用,從而加速NDs的進展。
4.2 DUBs與骨質疏松(osteoporosis,OP)
OP是一種隨年齡增長而增加的代謝性骨病,其發病機制涉及多種骨細胞的相互作用與調節,包括骨間充質干細胞(bone mesenchymal stem cells,BMSCs)、成骨細胞(osteoblast,OB)、破骨細胞(osteoclast,OC)和骨細胞(osteocyte,OCY)等[88]。在這一復雜的調控網絡中,Wnt/β-連環蛋白(Beta-catenin,β-catenin)信號通路是OP發生、發展的關鍵節點,其通過調控BMSCs的分化方向,影響骨形成和骨髓微環境的脂肪化[89-90]。多項研究顯示,DUBs通過調節Wnt/β-catenin通路中多個蛋白的穩定性,對整個信號通路的活性進行精細調控。
USP8位于Wnt/β-catenin信號通路的最上游,通過穩定Wnt受體卷曲5(Frizzled 5,FZD5)的表達以確保后續成骨分化過程的正常運行[91]。在該通路中,β-catenin是成骨分化過程中核心介質[92],其穩定性和活化對骨形成至關重要。近期研究揭示,USP4和USP15通過與DVL蛋白(Dishevelled,DVL)、β-catenin的相互作用,抑制其降解,從而維持Wnt/β-catenin信號通路的活性[93-94]。此外,USP7也通過調控該信號通路發揮雙重作用。一方面,USP7通過去泛素化穩定Yes關聯蛋白1(Yes-associated protein 1,YAP1)的表達,調控Wnt/β-catenin信號轉導途徑,最終促進β-catenin的核轉位,正向調節骨穩態[95],另一方面,USP7還能利用其TRAF結構域直接與Axis抑制蛋白(recombinant axis inhibition protein,Axin)結合,促進其去泛素化和穩定化,從而抑制Wnt/β-catenin信號傳導調節成骨細胞分化[96]。此外,USP26作為近年來新發現的骨穩態調節因子,在老年小鼠BMSCs中顯著降低。進一步研究表明,USP26通過去泛素化穩定β-catenin以提升BMSCs的成骨活性[97]。與此同時,BAEK等[98]的研究發現,USP53在OP中的作用機制與USP26高度一致,均能通過抑制β-catenin降解正向調節骨穩態過程并促進骨再生。
來源于BMSCs的OB是骨形成的主要來源,破壞該分化過程會導致骨代謝失衡[99]。除了Wnt/β-catenin信號通路,干細胞自我更新和多能性所必須的兩種蛋白-干細胞更新調節蛋白SRY-box轉錄因子2(SRY-box transcription factor 2,SOX2)和Nanog同源框轉錄因子(Nanog homeobox,NANOG)也通過調節BMSCs功能參與其中[100]。KIM等[101]研究發現,USP7的表達降低通過調節SOX2和NANOG的穩定性,顯著抑制了BMSCs的成骨分化潛能。然而,也有研究發現USP7可以正向調節骨穩態,通過去泛素化并穩定特異性賴氨酸特異性脫甲基酶 6B(lysine demethylase 6B,KDM6B)的表達,進而促進OB的增殖、分化和自噬,發揮抗OP作用[102]。
在骨代謝過程中,OB主要合成新的骨基質,而OC主要負責骨基質的降解。然而,炎癥因子主要通過促進OC的分化從而導致過度的骨吸收,最終引發骨質疏松[103]。在此過程中,炎癥因子包括NF-κB、TNF-α等通過促進NF-κB受體活化因子配體(receptor activator of nuclear factor-κB ligand,RANKL)的分泌以促進OC分化[103-104]。在上述LI等[97]針對USP26的研究中發現,USP26還可以通過穩定NF-κBα抑制劑IκBα以抑制該信號通路,從而阻止了OB的分化。另一研究發現,USP34也具有相同的功能[105]。此外,LIU等[106]研究發現,去泛素化酶CYLD可以通過去泛素化TNF受體關聯因子6(TNF receptor associated factor 6,TRAF6)阻斷RANKL誘導的NF-κB信號通路,從而逆轉骨質流失。在女性外周血單核細胞中,USP25的表達與骨密度呈負相關,與TRAF6的表達呈正相關,這也提示USP25可能通過穩定TRAF6的表達參與OB的分化[107]。
隨著年齡的增長,骨微環境中大多數骨細胞均會出現衰老的現象。而p53作為衰老的生物標志,也被發現是骨再生的負調控因子[108]。USP10是已知的p53的穩定劑,研究發現,雌激素通過USP10依賴的去泛素化途徑以穩定p53,從而促進p21的轉錄以及骨細胞的衰老[109]。此外,USP14也通過穩定p53表達,從而誘導骨細胞凋亡[110]。
綜上,USPs的異常表達是導致骨形成與骨吸收失衡的重要因素。進一步研究USPs介導的多種骨細胞的調控機制,將對發現和開發新的USPs靶向OP治療策略至關重要。
4.3 DUBs與動脈粥樣硬化(atherosclerosis,AS)
AS是一種脂質成分和炎性物質在動脈血管內壁沉積形成斑塊,并伴隨血管彈性喪失的血管病變[111]。NF-κB信號通路在各種刺激下,如細胞因子、微生物抗原和細胞內應激等,調節一系列炎癥介質的表達,因此在AS中發揮關鍵作用[112]。在這一過程中,受體相互作用的絲氨酸/蘇氨酸蛋白激酶1(receptor interacting kinase 1,RIPK1)是該通路中細胞死亡與炎癥的關鍵介質。RIPK1通過多聚泛素化鏈來激活IKK復合物,最終導致NF-κB通路的激活。作為AS炎癥的中心驅動因素,RIPK1的激活通常涉及泛素化過程[113-114]。JEAN-CHARLES等[115]的研究揭示了USP20通過RIPK1在AS中的重要作用,發現USP20通過去泛素化RIPK1抑制其激活,進而減弱血管平滑肌細胞(vascular smooth muscle cells,VSMCs)中TNF和白介素1β(IL-1 beta protein,IL-1β)誘發的AS信號。這一發現得到了進一步體內試驗研究的支持。在特異性表達USP20C154S/H643Q的雄性Ldlr-/-小鼠中,頭臂動脈粥樣硬化面積顯著增大[115],這提示USP20通過去泛素化RIPK1抑制VSMCs的炎癥反應,在AS中起保護作用。
此外,研究發現,USP14在AS患者樣本和氧化低密度脂蛋白(oxidized low-density lipoprotein,ox-LDL)刺激的血管內皮細胞(vascular endothelial cells,VECs)中表達顯著降低[116]。這種降低與USP14的去泛素化功能密切相關,因為其能夠穩定NLR家族CARD結構域蛋白5(NLR family CARD domain containing 5,NLRC5),從而在VECs中抑制NF-κB信號通路[116]。另一方面,UCH-L5在AS中的表達卻顯著上調,其通過去泛素化NOD樣受體熱蛋白結構域相關蛋白3(NLRP3),防止其降解,從而促進了炎癥小體的形成和炎癥反應的加劇[117]。以上結果共同揭示了DUBs在AS炎癥過程中復雜且關鍵的作用。
