








摘""要:"碳點(CDs)以其良好的光電性能和生物相容性在電化學發(fā)光(ECL)分析領(lǐng)域受到了極大關(guān)注,但純CDs的發(fā)光效率較低,需摻雜其他元素來改善其性能. 本文制備了一種氮鈰雙摻雜的碳點(N-Ce-CDs),與非摻雜和單元素摻雜CDs相比,其ECL性能得到了明顯改善. 將其與金納米粒子(Au NPs)同時負載于沸石咪唑酯骨架(ZIF-L)表面,得到一種對谷胱甘肽(GSH)具有靈敏響應的ECL探針(N-Ce-CDs,Au@ZIF-L). 實驗中,首先在電極表面引入對GSH具有特異性識別的分子印跡聚合物(MIP),選擇性吸附GSH,再與探針作用. 通過GSH的巰基(-SH)與探針中Au相互作用,將探針帶入電極表面,產(chǎn)生ECL信號,實現(xiàn)對GSH的選擇性靈敏檢測. 在優(yōu)化的條件下,GSH的物質(zhì)的量濃度在1.0×10-8~1.0×10-4"mol·L-1范圍內(nèi)與ECL信號呈現(xiàn)良好的線性關(guān)系,檢出限(LOD)為1.87 nmol·L-1. 對人體血清樣品中GSH進行檢測,回收率在96.3%~104.8%之間.
關(guān)鍵詞:"碳點(CDs);"金納米粒子(Au NPs);"電化學發(fā)光(ECL);"分子印跡聚合物(MIP);"谷胱甘肽(GSH)
中圖分類號:"O 657.1 """文獻標志碼:"A """文章編號:"1000-5137(2025)01-0008-11
The electrochemiluminescence system based on N-Ce-CDs,Au@ZIF-L for glutathione detection
TANG Chunyuan1,"XIANG Li2,"YANG Minli1*
(1.College of Chemistry and Materials Science,"Shanghai Normal University,"Shanghai 200234,"China;"2.Shanghai Institute of Optics and Fine Mechanics,"Chinese Academy of Sciences,"Shanghai 201800,"China)
Abstract:"Carbon dots(CDs)"have attracted attention in the field of electrochemiluminescence (ECL)"analysis due to their good photoelectric properties and biocompatibility. However,"the luminescence efficiency of pure carbon dots is low,"so it is necessary to dop other elements to improve the performance. In this paper,"a kind of nitrogen-cerium double doped carbon dots (N-Ce-CDs)"was prepared. Compared with the undoped and single-element doped CDs,"the ECL performance of N-Ce-CDs was significantly improved. It was simultaneously loaded on the surface of zeolite imidazolide skeleton (ZIF-L)"with gold nanoparticles(Au NPs),"and an ECL probe (N-Ce-CDs,Au@ZIF-L)"with sensitive response to glutathione (GSH)"was obtained. In the experiment,"molecularly imprinted polymer(MIP)"with specific recognition of GSH was initially introduced onto the electrode surface for the selective adsorption of GSH,"then reacted with the probe. Through the interaction between the thiol group (-SH)"of GSH and the Au in the probe,"the probe was brought onto the electrode surface to generate an ECL signal,"achieving selective and sensitive detection of GSH. Under the optimized conditions,"the mole concentration of GSH showed a good linear relationship with ECL signal in the range of 1.0×10-8 -1.0×10-4"mol·L-1,"with a limit of detection(LOD)"of 1.87 nmol·L-1. The recovery of GSH in human serum samples was 96.3%-104.8%.
Key words:"carbon dots(CDs);"gold nanoparticles(Au NPs);"electrochemiluminescence(ECL);"molecularly imprinted polymer(MIP);"glutathione(GSH)
0 "引"言
碳點(CDs)是粒徑在1~10 nm的碳納米材料,具有良好的電化學發(fā)光(ECL)性能[1]. 與其他ECL材料相比,CDs具有制備簡單、毒性低、生物相容性好的優(yōu)點[2]. 但純CDs的發(fā)光效率較低[3],難以用于低含量組分的測定. 元素摻雜是改善CDs發(fā)光效率的有效方法[4],目前,摻雜較多的是非金屬元素,如氮(N)、硫(S)等[5-6],而金屬元素摻雜較少,金屬與非金屬共同摻雜的CDs更少. 金屬元素有較多的空軌道,易失電子,與CDs表面的基團螯合和配位,改變CDs的能帶結(jié)構(gòu),進而影響其量子產(chǎn)率[7],且金屬存在一定的催化特性,可與非金屬元素協(xié)同作用,具有應用潛力. 本文以鈰(Ce)為金屬元素,氮(N)為非金屬元素,共同摻雜到CDs中,得到金屬和非金屬雙摻雜的碳點(N-Ce-CDs),結(jié)果證明,雙摻雜碳點的ECL性能明顯優(yōu)于非摻雜和單摻雜的CDs.
