








摘 要: 旨在鑒定大白母豬初胎的死胎和木乃伊性狀相關(guān)候選基因與遺傳標(biāo)記。本研究采用“中芯一號(hào)”50K SNP芯片對(duì)1 805 頭大白母豬進(jìn)行全基因組基因分型,經(jīng)過(guò)數(shù)據(jù)結(jié)果的過(guò)濾與篩選,結(jié)合初胎死胎數(shù)和木乃伊數(shù)的表型數(shù)據(jù),開(kāi)展全基因組關(guān)聯(lián)分析(GWAS)。研究結(jié)果表明,有24個(gè)SNPs與初胎死胎數(shù)、18個(gè)SNPs與木乃伊性狀顯著相關(guān),并注釋得到34個(gè)候選基因。其中,25個(gè)基因與死胎性狀相關(guān)(如SIL1、FSTL4、DHX38、PLK2、PDE4D等),9個(gè)基因與木乃伊性狀相關(guān)(如LRRTM4、ERC2、ARHGEF3、U6等)。通過(guò)豬QTL數(shù)據(jù)庫(kù)(Pig QTLdb)進(jìn)行比對(duì)分析發(fā)現(xiàn),部分候選基因位于已有文獻(xiàn)報(bào)道的與死胎和木乃伊性狀相關(guān)的基因區(qū)域內(nèi),且顯著SNPs存在連鎖現(xiàn)象。GO和KEGG富集分析揭示了顯著SNPs的上、下游注釋基因與免疫反應(yīng)、細(xì)胞信號(hào)傳導(dǎo)、細(xì)胞凋亡與分裂以及疾病的產(chǎn)生等過(guò)程密切相關(guān)。此項(xiàng)研究篩選了大白豬群體的初胎死胎和木乃伊性狀相關(guān)候選基因,并為分子育種提供重要參考。
關(guān)鍵詞: 母豬;初胎;死胎數(shù);木乃伊;GWAS;SNP;QTL
中圖分類號(hào):
S828.3"""" 文獻(xiàn)標(biāo)志碼:A"""" 文章編號(hào): 0366-6964(2025)03-1231-11
收稿日期:2024-08-09
基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃(2021YFD1200801);四川省科技計(jì)劃(2021YFYZ0030;2021ZDZX0008);國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系四川生豬創(chuàng)新團(tuán)隊(duì)(SCCXTD-2024-8);國(guó)家生豬產(chǎn)業(yè)體系(CARS-35);中央引導(dǎo)地方科技發(fā)展資金項(xiàng)目(2023ZYDF056)
作者簡(jiǎn)介:周泰增(2003-),男,遼寧鞍山人,本科,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail: zhoutaizeng666666@163.com
*通信作者:沈林園,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail: shenlinyuan@sicau.edu.cn
Genome-wide Association Study of Stillbirths and Mummies in Sows
ZHOU" Taizeng 3, YANG" Yiting 3, ZHU" Yuehua4, QIAN" Hongxi4, LIU" Yihui5,
GAN" Mailin 3, ZHU" Li 3, SHEN" Linyuan 3*
(1.National Key Laboratory of Pig and Poultry Seed Industry, Sichuan Agricultural
University, Chengdu 611130, China; 2.Sichuan Provincial Key Laboratory of Exploration
and Innovative Utilization of Livestock and Poultry Genetic Resources, Sichuan
Agricultural University, Chengdu 611130, China;
3.Key Laboratory of Livestock
and Poultry Biomics of Ministry of Agriculture and Rural Affairs, College of Animal
Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
4.Tieqi Lishi Food Co., Ltd., Chengdu 610000, China;
5.Sichuan Provincial Animal Husbandry Station, Chengdu 610066, China)
Abstract:" The aim of this research was to identify candidate genes and genetic markers associated with stillbirth and mummified fetus traits in the first litter of Large White sows. A total of 1 805 Large White sows were genotyped using the \"Zhongxin No. 1\" 50K SNP chip. After filtering and selecting the data, a genome-wide association study (GWAS) was conducted, incorporating phenotypic data of stillbirths and mummified fetuses from the first litter. The results showed that 24 SNPs were significantly associated with the number of stillbirths, and 18 SNPs were significantly associated with mummified fetus traits, identifying a total of 34 candidate genes. Among these, 25 genes were related to stillbirths (such as SIL1, FSTL4, DHX38, PLK2, PDE4D, etc.), while 9 genes were associated with mummified fetus traits (including LRRTM4, ERC2, ARHGEF3, U6, etc.). A comparison with the Pig QTL database (Pig QTLdb) revealed that some of the candidate genes were located within previously reported genomic regions associated with stillbirth and mummified fetus traits, and significant SNPs exhibited linkage disequilibrium. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that the genes annotated upstream and downstream of the significant SNPs were closely associated with biological processes such as immune responses, cell signaling, apoptosis and cell division, as well as disease development. This study screened the candidate genes related to the traits of stillbirth and mummy in Large White pig population, and provided an important reference for molecular breeding.