白細胞分化抗原36(Cluster of Differentiation 36,CD36)是脂質穩態的關鍵調節者,與AS緊密相關。CD36的過度表達會促進脂質積累、泡沫細胞形成、炎癥等過程,均為AS的核心步驟[118]。研究發現,UCH-L1缺失通過促進CD36的降解以抑制巨噬細胞向泡沫細胞的轉化[119]。隨后的研究也表明,USP11則通過穩定CD36促進這一轉變,加劇AS發展[120]。
除了經典的DUBs外,沉默信息調節因子6(Sirtuin 6,SIRT6)也以其獨特的去泛素化活性在細胞中發揮關鍵作用。SIRT6的生物學效應主要體現在兩個方面:一方面通過去乙酰化酶活性調節端粒維持和血管平滑肌細胞的壽命,從而發揮抗AS作用[121];另一方面,SIRT6的去泛素化活性可能對缺氧誘導因子1α(hypoxia-inducible factor 1-alpha,HIF-1α)的穩定性產生影響,進而參與AS的不穩定斑塊形成[122]。總的來講,對于DUBs,需要系統性的設計探索其潛在的功能機制,排除翻譯后修飾之間的串擾帶來的影響。
4.4 DUBs與呼吸系統疾病
4.4.1 DUBs與特發性肺纖維化(idiopathic pulmonary fibrosis,IPF):IPF是一種慢性、進展性的纖維化肺炎,主要影響老年人,其中衰老被認為是該疾病的一個重要風險因素[123]。
在衰老過程中,ALP的活性變化對細胞的生存與功能具有深遠影響。作為ALP的核心蛋白,自噬效應蛋白(Beclin 1,BECN1)的表達水平常受到DUBs的精確調控,以確保自噬過程的順利進行[124-125]。在IPF的病理過程中,USP13能特異性去泛素化BECN1,其缺乏會導致BECN1穩定性下降,進而抑制自噬活性;這一連鎖反應促進了成纖維細胞向侵襲性表型的轉變[126]。同時,體內實驗也進一步證實了以上發現[127]。這些發現揭示了USP13在保護肺組織免受纖維化損傷中的重要作用。此外,PANYAIN等[128]的研究表明,UCH-L1的小分子抑制劑Compound-1/2能夠抑制纖維化過程。未來研究應進一步探索DUBs相關小分子化合物的具體作用機制、療效及安全性,為IPF的治療提供新的選擇。
4.4.2 DUBs與肺衰老:肺衰老是一個隨年齡增長而發生的復雜生理過程,涉及肺組織結構與功能的廣泛變化;該過程與多個分子機制緊密相連,包括細胞周期停滯、DNA損傷、慢性炎癥反應等[129]。值得注意的是,E3泛素連接酶鼠雙微體2同源物(mouse double minute2 homolog,MDM2)作為衰老調控網絡中的關鍵節點,通過調控p53、p21等細胞衰老標志物蛋白表達水平,參與細胞周期、DNA損傷響應等關鍵衰老途徑[130-131]。近期,HE等[132]的研究發現,在老年小鼠的肺組織中,USP13的表達顯著升高。USP13能夠特異性識別并去除MDM2上K63鏈連接的Ub鏈,有效促進MDM2的降解過程,進而降低了MDM2的表達水平。這一發現揭示了USP13間接地調控了與衰老緊密相關的細胞生物學事件,從而在肺衰老的調控網絡中構建了USP13-MDM2軸這一新通路。綜上所述,USP13-MDM2軸在肺衰老中強調了泛素平衡系統的核心作用,并提供了新的抗衰思路。
4.5 DUBs與未定潛能克隆性造血(clonal hematopoiesis
of indeterminate potential,CHIP)
CHIP是一種常見的與衰老相關的生物學現象,其發生與多種衰老相關基因的突變緊密相關[133]。為了揭示CHIP的發病機制,多梳抑制性去泛素化酶(polycomb-repressive deubiquitinase,PR-DUB)作為一種新型的DUBs成員,其分子組成以及相關信號通路已被深入研究。
PR-DUB復合物主要由突變型附加性梳樣蛋白1(additional sex comb-like1,ASXL1)與BRCA1關聯蛋白1(BRCA1 associated protein-1,BAP1)相互作用形成,該復合物能夠識別并特異性去除核小體上組蛋白H2A K119上的Ub[134]。同時,這一發現隨后得到了ASADA等[135]和SAHTOE等[136]的實驗支持。進一步地,FUJINO等[137]以突變型ASXL1敲入小鼠模型,揭示了PR-DUB的多重功能。他們發現,除了經典的組蛋白去泛素化功能外,PR-DUB還能特異性地去除p-AKT上的K48-Ub鏈,從而激活Akt/mTOR信號通路,促進造血干細胞的異常增殖,并最終導致功能障礙。這一發現不僅揭示了PR-DUB在CHIP病理過程中的重要角色,也為開發針對CHIP的治療策略提供了潛在靶點。
5 靶向DUBs的小分子化合物
DUBs作為細胞內的重要調節因子,通過精細調控蛋白質穩態、線粒體功能、p53-p21細胞周期以及炎癥反應等多個關鍵生命過程,在衰老相關疾病的病理進程中扮演著不可或缺的角色。因此,針對特定DUBs的小分子化合物的開發在衰老相關疾病的治療領域展現出巨大的潛力。
近年來,針對USP7、USP30和UCH-L1等關鍵DUBs的小分子化合物的研究取得了顯著進展。這些化合物通過特異性地阻斷或激活DUBs的酶活性,影響下游信號通路的傳導,進而展現出對衰老相關疾病的潛在治療作用。表1匯總了部分已報道的、靶向本文所述DUBs的小分子化合物,這些化合物通過調控與衰老相關的分子機制,在體外實驗或動物模型中已顯示出一定的藥效學活性。這些發現不僅加深了研究者對DUBs在細胞穩態及疾病進程中作用的理解,更為未來藥物研發領域提供了極具潛力的候選分子[138-158]。
6 小結與展望
近年來,泛素系統的研究蓬勃發展,其各種組成結構和功能逐漸清晰。同時,許多證據表明,去泛素化修飾在衰老相關疾病中扮演著至關重要的角色(圖2)。在衰老的過程中,去泛素化修飾的異常不僅會導致致病蛋白的異常積累,而且還會導致細胞內多種功能的失調,如線粒體質量控制、炎癥反應、細胞周期、DNA損傷等生命過程。并且,針對DUBs的相關干預藥物已部分用于臨床前期研究。然而,目前對于DUBs在衰老相關疾病中的具體作用機制仍有待繼續研究。基于目前的研究基礎,未來可以通過高通量篩選、結構生物學、蛋白質組學等先進技術手段,系統解析DUBs在疾病發生、發展過程中的角色。同時,開發針對DUBs的干預策略,以精確調控泛素系統的功能,有望為年齡相關性疾病的預防和治療提供新的思路和方向。
作者貢獻:徐林慧負責文章的構思、收集整理文獻以及論文的撰寫;李鵬飛、吳苗苗負責論文修訂、文章的質量控制以及審校;康麗華、季敏負責進行文章的可行性分析,進行監督管理;俞瑩、管懷進對文章質量整體負責及監督管理。
本文無利益沖突。
參考文獻
SHENG X P,XIA Z X,YANG H T,et al. The ubiquitin codes in cellular stress responses[J]. Protein Cell,2024,15(3):157-190. DOI:10.1093/procel/pwad045.