金屬有機框架(MOFs)比表面積大、孔隙率高,可作為納米材料的載體. 三維花簇狀的沸石咪唑酯骨架(ZIF-L)比表面積比其他MOFs的大[8]. 金納米粒子(Au NPs)具有良好的導電性,可加速電子轉(zhuǎn)移. 將N-Ce-CDs和Au NPs同時負載到ZIF-L表面,得到一種對谷胱甘肽(GSH)具有靈敏響應的ECL探針(N-Ce-CDs,Au@ZIF-L). 為進一步改善GSH檢測的選擇性,在電極表面引入GSH的分子印跡聚合物(MIP)[9],可對GSH產(chǎn)生特異性吸附,排除其他物質(zhì)的干擾[10-12]. 利用探針中Au與GSH中巰基(-SH)之間的Au-S鍵作用,將探針帶入電極表面,產(chǎn)生ECL信號,實現(xiàn)對GSH的選擇性靈敏檢測. 將本方法用于人血清樣品中GSH的檢測,結(jié)果令人滿意.
1 "實驗部分
1.1 實驗試劑
檸檬酸(CA)和乙二胺(EDA)購于Sigma-Aldrich公司;聚乙烯吡咯烷酮(PVP)購于上海化學試劑公司;L-半胱氨酸(L-Cys)購于上海源葉生物科技有限公司;過硫酸鉀(K2S2O8)、六水合硝酸鈰(Ce(NO3)3·6H2O)、六水合硝酸鋅(Zn(NO3)2·6H2O)、四氯金酸三水合物(HAuCl4·3H2O)、2-甲基咪唑(Hmim)、檸檬酸鈉(C6H5Na3O7)、無水乙醇(C2H5OH)、磷酸二氫鉀(KH2PO4)、磷酸氫二鉀(K2HPO4)、鐵氰化鉀(K3[Fe(CN)6])、亞鐵氰化鉀(K4Fe(CN)6·3H2O)、氯化鈉(NaCl)、氯化鉀(KCl)、鄰苯二胺(OPD)、GSH、多巴胺(DA)、葡萄糖(Glu)、抗壞血酸(AA)、鹽酸(HCl)和氫氧化鈉(NaOH)均購于上海Adamas試劑公司. 所有藥品均為分析純,溶液以超純水配制.
1.2 實驗儀器
ECL分析系統(tǒng)(MPI-A/B),西安瑞邁分析儀器有限公司;電化學工作站(CHI660E),上海辰華儀器有限公司;場發(fā)射掃描電子顯微鏡(FE-SEM,S-4800),日本日立公司;透射電子顯微鏡(TEM,JEOL-2100),日本電子公司;紫外分光光度計(UV-1800),日本島津公司;傅里葉變換紅外光譜儀(FTIR,NicoletiS5),Thermo Scentific公司;熒光分光光度計(FL,RF-5301PC),日本島津公司;X射線光電子能譜儀(XPS,ULVCA-PHI),美國PE公司.
1.3 N-Ce-CDs的合成
將1 g CA和0.5 g Ce(NO3)3·6H2O溶于10 mL水,逐滴滴加0.5 mL EDA,持續(xù)攪拌20 min. 隨后,將溶液轉(zhuǎn)移至50 mL特氟龍不銹鋼反應釜中,200 ℃加熱3 h. 待反應釜自然冷卻至室溫后,將產(chǎn)物轉(zhuǎn)移至離心管,以10 000 r·min-1的轉(zhuǎn)速離心5 min,棄去沉淀,上清液用0.22 μm微濾器過濾,再用透析膜(截留分子質(zhì)量為1 000 Da)純化36 h,得到最終產(chǎn)物N-Ce-CDs,置于4 ℃冰箱中保存?zhèn)溆?sup>[13].
1.4 Au NPs的合成
將1 mL 質(zhì)量分數(shù)為1.0 % 的HAuCl4溶液滴入99 mL水中,在100 ℃下煮沸. 然后,加入3 mL新制的質(zhì)量分數(shù)為1.0 %的檸檬酸鈉溶液,持續(xù)攪拌20 min,待溶液呈紫紅色時,得到Au NPs,置于4 ℃冰箱中保存?zhèn)溆?sup>[14].