Keywords: sow; first parity; the number of stillborn; mummy; GWAS; SNP; QTL
*Corresponding author:SHEN Linyuan, E-mail:shenlinyuan@sicau.edu.cn
豬是一種重要的農(nóng)業(yè)經(jīng)濟(jì)動(dòng)物,全球每年消費(fèi)豬肉超過(guò)1億噸。母豬的繁殖性能是影響母豬生產(chǎn)效率和經(jīng)濟(jì)效益的關(guān)鍵因素,通常作為重要的經(jīng)濟(jì)生產(chǎn)性狀進(jìn)行量化。出生時(shí)死亡仔豬數(shù)量作為重要的經(jīng)濟(jì)性狀,是生豬產(chǎn)業(yè)體系育種工作中不可或缺的重要指標(biāo)。死胎數(shù)(the number of stillborn, NS)和木乃伊數(shù)(the number of mummy, NM)共同構(gòu)成出生時(shí)死亡仔豬數(shù)量。目前的研究表明,NS與宮內(nèi)窒息、產(chǎn)程長(zhǎng)或難產(chǎn)、窩產(chǎn)仔數(shù)多、母豬體重的降低或胎齡的增大、傳染性疾病和缺鐵性貧血等因素有關(guān)[1-6],NM與子宮空間不足、傳染性疾病、胎次和產(chǎn)仔數(shù)有關(guān)[2,7-8]。從已報(bào)道的研究來(lái)看,不同胎次的NS或者NM相關(guān)基因差異較大[9-11],其中初胎是仔豬死亡比例較高的胎次,由于受環(huán)境(母豬對(duì)周圍環(huán)境的不適應(yīng))和母體自身(產(chǎn)道較其他胎次狹窄[6]等)等非遺傳效應(yīng)影響很大,遺傳力較低,基于最佳線性無(wú)偏預(yù)測(cè)(best linear unbiased prediction, BLUP)的繼代選育方法對(duì)其遺傳改良是有限的[12-13]。因此,為了更精確的利用分子標(biāo)記輔助選擇來(lái)提高繁殖性能,快速提高大白豬遺傳進(jìn)展,篩選更多與繁殖性狀相關(guān)的候選基因顯得尤為重要。
隨著基因組選擇(genomic selection, GS)的出現(xiàn),SNP基因分型芯片已被廣泛應(yīng)用于家畜的遺傳育種工作[14-16]。目前,利用單核苷酸多態(tài)性標(biāo)記(single nucleotide polymorphism sign, SNPs)作為分子遺傳標(biāo)記的全基因組關(guān)聯(lián)分析(genome wide association study, GWAS)是一種主流方法,使用高密度DNA芯片對(duì)豬的數(shù)量性狀進(jìn)行GWAS,尋找重要的分子標(biāo)記和數(shù)量性狀基因座,以提高豬的繁殖性狀。吳平先等[17]在探究榮昌豬初產(chǎn)繁殖性狀時(shí),將MSH3和CBLB基因列為影響榮昌豬NM的重要候選基因;Wu等[10]通過(guò)對(duì)大白豬和長(zhǎng)白豬多胎次NS和NM性狀的研究,將ASTN1作為NS的候選基因,將HMGB1等基因作為NM的候選基因。而本試驗(yàn)針對(duì)大白豬的初胎NS和NM性狀進(jìn)行研究。
本試驗(yàn)以重慶某核心育種場(chǎng)的1 805 頭大白母豬為研究對(duì)象,收集其初胎NS和NM表型數(shù)據(jù),基于“中芯一號(hào)”芯片數(shù)據(jù)進(jìn)行GWAS,篩選與NS性狀相關(guān)的SNPs、數(shù)量性狀基因座 (quantitative trait locus, QTL)以及候選基因。本研究旨在為降低豬NS和NM的育種工作提供新的遺傳標(biāo)記,推進(jìn)生豬養(yǎng)殖產(chǎn)業(yè)母豬繁殖性能的遺傳改良。
1 材料與方法
1.1 表型統(tǒng)計(jì)
本試驗(yàn)以重慶某核心育種場(chǎng)的1 805 頭大白母豬為研究對(duì)象,收集母豬初胎NS和NM數(shù)據(jù)各1 805條。
1.2 動(dòng)物樣本采集與基因分型