TRACZ M,BIALEK W. Beyond K48 and K63:non-canonical protein ubiquitination[J]. Cell Mol Biol Lett,2021,26(1):1. DOI:10.1186/s11658-020-00245-6.
TAWO R,POKRZYWA W,KEVEI é,et al. The ubiquitin ligase CHIP integrates proteostasis and aging by regulation of insulin receptor turnover[J]. Cell,2017,169(3):470-482.e13. DOI:10.1016/j.cell.2017.04.003.
H?HFELD J,HOPPE T. Ub and down:ubiquitin exercise for the elderly[J]. Trends Cell Biol,2018,28(7):512-522. DOI:10.1016/j.tcb.2018.03.002.
HU S S,WANG L. The potential role of ubiquitination and deubiquitination in melanogenesis[J]. Exp Dermatol,2023,
32(12):2062-2071. DOI:10.1111/exd.14953.
CLAGUE M J,BARSUKOV I,COULSON J M,et al. Deubiquitylases from genes to organism[J]. Physiol Rev,2013,93(3):1289-1315. DOI:10.1152/physrev.00002.2013.
REHMAN S A A,KRISTARIYANTO Y A,CHOI S Y,et al. MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes[J]. Mol Cell,2016,63(1):146-155. DOI:10.1016/j.molcel.2016.05.009.
NIJMAN S M B,LUNA-VARGAS M P A,VELDS A,et al. A genomic and functional inventory of deubiquitinating enzymes[J]. Cell,2005,123(5):773-786. DOI:10.1016/j.cell.2005.11.007.
KOMANDER D,CLAGUE M J,URBé S. Breaking the chains:structure and function of the deubiquitinases[J]. Nat Rev Mol Cell Biol,2009,10(8):550-563. DOI:10.1038/nrm2731.
WANG F,NING S,YU B,et al. USP14:structure,function,and target inhibition[J]. Front Pharmacol,2021,12:801328. DOI:10.3389/fphar.2021.801328.
PYEON D,TIMANI K A,GULRAIZ F,et al. Function of ubiquitin(Ub)specific protease 15(USP15)in HIV-1 replication and viral protein degradation[J]. Virus Res,2016,223:161-169. DOI:10.1016/j.virusres.2016.07.009.
MORROW M E,KIM M I,RONAU J A,et al. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity[J]. Biochemistry,2013,52(20):3564-3578. DOI:10.1021/bi4003106.
LI L H,XU K,BAI X,et al. UCHL1 regulated by Sp1 ameliorates cochlear hair cell senescence and oxidative damage[J]. Exp Ther Med,2023,25(2):94. DOI:10.3892/etm.2023.11793.
CARTIER A E,UBHI K,SPENCER B,et al. Differential effects of UCHL1 modulation on alpha-synuclein in PD-like models of alpha-synucleinopathy[J]. PLoS One,2012,7(4):e34713. DOI:10.1371/journal.pone.0034713.
ZHU Q,FU Y S,LI L,et al. The functions and regulation of Otubains in protein homeostasis and diseases[J]. Ageing Res Rev,2021,67:101303. DOI:10.1016/j.arr.2021.101303.
MEVISSEN T E T,HOSPENTHAL M K,GEURINK P P,et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis[J]. Cell,2013,
154(1):169-184. DOI:10.1016/j.cell.2013.05.046.
KUMARI R,KUMAR R,KUMAR S,et al. Amyloid aggregates of the deubiquitinase OTUB1 are neurotoxic,suggesting that they contribute to the development of Parkinson's disease[J]. J Biol Chem,2020,295(11):3466-3484. DOI:10.1074/jbc.RA119.009546.
ZHANG Y,HU R M,WU H J,et al. OTUB1 overexpression in mesangial cells is a novel regulator in the pathogenesis of glomerulonephritis through the decrease of DCN level[J]. PLoS One,2012,7(1):e29654. DOI:10.1371/journal.pone.0029654.
LI X Y,MAO X F,TANG X Q,et al. Regulation of Gli2 stability by deubiquitinase OTUB2[J]. Biochem Biophys Res Commun,2018,505(1):113-118. DOI:10.1016/j.bbrc.2018.09.071.
BISSERIER M,MILARA J,ABDELDJEBBAR Y,et al. AAV1.SERCA2a gene therapy reverses pulmonary fibrosis by blocking the STAT3/FOXM1 pathway and promoting the SNON/SKI axis[J]. Mol Ther,2020,28(2):394-410. DOI:10.1016/j.ymthe.2019.11.027
ZENG C M,ZHAO C X,GE F J,et al. Machado-Joseph deubiquitinases:from cellular functions to potential therapy targets[J]. Front Pharmacol,2020,11:1311. DOI:10.3389/fphar.2020.01311.
CLAGUE M J,URBé S. Endocytosis:the DUB version[J]. Trends Cell Biol,2006,16(11):551-559. DOI:10.1016/j.tcb.2006.09.002.
CAO S Y,ENGILBERGE S,GIRARD E,et al. Structural insight into ubiquitin-like protein recognition and oligomeric states of JAMM/MPN+ proteases[J]. Structure,2017,25(6):823-833.e6. DOI:10.1016/j.str.2017.04.002.
ABDUL REHMAN S A,ARMSTRONG L A,LANGE S M,et al. Mechanism of activation and regulation of deubiquitinase activity in MINDY1 and MINDY2[J]. Mol Cell,2021,81(20):4176-4190.e6. DOI:10.1016/j.molcel.2021.08.024.
KWASNA D,ABDUL REHMAN S A,NATARAJAN J,
et al. Discovery and characterization of ZUFSP/ZUP1,a distinct deubiquitinase class important for genome stability[J]. Mol Cell,2018,70(1):150-164.e6. DOI:10.1016/j.molcel.2018.02.023.
HAAHR P,BORGERMANN N,GUO X H,et al. ZUFSP deubiquitylates K63-linked polyubiquitin chains to promote genome stability[J]. Mol Cell,2018,70(1):165-174.e6. DOI:10.1016/j.molcel.2018.02.024.
AGING BIOMARKER C,BAO H,CAO J,et al. Biomarkers of aging[J]. Sci China Life Sci,2023,66(5):893-1066. DOI:10.1007/s11427-023-2305-0.
LOTTES E N,COX D N. Homeostatic roles of the proteostasis network in dendrites[J]. Front Cell Neurosci,2020,14:264. DOI:10.3389/fncel.2020.00264.
LI Y M,TIAN X T,LUO J Y,et al. Molecular mechanisms of aging and anti-aging strategies[J]. Cell Commun Signal,2024,22(1):285. DOI:10.1186/s12964-024-01663-1.
FELECIANO D R,JUENEMANN K,IBURG M,et al. Crosstalk between chaperone-mediated protein disaggregation and proteolytic pathways in aging and disease[J]. Front Aging Neurosci,2019,11:9. DOI:10.3389/fnagi.2019.00009.
CHEN Y R,HAREL I,SINGH P P,et al. Tissue-specific landscape of protein aggregation and quality control in an aging vertebrate[J]. Dev Cell,2024,59(14):1892-1911.e13. DOI:10.1016/j.devcel.2024.04.014.
LIEBL M P,HOPPE T. It's all about talking:two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin[J]. Am J Physiol Cell Physiol,2016,
311(2):C166-178. DOI:10.1152/ajpcell.00074.2016.
BLASIAK J,PAWLOWSKA E,SZCZEPANSKA J,et al. Interplay between autophagy and the ubiquitin-proteasome system and its role in the pathogenesis of age-related macular degeneration[J]. Int J Mol Sci,2019,20(1):210. DOI:10.3390/ijms20010210.
CHOI B,LIM C,LEE H,et al. Neuroprotective effects of linear ubiquitin E3 ligase against aging-induced DNA damage and amyloid β neurotoxicity in the brain of Drosophila melanogaster[J]. Biochem Biophys Res Commun,2022,637:196-202. DOI:10.1016/j.bbrc.2022.11.032.
ZHANG Z Y,HARISCHANDRA D S,WANG R F,et al. TRIM11 protects against tauopathies and is down-regulated in Alzheimer's disease[J]. Science,2023,381(6656):eadd6696. DOI:10.1126/science.add6696.
LEE B H,LU Y,PRADO M A,et al. USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites[J]. Nature,2016,532(7599):398-401. DOI:10.1038/nature17433.
CSIZMADIA T,L?W P. The role of deubiquitinating enzymes in the various forms of autophagy[J]. Int J Mol Sci,2020,21(12):4196. DOI:10.3390/ijms21124196.
BENVEGNù S,MATEO M I,PALOMER E,et al. Aging triggers cytoplasmic depletion and nuclear translocation of the E3 ligase mahogunin:a function for ubiquitin in neuronal survival[J]. Mol Cell,2017,66(3):358-372.e7. DOI:10.1016/j.molcel.2017.04.005.
KOYUNCU S,LOUREIRO R,LEE H J,et al. Rewiring of the ubiquitinated proteome determines ageing in C. elegans[J]. Nature,2021,596(7871):285-290. DOI:10.1038/s41586-021-03781-z.
GUO Y,GUAN T,SHAFIQ K,et al. Mitochondrial dysfunction in aging[J]. Ageing Res Rev,2023,88:101955. DOI:10.1016/j.arr.2023.101955.
MIWA S,KASHYAP S,CHINI E,et al. Mitochondrial dysfunction in cell senescence and aging[J]. J Clin Invest,2022,132(13):e158447. DOI:10.1172/JCI158447.
FRIEDLANDER J E,SHEN N,ZENG A Z,et al. Failure to guard:mitochondrial protein quality control in cancer[J]. Int J Mol Sci,2021,22(15):8306. DOI:10.3390/ijms22158306.
JADIYA P,TOMAR D. Mitochondrial protein quality control mechanisms[J]. Genes,2020,11(5):563. DOI:10.3390/genes11050563.
HAN R,LIU Y T,LI S H,et al. PINK1-PRKN mediated mitophagy:differences between in vitro and in vivo models[J]. Autophagy,2023,19(5):1396-1405. DOI:10.1080/15548627.2022.2139080.
HOSHINO A,WANG W J,WADA S,et al. The ADP/ATP translocase drives mitophagy independent of nucleotide exchange[J]. Nature,2019,575(7782):375-379. DOI:10.1038/s41586-019-1667-4.
FANG T S Z,SUN Y,PEARCE A C,et al. Knockout or inhibition of USP30 protects dopaminergic neurons in a Parkinson's disease mouse model[J]. Nat Commun,2023,14(1):7295. DOI:10.1038/s41467-023-42876-1.
CUNNINGHAM C N,BAUGHMAN J M,PHU L,et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria[J]. Nat Cell Biol,2015,17(2):160-169. DOI:10.1038/ncb3097.
LIANG J R,MARTINEZ A,LANE J D,et al. USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death[J]. EMBO Rep,2015,16(5):618-627. DOI:10.15252/embr.201439820.
MARCASSA E,KALLINOS A,JARDINE J,et al. Dual role of USP30 in controlling basal pexophagy and mitophagy[J]. EMBO Rep,2018,19(7):e45595. DOI:10.15252/embr.201745595.
PAN W,WANG Y W,BAI X Y,et al. Deubiquitinating enzyme USP30 negatively regulates mitophagy and accelerates myocardial cell senescence through antagonism of Parkin[J]. Cell Death Discov,2021,7(1):187. DOI:10.1038/s41420-021-00546-5.
SHABALINA I G,EDGAR D,GIBANOVA N,et al. Enhanced ROS production in mitochondria from prematurely aging mtDNA mutator mice[J]. Biochemistry,2024,89(2):279-298. DOI:10.1134/S0006297924020081.
ELORZA A A,SOFFIA J P. mtDNA heteroplasmy at the core of aging-associated heart failure. an integrative view of OXPHOS and mitochondrial life cycle in cardiac mitochondrial physiology[J]. Front Cell Dev Biol,2021,9:625020. DOI:10.3389/fcell.2021.625020.
LEE J G,BAEK K,SOETANDYO N,et al. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells[J]. Nat Commun,2013,4:1568. DOI:10.1038/ncomms2532.