對(duì)1 805 頭母豬采集約1~2 g耳組織樣,浸泡于裝有75%酒精的2 mL Ep離心管中,采用氯仿抽提的方法提取基因組DNA(genomic DNA,gDNA),所有樣品的gDNA利用瓊脂糖凝膠電泳和Nanodrop ND-2000(Themro Scientific, Waltham, MA,USA)的方法進(jìn)行定量分析。對(duì)所有樣品進(jìn)行全基因組擴(kuò)增,將獲得的DNA片段加到芯片上,進(jìn)行雜交。然后通過(guò)清洗去掉非特異性結(jié)合的DNA,剩下特異性結(jié)合的位點(diǎn)進(jìn)行單堿基延伸,染色后利用Illumina iScan Reader進(jìn)行掃描。對(duì)提取的DNA進(jìn)行質(zhì)檢,經(jīng)過(guò)瓊脂糖凝膠電泳鑒定質(zhì)量符合分型標(biāo)準(zhǔn)后,使用“中芯一號(hào)”50K SNP芯片進(jìn)行分型。基因分型由北京康普森生物技術(shù)有限公司完成。
1.3 數(shù)據(jù)過(guò)濾
使用Plink(v1.90)軟件[18]對(duì)SNP數(shù)據(jù)進(jìn)行質(zhì)量控制,剔除次等位基因頻率(minor allele frequency,MAF)lt;0.01的位點(diǎn)、SNP缺失率大于10%的位點(diǎn)(Geno)、哈代-溫伯格平衡檢驗(yàn)(HWE)Plt;10-6的位點(diǎn)。
1.4 GWAS分析
采用ASRgwas(v. 1.0.0)[19]軟件的重復(fù)力模型進(jìn)行關(guān)聯(lián)分析。在構(gòu)建模型時(shí)將配種季節(jié)和分娩季節(jié)納入固定效應(yīng),具體模型如下:
y=μ+αisi+Xβ+Z1u+Qδ+Z2a+e
其中,μ為總體均值; αi 是第 i 個(gè)標(biāo)記相關(guān)聯(lián)的斜率; si 是從標(biāo)記矩陣M中提取的第 i 個(gè)標(biāo)記的值(0、1、2)的向量; β 是固定效應(yīng)的向量; u 是隨機(jī)效應(yīng)的向量,且滿足 u~N(0,Iσ2u) ; δ 是固定群體或群體效應(yīng)的向量; a 是隨機(jī)加性效應(yīng)的向量,且滿足 a~N(0,GAσ2A);e 為隨機(jī)殘差效應(yīng)的向量,且滿足 e~N(0,Iσ2u) 。矩陣X、Z1和Z2是關(guān)聯(lián)矩陣,1是1的向量,Q是描述種群結(jié)構(gòu)的q個(gè)向量矩陣,最后 GA 是由標(biāo)記推導(dǎo)出的基因組關(guān)系矩陣(GRM)。
本研究使用ASRgwas(v. 1.0.0)軟件的參考閾值,Pgt;5×10-4的SNPs被認(rèn)為是顯著的SNPs。曼哈頓圖(Manhattan)和分位數(shù)-分位數(shù)圖(quantitle-quantitle plot, Q-Q圖)由R包(https://cran.r-project.org/web/packages/CMplot/index.html)繪制。
1.5 QTL及LD分析
基于數(shù)據(jù)庫(kù)(Pig QTLdb,https://www.animalgenome.org/cgi-bin/QTLdb/SS/srchloc,2024年7月6日),與顯著SNPs位置信息進(jìn)行比對(duì)分析,探索本研究所鑒定到的顯著SNPs是否位于已知的NS和NM性狀相關(guān)QTL中。此外,為了檢測(cè)顯著SNPs之間的連鎖不平衡(linkage disequilibrium,LD),使用Plink(v1.90)軟件和Haploview軟件[20]將同一染色體上且物理位置較近的顯著SNPs進(jìn)行連鎖不平衡分析。
1.6 GO和KEGG富集分析
將GWAS篩選到的顯著及潛在顯著性位點(diǎn)上、下游500 kb的區(qū)域定為候選區(qū)域,使用豬參考基因組Sus scrofa11.1版本(http://ensembl.Org/Sus_scrofa/Info/Index),利用Ensemble數(shù)據(jù)庫(kù)進(jìn)行候選基因注釋。此外,利用clusterProfiler包[21]進(jìn)行進(jìn)一步的基因本體(gene ontology,GO)功能富集和京都基因與基因組百科全書(kyoto encyclopedia of genes and genomes,KEGG)通路富集分析。
2 結(jié) 果
2.1 表型數(shù)據(jù)統(tǒng)計(jì)與芯片數(shù)據(jù)質(zhì)控
對(duì)1 805頭母豬的NS和NM進(jìn)行描述性統(tǒng)計(jì),詳細(xì)信息如表1所示。