OIKAWA D,GI M,KOSAKO H,et al. OTUD1 deubiquitinase regulates NF-κB- and KEAP1-mediated inflammatory responses and reactive oxygen species-associated cell death pathways[J]. Cell Death Dis,2022,13(8):694. DOI:10.1038/s41419-022-05145-5.
SHARMA A,SMITH H J,YAO P,et al. Causal roles of mitochondrial dynamics in longevity and healthy aging[J]. EMBO Rep,2019,20(12):e48395. DOI:10.15252/embr.201948395.
YAN M L,MEI Y,ZHANG T J,et al. USP7 cardiomyocyte specific knockout causes disordered mitochondrial biogenesis and dynamics and early neonatal lethality in mice[J]. Int J Cardiol,2024,408:132149. DOI:10.1016/j.ijcard.2024.132149.
KASTENHUBER E R,LOWE S W. Putting p53 in context[J]. Cell,2017,170(6):1062-1078. DOI:10.1016/j.cell.2017.08.028.
LI Z Y,WANG Z Y,ZHONG C,et al. P53 upregulation by USP7-engaging molecular glues[J]. Sci Bull,2024,69(12):1936-1953. DOI:10.1016/j.scib.2024.04.017.
LIU J W,CAO L Z,WANG Y B,et al. The phosphorylation-deubiquitination positive feedback loop of the CHK2-USP7 axis stabilizes p53 under oxidative stress[J]. Cell Rep,2024,
43(6):114366. DOI:10.1016/j.celrep.2024.114366.
ZENG M H,ZHANG X F,XING W,et al. Cigarette smoke extract mediates cell premature senescence in chronic obstructive pulmonary disease patients by up-regulating USP7 to activate p300-p53/p21 pathway[J]. Toxicol Lett,2022,359:31-45. DOI:10.1016/j.toxlet.2022.01.017.
HE Y H,LI W,LV D W,et al. Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity[J]. Aging Cell,2020,19(3):e13117. DOI:10.1111/acel.13117.
ZHOU D,LIU P,SUN D W,et al. USP22 down-regulation facilitates human retinoblastoma cell aging and apoptosis via inhibiting TERT/P53 pathway[J]. Eur Rev Med Pharmacol Sci,2017,21(12):2785-2792.
LI J,WANG Y,LUO Y,et al. USP5-Beclin 1 axis overrides p53-dependent senescence and drives Kras-induced tumorigenicity[J]. Nat Commun,2022,13(1):7799. DOI:10.1038/s41467-022-35557-y.
GUBAT J,SJ?STRAND L,SELVARAJU K,et al. Loss of the proteasomal deubiquitinase USP14 induces growth defects and a senescence phenotype in colorectal cancer cells[J]. Sci Rep,2024,14(1):13037. DOI:10.1038/s41598-024-63791-5.
SCIORATI C,GAMBERALE R,MONNO A,et al. Pharmacological blockade of TNFα prevents sarcopenia and prolongs survival in aging mice[J]. Aging,2020,12(23):23497-23508. DOI:10.18632/aging.202200.
TILSTRA J S,CLAUSON C L,NIEDERNHOFER L J,et al. NF-κB in aging and disease[J]. Aging Dis,2011,2(6):449-465.
PRIEM D,VAN LOO G,BERTRAND M J M. A20 and cell death-driven inflammation[J]. Trends Immunol,2020,41(5):421-435. DOI:10.1016/j.it.2020.03.001.
PENG X,ZHANG C,BAO J P,et al. A20 of nucleus pulposus cells plays a self-protection role via the nuclear factor-kappa B pathway in the inflammatory microenvironment[J]. Bone Joint Res,2020,9(5):225-235. DOI:10.1302/2046-3758.95.BJR-2019-0230.R1.
WANG D X,WANG E H,LI Y,et al. Anti-aging effect of Momordica charantia L. on d-Galactose-Induced subacute aging in mice by activating PI3K/AKT signaling pathway[J]. Molecules,2022,27(14):4502. DOI:10.3390/molecules27144502.
ORTEGA M A,ASúNSOLO á,LEAL J,et al. Implication of the PI3K/Akt/mTOR pathway in the process of incompetent valves in patients with chronic venous insufficiency and the relationship with aging[J]. Oxid Med Cell Longev,2018,2018:1495170. DOI:10.1155/2018/1495170.
WANG H,LIU Z N,SUN Z,et al. Ubiquitin specific peptidase 33 promotes cell proliferation and reduces apoptosis through regulation of the SP1/PI3K/AKT pathway in retinoblastoma[J]. Cell Cycle,2021,20(19):2066-2076. DOI:10.1080/15384101.2021.1970305.
GOLDBRAIKH D,NEUFELD D,EID-MUTLAK Y,et al. USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation[J]. EMBO Rep,2020,21(4):e48791. DOI:10.15252/embr.201948791.
DIAO W J,GUO Q S,ZHU C Y,et al. USP18 promotes cell proliferation and suppressed apoptosis in cervical cancer cells via activating AKT signaling pathway[J]. BMC Cancer,2020,
20(1):741. DOI:10.1186/s12885-020-07241-1.
RANSOHOFF R M. How neuroinflammation contributes to neurodegeneration[J]. Science,2016,353(6301):777-783. DOI:10.1126/science.aag2590.
CUI L,HOU N N,WU H M,et al. Prevalence of Alzheimer's disease and Parkinson's disease in China:an updated systematical analysis[J]. Front Aging Neurosci,2020,12:603854. DOI:10.3389/fnagi.2020.603854.
LIU B H,RUAN J,CHEN M,et al. Deubiquitinating enzymes(DUBs):decipher underlying basis of neurodegenerative diseases[J]. Mol Psychiatry,2022,27(1):259-268. DOI:10.1038/s41380-021-01233-8.
ARK C W,JUNG B K,RYU K Y. Reduced free ubiquitin levels and proteasome activity in cultured neurons and brain tissues treated with amyloid beta aggregates[J]. Mol Brain,2020,13(1):89. DOI:10.1186/s13041-020-00632-2.
AL MAMUN A,RAHMAN M M,ZAMAN S,et al. Molecular insight into the crosstalk of UPS components and Alzheimer's disease[J]. Curr Protein Pept Sci,2020,21(12):1193-1201. DOI:10.2174/1389203721666200923153406.
FUNG T Y,IYASWAMY A,SREENIVASMURTHY S G,et al. Klotho an autophagy Stimulator as a potential therapeutic target for Alzheimer's disease:a review[J]. Biomedicines,2022,10(3):705. DOI:10.3390/biomedicines10030705.
YEATES E F A,TESCO G. The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation[J]. J Biol Chem,2016,
291(30):15753-15766. DOI:10.1074/jbc.M116.718023.
ZHANG M M,DENG Y,LUO Y W,et al. Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1[J]. J Neurochem,2012,120(6):1129-1138. DOI:10.1111/j.1471-4159.2011.07644.x.
LONSKAYA I,HEBRON M L,DESFORGES N M,et al. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance[J]. EMBO Mol Med,2013,5(8):1247-1262. DOI:10.1002/emmm.201302771.
LIU X G,HEBRON M L,MULKI S,et al. Ubiquitin specific protease 13 regulates tau accumulation and clearance in models of Alzheimer's disease[J]. J Alzheimers Dis,2019,72(2):425-441. DOI:10.3233/JAD-190635.
WANG P,JOBERTY G,BUIST A,et al. Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo[J]. Acta Neuropathol,2017,133(5):731-749. DOI:10.1007/s00401-016-1663-9.
K?GLSBERGER S,CORDERO-MALDONADO M L,ANTONY P,et al. Gender-specific expression of ubiquitin-specific peptidase 9 modulates tau expression and phosphorylation:possible implications for tauopathies[J]. Mol Neurobiol,2017,54(10):7979-7993. DOI:10.1007/s12035-016-0299-z.
ALEXOPOULOU Z,LANG J,PERRETT R M,et al. Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease[J]. Proc Natl Acad Sci USA,2016,113(32):E4688-E4697. DOI:10.1073/pnas.1523597113.
DURCAN T M,TANG M Y,PéRUSSE J R,et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin[J]. EMBO J,2014,33(21):2473-2491. DOI:10.15252/embj.201489729.
PAI M V. Osteoporosis prevention and management[J]. J Obstet Gynaecol India,2017,67(4):237-242. DOI:10.1007/s13224-017-0994-3.
HUANG Y X,XIAO D,HUANG S H,et al. Circular RNA YAP1 attenuates osteoporosis through up-regulation of YAP1 and activation of Wnt/β-catenin pathway[J]. Biomed Pharmacother,2020,129:110365. DOI:10.1016/j.biopha.2020.110365.
CHEN M,HAN H,ZHOU S Q,et al. Morusin induces osteogenic differentiation of bone marrow mesenchymal stem cells by canonical Wnt/β-catenin pathway and prevents bone loss in an ovariectomized rat model[J]. Stem Cell Res Ther,2021,12(1):173. DOI:10.1186/s13287-021-02239-3.
CHAUGULE S,KIM J M,YANG Y S,et al. Deubiquitinating enzyme USP8 is essential for skeletogenesis by regulating Wnt signaling[J]. Int J Mol Sci,2021,22(19):10289. DOI:10.3390/ijms221910289.
ZHU B,XUE F,LI G Y,et al. CRYAB promotes osteogenic differentiation of human bone marrow stem cells via stabilizing β-catenin and promoting the Wnt signalling[J]. Cell Prolif,2020,53(1):e12709. DOI:10.1111/cpr.12709.
ZHOU F F,LI F,FANG P F,et al. Ubiquitin-specific protease 4 antagonizes osteoblast differentiation through dishevelled[J]. J Bone Miner Res,2016,31(10):1888-1898. DOI:10.1002/jbmr.2863.
GREENBLATT M B,SHIN D Y,OH H,et al. MEKK2 mediates an alternative β-catenin pathway that promotes bone formation[J]. Proc Natl Acad Sci USA,2016,113(9):E1226-E1235. DOI:10.1073/pnas.1600813113.
WANG X P,ZOU C C,HOU C J,et al. Extracellular vesicles from bone marrow mesenchymal stem cells alleviate osteoporosis in mice through USP7-mediated YAP1 protein stability and the Wnt/β-catenin pathway[J]. Biochem Pharmacol,2023,217:115829. DOI:10.1016/j.bcp.2023.115829.
JIANG L,YANG Q H,GAO J J,et al. BK channel deficiency in osteoblasts reduces bone formation via the Wnt/β-catenin pathway[J]. Mol Cells,2021,44(8):557-568. DOI:10.14348/molcells.2021.0004.
LI C W,QIU M L,CHANG L L,et al. The osteoprotective role of USP26 in coordinating bone formation and resorption[J]. Cell Death Differ,2022,29(6):1123-1136. DOI:10.1038/s41418-021-00904-x.
BAEK D,PARK K H,LEE K M,et al. Ubiquitin-specific protease 53 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. Cell Death Dis,2021,12(3):238. DOI:10.1038/s41419-021-03517-x.
CRANE J L,CAO X. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling[J]. J Clin Invest,2014,124(2):466-472. DOI:10.1172/JCI70050.
TIE K,CAI J H,QIN J,et al. Nanog/NFATc1/Osterix signaling pathway-mediated promotion of bone formation at the tendon-bone interface after ACL reconstruction with De-BMSCs transplantation[J]. Stem Cell Res Ther,2021,12(1):576. DOI:10.1186/s13287-021-02643-9.
KIM Y J,PARK K H,LEE K M,et al. Deubiquitinating enzyme USP7 is required for self-renewal and multipotency of human bone marrow-derived mesenchymal stromal cells[J]. Int J Mol Sci,2022,23(15):8674. DOI:10.3390/ijms23158674.
LU X H,ZHANG Y T,ZHENG Y,et al. The miRNA-15b/USP7/KDM6B axis engages in the initiation of osteoporosis by modulating osteoblast differentiation and autophagy[J]. J Cell Mol Med,2021,25(4):2069-2081. DOI:10.1111/jcmm.16139.
TIAN H L,CHEN F,WANG Y F,et al. Nur77 prevents osteoporosis by inhibiting the NF-κB signalling pathway and osteoclast differentiation[J]. J Cell Mol Med,2022,26(8):2163-2176. DOI:10.1111/jcmm.17238.
LIN A Y,KITAURA H,OHORI F,et al.(D-Ala2)GIP inhibits inflammatory bone resorption by suppressing TNF-α and RANKL expression and directly impeding osteoclast formation[J]. Int J Mol Sci,2024,25(5):2555. DOI:10.3390/ijms25052555.
LI Q W,WANG M Y,XUE H X,et al. Ubiquitin-specific protease 34 inhibits osteoclast differentiation by regulating NF-κB signaling[J]. J Bone Miner Res,2020,35(8):1597-1608. DOI:10.1002/jbmr.4015.
LIU L,JIN R R,DUAN J M,et al. Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex[J]. Acta Biomater,2020,103:281-292. DOI:10.1016/j.actbio.2019.12.022.
SHEN J,FU B,WU Y,et al. USP25 expression in peripheral blood mononuclear cells is associated with bone mineral density in women[J]. Front Cell Dev Biol,2021,9:811611. DOI:10.3389/fcell.2021.811611.