經(jīng)檢測(cè)合格的1 805 個(gè)DNA樣品,利用“中芯一號(hào)”50K SNP芯片對(duì)全基因組SNPs進(jìn)行檢測(cè),共檢測(cè)出49 361 個(gè)SNPs,將性染色體上的位點(diǎn)去除后,最終得到49 352 個(gè)SNPs,在染色體上分布如圖1A所示。對(duì)獲得的基因分型數(shù)據(jù)使用Plink軟件進(jìn)行質(zhì)量控制,剔除次等位基因頻率小于0.01的位點(diǎn)、SNP缺失率大于10%的位點(diǎn)、哈代-溫伯格平衡檢驗(yàn)P<10-6的位點(diǎn),共獲得41 368 個(gè)SNPs進(jìn)行后續(xù)分析。質(zhì)控前后各染色體SNPs數(shù)量對(duì)比如圖1B所示。
2.2 GWAS分析結(jié)果
2.2.1 死胎
通過(guò)GWAS檢測(cè)芯片數(shù)據(jù),篩選與NS性狀顯著關(guān)聯(lián)的SNPs。使用豬參考基因組Sus Scrofa 11.1,利用Ensemble數(shù)據(jù)庫(kù)通過(guò)注釋顯著位點(diǎn)上、下游40 kb基因,在選擇窗口區(qū)域內(nèi)注釋與NS性狀相關(guān)的功能基因,如圖2中曼哈頓圖所示,共篩選到高于閾值的24個(gè)顯著SNPs并用紅色標(biāo)出。如表2所示,有18個(gè)SNPs注釋到基因,分別位于1、2、4、6、7、9、10、16和18號(hào)染色體。在2號(hào)染色體上,位點(diǎn)CNCB10002244和CNCB10002245均注釋到CTNNA1和LRRTM2基因,CNCB10002246和CNC10023000均注釋到SIL1基因上,CNC10023000還注釋到了CTNNA1基因,CNC10022904位于FSTL4基因上,CNC10022911位于TCF7和SKP1基因上。位于6號(hào)染色體的位點(diǎn)CNCB10004339注釋到DHODH、TXNL4B、DHX38和PMFBP1基因。位于16號(hào)染色體上的位點(diǎn)CNC10160815、CNCB10011377和CNC10161206分別注釋到了基因PLK2、PDE4D和TENM2。
如圖2中QQ圖所示,左下角顯著性低的位點(diǎn)位于對(duì)角線上,這些位點(diǎn)的-log10(P)的觀測(cè)值與期望值一致,說(shuō)明分析模型是適當(dāng)?shù)摹6鴪D形右上角顯著性較高的位點(diǎn)逐漸開(kāi)始向上傾斜,說(shuō)明本研究所使用的Q矩陣是合適的,很好的控制了假陽(yáng)性。
2.2.2 木乃伊
基于初胎NM性狀數(shù)據(jù)共篩選到18個(gè)顯著SNPs,其中有7個(gè)顯著SNPs通過(guò)Ensemble數(shù)據(jù)庫(kù)被注釋到其上、下游40 kb基因,如圖3中的曼哈頓圖所示,分別位于2、3、10和13號(hào)染色體。如表3所示,位于2號(hào)染色體上的位點(diǎn)CNC10021238注釋到MYO9B和HAUS8基因。位于3號(hào)染色體的位點(diǎn)CNC10013054和CNC10031386分別注釋到基因U1和LRRTM4。基因SPATA17被位于10號(hào)染色體的CNCB10007328注釋到。在13號(hào)染色體上,CNC10130837和CNCB10008586分別注釋到ERC2和CFAP20DC,位點(diǎn)CNC10130848在基因ARHGEF3和U6上。
2.3 QTL及LD分析
基于與死胎和木乃伊性狀顯著相關(guān)的SNPs位置信息,通過(guò)數(shù)據(jù)庫(kù)(Pig QTLdb, https://www.animalgenome.org/cgi-bin/QTLdb/SS/srchloc,2024年7月6日)檢索本研究所鑒定到的顯著SNPs是否位于已知的相關(guān)QTL中。
針對(duì)顯著SNPs分布較密集的性狀的染色體區(qū)域,在顯著位點(diǎn)上、下游進(jìn)行連鎖不平衡分析,如圖4所示,得到多個(gè)連鎖不平衡塊。
2.4 GO和KEGG富集分析
利用clusterProfiler包將顯著SNPs上、下游500 kb的功能基因進(jìn)行富集分析。如圖5A所示,GO富集分析在生物學(xué)過(guò)程(biological process, BP)、細(xì)胞成分(cellular component, CC)、分子功能(molecular function, MF)3個(gè)層面進(jìn)行描述。結(jié)果表明,這些功能基因主要參與調(diào)節(jié)先天免疫反應(yīng)、內(nèi)吞作用的負(fù)調(diào)控、對(duì)生物刺激反應(yīng)的積極調(diào)節(jié)、有絲分裂細(xì)胞周期的調(diào)控等與NS和NM性狀相關(guān)聯(lián)的過(guò)程。如圖5B所示,KEGG富集分析結(jié)果表明,這些功能基因主要參與內(nèi)質(zhì)網(wǎng)中的蛋白質(zhì)加工、細(xì)胞周期、Hippo信號(hào)通路、糖酵解/糖異生、卵母細(xì)胞減數(shù)分裂、癌癥中的中心碳代謝、人類免疫缺陷病毒1型感染等通路。
3 討 論
出生時(shí)死亡仔豬數(shù)量包括死胎數(shù)和產(chǎn)木乃伊數(shù),是判定母豬繁殖性能高低的重要標(biāo)準(zhǔn),直接影響生豬產(chǎn)業(yè)的生產(chǎn)效率和經(jīng)濟(jì)效益。其中,初胎時(shí)死亡的仔豬比例相對(duì)其他胎次更多,且多胎次數(shù)據(jù)會(huì)增加模型的復(fù)雜度,容易出現(xiàn)假陽(yáng)性位點(diǎn),不利于挖掘與表型有關(guān)的SNPs,減少頭胎死胎率更是育種工作者們長(zhǎng)期研究的重要方向。先前關(guān)于出生時(shí)死亡仔豬數(shù)量的研究大多著眼于多個(gè)胎次[13],相較于Wu等[10]利用250 頭大白母豬的1~5胎次數(shù)據(jù),本研究選取了1 805 頭大白母豬的初胎死胎數(shù)和產(chǎn)木乃伊數(shù)作為樣本,母豬個(gè)體數(shù)量更大,胎次更具有針對(duì)性。
在篩選初胎死胎數(shù)性狀潛在候選基因時(shí),在2號(hào)染色體上出現(xiàn)了較多的顯著SNPs。其中,發(fā)現(xiàn)SIL1同時(shí)被2個(gè)SNPs注釋到,在有關(guān)大白豬的研究中[22],發(fā)現(xiàn)SIL1的異常表達(dá)會(huì)導(dǎo)致身體尺寸減小。由此可以推斷,SIL1可能使得使胎兒體型較小,增大了其死亡的概率。被SNPs(CNC10022904)注釋到的FSTL4是TGF-β卵泡抑素基因家族的成員,F(xiàn)STL4被發(fā)現(xiàn)與人類的高血壓有關(guān)以及在人類胎兒的發(fā)育過(guò)程中發(fā)揮作用[23-24]。基因FSTL4可能導(dǎo)致母豬或胎兒較高的血壓,進(jìn)而影響胎兒發(fā)育,使得死胎數(shù)量增多。基因DHX38被位于6號(hào)染色體上的SNPs(CNCB10004339)注釋到。DHX38也稱為PRP16,在Li等[25]的研究中,DHX38基因被視為豬生長(zhǎng)率選擇的遺傳標(biāo)記。位于16號(hào)染色體上的SNPs(CNC10160815、CNCB10011377)分別注釋到基因PLK2和PDE4D,其中PLK2是PLK家族5個(gè)成員(PLK1~5)之一,PLK屬于絲氨酸和蘇氨酸激酶,對(duì)細(xì)胞周期的調(diào)節(jié)至關(guān)重要。在Kulus等[26]對(duì)豬卵泡顆粒細(xì)胞的研究中,PLK2的表達(dá)增加被發(fā)現(xiàn)會(huì)影響顆粒細(xì)胞的細(xì)胞周期。在GO富集分析中,PLK2參與了有絲分裂細(xì)胞周期的G1(GO:0000082)等共10個(gè)與細(xì)胞周期或有絲分裂相關(guān)的生物學(xué)過(guò)程(BP)。PDE4D已被證實(shí)在豬的心臟中發(fā)揮重要作用[27]。此外,PDE4D在哺乳動(dòng)物大腦中高度表達(dá),在認(rèn)知增強(qiáng)方面具有重要作用,PDE4D也是導(dǎo)致肢端發(fā)育不良的主要基因[28]。因此,PDE4D可能使得胎兒心臟和肢蹄存在發(fā)育缺陷,導(dǎo)致其出生時(shí)死亡。在GO富集中,PDE4D參與的24個(gè)生物學(xué)過(guò)程(BP)均與物質(zhì)代謝有關(guān),例如,嘌呤核糖核苷酸分解代謝過(guò)程(GO:0009154)、芳香族化合物分解代謝過(guò)程(GO:0019439)等。