YU T,YOU X M,ZHOU H C,et al. p53 plays a central role in the development of osteoporosis[J]. Aging,2020,12(11):10473-10487. DOI:10.18632/aging.103271.
WEI Y,FU J Y,WU W J,et al. Estrogen prevents cellular senescence and bone loss through Usp10-dependent p53 degradation in osteocytes and osteoblasts:the role of estrogen in bone cell senescence[J]. Cell Tissue Res,2021,386(2):297-308. DOI:10.1007/s00441-021-03496-7.
ZHOU P Y,XIA D M,WANG Y,et al. Matrine derivate MASM protects murine MC3T3-E1 osteoblastic cells against dexamethasone-induced apoptosis via the regulation of USP14/p53[J]. Artif Cells Nanomed Biotechnol,2019,47(1):3720-3728. DOI:10.1080/21691401.2019.1664563.
LORENZO C,DELGADO P,BUSSE C E,et al. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies[J]. Nature,2021,589(7841):287-292. DOI:10.1038/s41586-020-2993-2.
LI W J,JIN K H,LUO J C,et al. NF-κB and its crosstalk with endoplasmic reticulum stress in atherosclerosis[J]. Front Cardiovasc Med,2022,9:988266. DOI:10.3389/fcvm.2022.988266.
KARUNAKARAN D,NGUYEN M A,GEOFFRION M,et al. RIPK1 expression associates with inflammation in early atherosclerosis in humans and can be therapeutically silenced to reduce NF-κB activation and atherogenesis in mice[J]. Circulation,2021,143(2):163-177. DOI:10.1161/CIRCULATIONAHA.118.038379.
AKSENTIJEVICH I,ZHOU Q. NF-κB pathway in autoinflammatory diseases:dysregulation of protein modifications by ubiquitin defines a new category of autoinflammatory diseases[J]. Front Immunol,2017,8:399. DOI:10.3389/fimmu.2017.00399.
JEAN-CHARLES P Y,WU J H,ZHANG L S,et al. USP20(ubiquitin-specific protease 20)inhibits TNF(tumor necrosis factor)-triggered smooth muscle cell inflammation and attenuates atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2018,
38(10):2295-2305. DOI:10.1161/ATVBAHA.118.311071.
FU Y,QIU J X,WU J H,et al. USP14-mediated NLRC5 upregulation inhibits endothelial cell activation and inflammation in atherosclerosis[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2023,1868(5):159258. DOI:10.1016/j.bbalip.2022.159258.
YANG X H,WANG C,ZHU G L,et al. METTL14/YTHDF1 axis-modified UCHL5 aggravates atherosclerosis by activating the NLRP3 inflammasome[J]. Exp Cell Res,2023,427(2):113587. DOI:10.1016/j.yexcr.2023.113587.
WEN S Y,ZHI X Y,LIU H X,et al. Is the suppression of CD36 a promising way for atherosclerosis therapy?[J]. Biochem Pharmacol,2024,219:115965. DOI:10.1016/j.bcp.2023.115965.
XIA X H,XU Q,LIU M K,et al. Deubiquitination of CD36 by UCHL1 promotes foam cell formation[J]. Cell Death Dis,2020,11(8):636. DOI:10.1038/s41419-020-02888-x.
ZENG M,WEI X,HE Y L,et al. Ubiquitin-specific protease 11-mediated CD36 deubiquitination acts on C1q/TNF-related protein 9 against atherosclerosis[J]. ESC Heart Fail,2023,10(4):2499-2509. DOI:10.1002/ehf2.14423.
GROOTAERT M O J,FINIGAN A,FIGG N L,et al. SIRT6 protects smooth muscle cells from senescence and reduces atherosclerosis[J]. Circ Res,2021,128(4):474-491. DOI:10.1161/CIRCRESAHA.120.318353.
YANG Z,HUANG Y J,ZHU L,et al. SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1α and reactive oxygen species[J]. Cell Death Dis,2021,
12(1):77. DOI:10.1038/s41419-020-03372-2.
LIANG J R,HUANG G L,LIU X,et al. Reciprocal interactions between alveolar progenitor dysfunction and aging promote lung fibrosis[J]. eLife,2023,12:e85415. DOI:10.7554/eLife.85415.
FERNáNDEZ á F,SEBTI S,WEI Y J,et al. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice[J]. Nature,2018,558(7708):136-140. DOI:10.1038/s41586-018-0162-7.
NAKKAS H,OCAL B G,KIPEL S,et al. Ubiquitin proteasome system and autophagy associated proteins in human testicular tumors[J]. Tissue Cell,2021,71:101513. DOI:10.1016/j.tice.2021.101513.
GENG J,HUANG X X,LI Y,et al. Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis[J]. Respir Res,2015,16:124. DOI:10.1186/s12931-015-0286-3.
LIU Y,LI Z,XIAO H J,et al. USP13 deficiency impairs autophagy and facilitates age-related lung fibrosis[J]. Am J Respir Cell Mol Biol,2023,68(1):49-61. DOI:10.1165/rcmb.2022-0002OC.
PANYAIN N,GODINAT A,LANYON-HOGG T,et al. Discovery of a potent and selective covalent inhibitor and activity-based probe for the deubiquitylating enzyme UCHL1,with antifibrotic activity[J]. J Am Chem Soc,2020,142(28):12020-12026. DOI:10.1021/jacs.0c04527.
SCHNEIDER J L,ROWE J H,GARCIA-DE-ALBA C,
et al. The aging lung:Physiology,disease,and immunity[J]. Cell,2021,184(8):1990-2019. DOI:10.1016/j.cell.2021.03.005.
VILGELM A E,COBB P,MALIKAYIL K,et al. MDM2 antagonists counteract drug-induced DNA damage[J]. EBioMedicine,2017,24:43-55. DOI:10.1016/j.ebiom.2017.09.016.
LESSEL D,WU D Y,TRUJILLO C,et al. Dysfunction of the MDM2/p53 axis is linked to premature aging[J]. J Clin Invest,2017,127(10):3598-3608. DOI:10.1172/JCI92171.
HE J S,BAOYINNA B,TALEB S J,et al. USP13 regulates cell senescence through mediating MDM2 stability[J]. Life Sci,2023,331:122044. DOI:10.1016/j.lfs.2023.122044.
XIE M C,LU C,WANG J Y,et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies[J]. Nat Med,2014,20(12):1472-1478. DOI:10.1038/nm.3733.
BALASUBRAMANI A,LARJO A,BASSEIN J A,et al. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex[J]. Nat Commun,2015,6:7307. DOI:10.1038/ncomms8307.
ASADA S,GOYAMA S,INOUE D,et al. Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis[J]. Nat Commun,2018,9(1):2733. DOI:10.1038/s41467-018-05085-9.