在篩選初胎產(chǎn)木乃伊數(shù)性狀潛在候選基因時(shí),發(fā)現(xiàn)基因LRRTM4被位于3號(hào)染色體的SNPs(CNC10031386)注釋到,LRRTM4同自閉癥譜系障礙(autism spectrum disorder,ASD)等神經(jīng)類疾病相關(guān)[29]。先前對(duì)幽州黑山羊產(chǎn)仔數(shù)的研究中,將LRRTM4作為候選基因[30]。位于13號(hào)染色體的SNPs注釋到基因ECR2、ARHGEF3和U6。ERC2被認(rèn)為與荷斯坦奶牛的子宮炎相關(guān)[31],在有關(guān)人類的研究中,ERC2被認(rèn)為與胎兒的神經(jīng)精神疾病[32]以及幼兒的熱性驚厥[33]相關(guān),推測(cè)ERC2可以使母豬患子宮炎,增加胎兒患熱性驚厥和神經(jīng)精神性疾病的可能性,導(dǎo)致木乃伊仔豬的產(chǎn)生。ARHGEF3是一種促鳥(niǎo)苷酸交換因子(guanine nucleotide exchange factor,GEF),目前的研究發(fā)現(xiàn)其參與受傷后的骨骼肌再生以及血管和紅細(xì)胞的生成[34-35]。Metodiev等[36]通過(guò)對(duì)大白豬的研究,篩選到ARHGEF3是影響斷奶仔豬數(shù)量(斷奶時(shí)母豬身邊的仔豬數(shù)量)的重要基因。U6被證實(shí)與豬的終身非生產(chǎn)天數(shù)占?jí)勖谋壤⒔K身妊娠天數(shù)、腹圍、胸圍和乳頭數(shù)等性狀相關(guān)[37-38]。
通過(guò)將與NS和NM顯著相關(guān)的42個(gè)SNPs在豬QTL數(shù)據(jù)庫(kù)中搜索,發(fā)現(xiàn)這些SNPs落在與兩性狀相關(guān)的QTL區(qū)域內(nèi),它們中大多數(shù)與母豬的繁殖性狀、免疫系統(tǒng)和疾病或病原體相關(guān)。在與NS顯著相關(guān)的24個(gè)SNPs中,篩選到仔豬死亡率、妊娠期長(zhǎng)度、產(chǎn)仔數(shù)、活仔數(shù)和子宮角長(zhǎng)度等與死胎數(shù)相關(guān)的QTL區(qū)域。位于13號(hào)染色體,與NM相關(guān)的3個(gè)SNPs(CNC10130837、CNC10130848、CNCB10008586)所在QTL與先前研究發(fā)現(xiàn)的死胎數(shù)量相關(guān)。此外,兩性狀相關(guān)的SNPs均落在補(bǔ)體蛋白C3c濃度、IL-10、IFN-γ、溶血補(bǔ)體活性、肝臟重量和白細(xì)胞數(shù)量相關(guān)QTL上,它們?cè)诿庖呦到y(tǒng)中發(fā)揮重要作用,影響個(gè)體對(duì)疾病的抵抗能力。相較于NS,篩選NM相關(guān)SNPs得到的與血液中IFN-γ含量、血液中IL-10含量、肝臟重量和白細(xì)胞數(shù)相關(guān)的QTL數(shù)量明顯增多,溶血補(bǔ)體活性相關(guān)QTL明顯減少。此外,在篩選NM相關(guān)SNPs時(shí),位于3號(hào)染色體上的6個(gè)顯著SNPs在與CD-8陰性白細(xì)胞和CD-8陽(yáng)性白細(xì)胞相關(guān)的QTL區(qū)域內(nèi),這兩種細(xì)胞在機(jī)體抵御細(xì)菌、病毒等方面具有重要作用,在Getmantseva等[39]關(guān)于豬腿部缺陷的研究中,同樣提到了這兩種細(xì)胞。在疾病或病原體方面,兩性狀相關(guān)SNPs所在QTL區(qū)域均與黑色素瘤、破傷風(fēng)、軟骨病和沙門氏菌有關(guān)。此外,NS相關(guān)SNPs所在QTL區(qū)域與胸膜肺炎放線桿菌、豬肺炎支原體、破傷風(fēng)、臍疝和偽狂犬病相關(guān),NM相關(guān)SNPs所在QTL區(qū)域同豬繁殖與呼吸綜合征(porcine reproductive and respiratory syndrome, PRRS)和米氏肉孢子蟲(chóng)相關(guān)。
4 結(jié) 論
根據(jù)GWAS結(jié)果,共篩選出42個(gè)與大白母豬死胎和產(chǎn)木乃伊數(shù)性狀有關(guān)的SNPs作為死胎的候選標(biāo)記SNP,通過(guò)功能分析與QTL定位,挖掘了與二者可能相關(guān)的SIL1、FSTL4、DHX38、PLK2、PDE4D、LRRTM4、ERC2、ARHGEF3、U6等34個(gè)候選基因。本研究結(jié)果為大白母豬群體初胎的死胎和木乃伊性狀的遺傳機(jī)理解析提供了理論基礎(chǔ),并為分子育種提供了新的分子標(biāo)記。
參考文獻(xiàn)(References):
[1] LE COZLER Y,GUYOMARC’H C,PICHODO X,et al.Factors associated with stillborn and mummified piglets in high-prolific sows[J].Anim Res,2002,51(3):261-268.