SAHTOE D D,VAN DIJK W J,EKKEBUS R,et al. BAP1/ASXL1 recruitment and activation for H2A deubiquitination[J]. Nat Commun,2016,7:10292. DOI:10.1038/ncomms10292.
FUJINO T,GOYAMA S,SUGIURA Y,et al. Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway[J]. Nat Commun,2021,12(1):1826. DOI:10.1038/s41467-021-22053-y.
CHENG Y J,ZHUANG Z,MIAO Y L,et al. Identification of YCH2823 as a novel USP7 inhibitor for cancer therapy[J]. Biochem Pharmacol,2024,222:116071. DOI:10.1016/j.bcp.2024.116071.
GU Y H,REN K W,WANG Y,et al. Administration of USP7 inhibitor P22077 inhibited cardiac hypertrophy and remodeling in Ang II-induced hypertensive mice[J]. Front Pharmacol,2022,13:1021361. DOI:10.3389/fphar.2022.1021361.
LEGER P R,HU D X,BIANNIC B,et al. Discovery of potent,selective,and orally bioavailable inhibitors of USP7 with in vivo antitumor activity[J]. J Med Chem,2020,63(10):5398-5420. DOI:10.1021/acs.jmedchem.0c00245.
YUAN P,ZHOU L,ZHANG X N,et al. UCH-L1 inhibitor LDN-57444 hampers mouse oocyte maturation by regulating oxidative stress and mitochondrial function and reducing ERK1/2 expression[J]. Biosci Rep,2020,40(10):BSR20201308. DOI:10.1042/BSR20201308.
KOOIJ R,LIU S J,SAPMAZ A,et al. Small-molecule activity-based probe for monitoring ubiquitin C-terminal hydrolase L1(UCHL1)activity in live cells and zebrafish embryos[J]. J Am Chem Soc,2020,142(39):16825-16841. DOI:10.1021/jacs.0c07726.
VAN DER WAL L,BEZSTAROSTI K,DEMMERS J A A. A ubiquitinome analysis to study the functional roles of the proteasome associated deubiquitinating enzymes USP14 and UCH37[J]. J Proteomics,2022,262:104592. DOI:10.1016/j.jprot.2022.104592.
ZHANG F C,XU R Q,CHAI R J,et al. Deubiquitinase inhibitor b-AP15 attenuated LPS-induced inflammation via inhibiting ERK1/2,JNK,and NF-kappa B[J]. Front Mol Biosci,2020,7:49. DOI:10.3389/fmolb.2020.00049.
GUBAT J,SELVARAJU K,SJ?STRAND L,et al. Comprehensive target screening and cellular profiling of the cancer-active compound b-AP15 indicate abrogation of protein homeostasis and organelle dysfunction as the primary mechanism of action[J]. Front Oncol,2022,12:852980. DOI:10.3389/fonc.2022.852980.
MOFERS A,PEREGO P,SELVARAJU K,et al. Analysis of determinants for in vitro resistance to the small molecule deubiquitinase inhibitor b-AP15[J]. PLoS One,2019,
14(10):e0223807. DOI:10.1371/journal.pone.0223807.
ROWINSKY E K,PANER A,BERDEJA J G,et al. Phase 1 study of the protein deubiquitinase inhibitor VLX1570 in patients with relapsed and/or refractory multiple myeloma[J]. Invest New Drugs,2020,38(5):1448-1453. DOI:10.1007/s10637-020-00915-4.
WANG Y W,JIANG Y X,DING S,et al. Small molecule inhibitors reveal allosteric regulation of USP14 via steric blockade[J]. Cell Res,2018,28(12):1186-1194. DOI:10.1038/s41422-018-0091-x.
WANG X,BAO Y,DONG Z H,et al. WP1130 attenuates cisplatin resistance by decreasing P53 expression in non-small cell lung carcinomas[J]. Oncotarget,2017,8(30):49033-49043. DOI:10.18632/oncotarget.16931.
LUO H K,KRIGMAN J,ZHANG R H,et al. Pharmacological inhibition of USP30 activates tissue-specific mitophagy[J]. Acta Physiol,2021,232(3):e13666. DOI:10.1111/apha.13666.
RUSILOWICZ-JONES E V,JARDINE J,KALLINOS A,et al. USP30 sets a trigger threshold for PINK1-PARKIN amplification of mitochondrial ubiquitylation[J]. Life Sci Alliance,2020,
3(8):e202000768. DOI:10.26508/lsa.202000768.
KLUGE A F,LAGU B R,MAITI P,et al. Novel highly selective inhibitors of ubiquitin specific protease 30(USP30)accelerate mitophagy[J]. Bioorg Med Chem Lett,2018,28(15):2655-2659. DOI:10.1016/j.bmcl.2018.05.013.
Mission therapeutics announces US FDA approval to initi-ate phaseⅡ clinical trial of its lead asset MTX652 in acute kidney injury-mission therapeutics[EB/OL]. (2024-02-19)[2024-07-20]. https://missiontherapeutics.com/mission-therapeutics-announces-us-fda-approval-to-initiate-phase-ii-clinical-trial-of-its-lead-asset-mtx652-in-acute-kidney-injury.
LIU X G,BALARAMAN K,LYNCH C C,et al. Novel ubiquitin specific protease-13 inhibitors alleviate neurodegenerative pathology[J]. Metabolites,2021,11(9):622. DOI:10.3390/metabo11090622.
TAN L L,SHAN H Y,HAN C,et al. Discovery of potent OTUB1/USP8 dual inhibitors targeting proteostasis in non-small-cell lung cancer[J]. J Med Chem,2022,65(20):13645-13659. DOI:10.1021/acs.jmedchem.2c00408.
WANG L H,LI M M,SHA B B,et al. Inhibition of deubiquitination by PR-619 induces apoptosis and autophagy via ubi-protein aggregation-activated ER stress in oesophageal squamous cell carcinoma[J]. Cell Prolif,2021,54(1):e12919. DOI:10.1111/cpr.12919.
WANG Y,PARK N Y,JANG Y,et al. Vitamin E γ-tocotrienol inhibits cytokine-stimulated NF-κB activation by induction of anti-inflammatory A20 via stress adaptive response due to modulation of sphingolipids[J]. J Immunol,2015,195(1):126-133. DOI:10.4049/jimmunol.1403149.
ZHANG W N,WANG M Z,SONG Z W,et al. Farrerol directly activates the deubiqutinase UCHL3 to promote DNA repair and reprogramming when mediated by somatic cell nuclear transfer[J]. Nat Commun,2023,14(1):1838. DOI:10.1038/s41467-023-37576-9.
(收稿日期:2024-07-25;修回日期:2024-10-15)
(本文編輯:鄒琳)