[2] 張 輝.引起母豬產(chǎn)木乃伊胎和死胎的因素[J].畜牧獸醫(yī)科技信息,2018(8):92.
ZHANG H.Factors causing mummified fetus and stillbirth in sows[J].Chinese Journal of Animal Husbandry and Veterinary Medicine,2018(8):92.(in Chinese)
[3] 鄧實(shí)健.目前豬死胎原因剖析[J].湖南畜牧獸醫(yī),2009(2):30-32.
DENG S J.The current analysis of causes of stillbirth in pigs[J].Hunan Journal of Animal Science amp; Veterinary Medicine,2009(2):30-32.(in Chinese)
[4] VANDERHAEGHE C,DEWULF J,DE VLIEGHER S,et al.Longitudinal field study to assess sow level risk factors associated with stillborn piglets[J].Anim Reprod Sci,2010,120(1-4):78-83.
[5] BHATTARAI S,F(xiàn)RAMSTAD T,NIELSEN J P.Association between sow and piglet blood hemoglobin concentrations and stillbirth risk[J].Acta Vet Scand,2019,61(1):61.
[6] VANDERHAEGHE C,DEWULF J,DE KRUIF A,et al.Non-infectious factors associated with stillbirth in pigs:a review[J].Anim Reprod Sci,2013,139(1-4):76-88.
[7] BORGES V F,BERNARDI M L,BORTOLOZZO F P,et al.Risk factors for stillbirth and foetal mummification in four Brazilian swine herds[J].Prev Vet Med,2005,70(3-4):165-176.
[8] WANG S J,WU P X,WANG K,et al.Transcriptome analysis reveals key genes and pathways associated with piglet fetal mummification[J].Genome,2021,64(12):1029-1040.
[9] LAN Q,DENG Q C,QI S J,et al.Genome-wide association analysis identified variants associated with body measurement and reproduction traits in Shaziling pigs[J].Genes (Basel),2023,14(2):522.
[10] WU P X,WANG K,ZHOU J,et al.A genome wide association study for the number of animals born dead in domestic pigs[J].BMC Genet,2019,20(1):4.
[11] ONTERU S K,F(xiàn)AN B,DU Z Q,et al.A whole-genome association study for pig reproductive traits[J].Anim Genet,2012,43(1):18-26.
[12] WANG Y,DING X,TAN Z,et al.Genome-wide association study for reproductive traits in a Large White pig population[J].Anim Genet,2018,49(2):127-131.
[13] HOLM B,BAKKEN M,VANGEN O,et al.Genetic analysis of age at first service,return rate,litter size,and weaning-to-first service interval of gilts and sows[J].J Anim Sci,2005,83(1):41-48.
[14] 林曉坤,都萌萌,周李生,等.敖漢細(xì)毛羊羊毛經(jīng)濟(jì)性狀的全基因組關(guān)聯(lián)分析[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(10):4346-4359.
LIN X K,DU M M,ZHOU L S,et al.Genome-wide association study of wool economic traits in Aohan fine wool sheep[J].Acta Veterinaria et Zootechnica Sinica,2024,55(10):4346-4359.(in Chinese)
[15] PACHECO A,BANOS G,LAMBE N,et al.Genome-wide association studies of parasite resistance,productivity and immunology traits in Scottish Blackface sheep[J].Animal,2024,18(2):101069.
[16] 崔晟頔,王 凱,趙真堅(jiān),等.利用GWAS和DNA甲基化共定位鑒定豬肉質(zhì)性狀的候選基因[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(5):1945-1957.
CUI S D,WANG K,ZHAO Z J,et al.Identification of candidate genes for pork texture traits using GWAS combined with Co-localisation of DNA methylation[J].Acta Veterinaria et Zootechnica Sinica,2024,55(5):1945-1957.(in Chinese)
[17] 吳平先,陳 力,龍 熙,等.榮昌豬初產(chǎn)繁殖性狀的全基因組關(guān)聯(lián)研究[J].畜牧獸醫(yī)學(xué)報(bào),2023,54(1):103-112.
WU P X,CHEN L,LONG X,et al.Genome-wide association studies for reproductive traits at first farrowing in Rongchang pigs[J].Acta Veterinaria et Zootechnica Sinica,2023,54(1):103-112.(in Chinese)
[18] PURCELL S,NEALE B,TODD-BROWN K,et al.PLINK:a tool set for whole-genome association and population-based linkage analyses[J].Am J Hum Genet,2007,81(3):559-575.
[19] GALLI G,GEZAN S A,MURILLO D A,et al.ASRgwas:an R package to perform complex genome-wide association studies (GWAS)[CP].Hemel Hempstead,United Kingdom:VSN International,2022.
[20] BARRETT J C,F(xiàn)RY B,MALLER J,et al.Haploview:analysis and visualization of LD and haplotype maps[J].Bioinformatics,2005,21(2):263-265.
[21] YU G C,WANG L G,HAN Y Y,et al.clusterProfiler:an R package for comparing biological themes among gene clusters[J].OMICS,2012,16(5):284-287.
[22] LIU H T,SONG H L,JIANG Y F,et al.A Single-Step genome wide association Study on body size traits using imputation-based whole-genome sequence data in Yorkshire pigs[J].Front Genet,2021,12:629049.
[23] GUO Y L,TOMLINSON B,CHU T Y,et al.A genome-wide linkage and association scan reveals novel loci for hypertension and blood pressure traits[J].PLoS One,2012,7(2):e31489.
[24] SZABO L,MOREY R,PALPANT N J,et al.Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development[J].Genome Biol,2015,16(1):126.
[25] LI X P,KIM S W,DO K T,et al.Analyses of porcine public SNPs in coding-gene regions by re-sequencing and phenotypic association studies[J].Mol Biol Rep,2011,38(6):3805-3820.
[26] KULUS J,KRANC W,KULUS M,et al.Expression of genes regulating cell division in porcine follicular granulosa cells[J].Cell Div,2023,18(1):12.
[27] MIKA D,BOBIN P,LINDNER M,et al.Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model[J].J Mol Cell Cardiol,2019,133:57-66.
[28] LYNCH D C,DYMENT D A,HUANG L J,et al.Identification of novel mutations confirms PDE4D as a major gene causing acrodysostosis[J].Hum Mutat,2013,34(1):97-102.
[29] CLARKE R A,EAPEN V.LRRTM4 terminal exon duplicated in family with tourette syndrome,autism and ADHD[J].Genes (Basel),2022,13(1):66.
[30] SUN X Y,NIU Q H,JIANG J,et al.Identifying candidate genes for litter size and three morphological traits in Youzhou dark goats based on genome-wide SNP markers[J].Genes (Basel),2023,14(6):1183.
[31] MAY K,SAMES L,SCHEPER C,et al.Genomic loci and genetic parameters for uterine diseases in first-parity Holstein cows and associations with milk production and fertility[J].J Dairy Sci,2022,105(1):509-524.
[32] ABRISHAMCAR S,ZHUANG B C,THOMAS M,et al.Association between maternal perinatal stress and depression and infant DNA methylation in the first year of life[J].Transl Psychiatry,2024,14(1):445.
[33] SKOTTE L,F(xiàn)ADISTA J,BYBJERG-GRAUHOLM J,et al.Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes[J].Brain,2022,145(2):555-568.
[34] YOU J S,SINGH N,REYES-ORDONEZ A,et al.ARHGEF3 regulates skeletal muscle regeneration and strength through autophagy[J].Cell Rep,2021,34(1):108594.
[35] SERBANOVIC-CANIC J,CVEJIC A,SORANZO N,et al.Silencing of RhoA nucleotide exchange factor,ARHGEF3,reveals its unexpected role in iron uptake[J].Blood,2011,118(18):4967-4976.
[36] METODIEV S,THEKKOOT D M,YOUNG J M,et al.A whole-genome association study for litter size and litter weight traits in pigs[J].Livest Sci,2018,211:87-97.
[37] LI T T,WAN P C,LIN Q,et al.Genome-wide association study meta-analysis elucidates genetic structure and identifies candidate genes of teat number traits in pigs[J].Int J Mol Sci,2024,25(1):451.
[38] YIN C,WANG Y W,ZHOU P,et al.Genomic scan for runs of homozygosity and selective signature analysis to identify candidate genes in Large White pigs[J].Int J Mol Sci,2023,24(16):12914.
[39] GETMANTSEVA L,KOLOSOVA M,F(xiàn)EDE K,et al.Finding predictors of leg defects in pigs using CNV-GWAS[J].Genes (Basel),2023,14(11):2054.
(編輯 郭云雁)