1.5 N-Ce-CDs,Au@ZIF-L的合成
首先,稱取0.328 g Hmim溶于10 mL水,得到溶液A. 稱取0.149 g Zn(NO3)2·6H2O溶于10 mL水,得到溶液B. 接著,將20 mg PVP加入1 mL N-Ce-CDs溶液中,超聲10 min. 再加入1 mL Au NPs溶液,超聲5 min. 隨后,加入溶液A,在磁力攪拌下,緩慢滴加溶液B,室溫連續(xù)攪拌24 h,再靜置24 h. 最后,將產(chǎn)物以8 000 r·min-1的轉(zhuǎn)速離心10 min,去除上清液,白色沉淀用無水乙醇洗滌3次,60 ℃真空干燥12 h,得到粉末狀的N-Ce-CDs,Au@ZIF-L[15].
1.6 MIP修飾電極的制備及對GSH的檢測
以OPD為功能單體,GSH為模板分子,通過電聚合制備GSH的MIP膜. 具體步驟為:將打磨預處理后的玻碳電極(GCE)浸入10 mL含3 mmol·L-1"OPD和3 mmol·L-1"GSH的磷酸鹽緩沖溶液(PBS)(0.1 mol·L-1,pH= 7.4)中,在0.2~1.2 V電位范圍內(nèi)連續(xù)掃描10圈,在電極表面引入GSH的MIP膜. 沖洗電極,除去表面吸附物,再將電極浸入0.1 mol·L-1 NaOH溶液,在-0.8~0.8 V的電位范圍內(nèi)循環(huán)掃描5圈,洗脫模板分子GSH,得到空腔結(jié)構(gòu)與GSH分子結(jié)構(gòu)匹配的MIP,記為MIP/GCE電極. 檢測GSH時,將MIP/GCE 電極浸入0.1 mol·L-1,pH=7.4 的PBS溶液(含不同濃度的GSH)中孵育20 min,使溶液中的GSH通過特異性吸附進入空腔,沖洗電極,除去非特異性吸附的GSH,得到GSH-MIP/GCE電極. 隨后,將電極插入含有N-Ce-CDs,Au@ZIF-L探針的溶液中繼續(xù)孵育20 min,利用GSH中的-SH與探針中Au NPs之間的鍵合作用,將探針帶入電極表面,得到N-Ce-CDs,Au@ZIF-L/GSH-MIP/GCE電極,將該電極轉(zhuǎn)入ECL檢測底液中測試ECL信號. 實現(xiàn)對GSH的檢測. ECL檢測采用三電極系統(tǒng),檢測底液為pH=7.4的PBS溶液(含有0.1 mol·L-1"K2S2O8),電位窗口為-2.0~0 V,掃描速率為120 mV·s-1,光電倍增管電壓為-750 V[9,16]. MIP修飾電極的制備及對GSH的檢測示意過程如圖1所示.
2 "結(jié)果與討論
2.1 不同材料的ECL性能比較
實驗中分別制備了未摻雜CDs、單摻雜CDs(N-CDs,Ce-CDs)和雙摻雜CDs(N-Ce-CDs)的材料,測試了其各自的ECL性能,如圖2(a)所示. 未摻雜CDs的ECL信號較低;兩種單摻雜CDs中,N-CDs的ECL信號相對較高,原因可能是N與C的電子結(jié)構(gòu)接近,N摻雜容易使CDs產(chǎn)生輻射躍遷[17];Ce-CDs的ECL信號較低,可能是Ce3+/Ce4+對CDs存在靜態(tài)猝滅作用[18];而雙摻雜N-Ce-CDs的ECL信號最高,表明Ce摻雜進一步提升了N-CDs的ECL性能. 雙摻雜效果比單摻雜好,原因可能是金屬的催化特性和非金屬的電子推拉效應可發(fā)揮協(xié)同作用,改變CDs的電子結(jié)構(gòu),促進電子傳遞,進而提高了ECL效率[19].
圖2(b)展示了ZIF-L,N-Ce-CDs和Au NPs及其負載后的ECL信號,由圖2(b)可知,ZIF-L和Au NPs的信號較低,而N-Ce-CDs的信號相對較高,表明發(fā)光物質(zhì)為N-Ce-CDs. 當N-Ce-CDs負載于ZIF-L上時,信號有所增強,表明ZIF-L起到了負載效果. 當N-Ce-CDs與Au NPs同時負載于ZIF-L時,信號進一步增強,約為單獨N-Ce-CDs信號的1.68倍. 這是由于導電性良好的Au NPs可加速電子轉(zhuǎn)移,進一步放大了ECL信號.
2.2 N-Ce-CDs,Au@ZIF-L不同材料的形貌表征
由圖3(a)的TEM圖可知,N-Ce-CDs呈準球形,顆粒大小分布均勻,且無明顯聚集. 其粒徑分布在1.2~3.2 nm之間,符合CDs的形貌特征. 圖3(b)是N-Ce-CDs的高分辨率TEM(HRTEM)圖,可見N-Ce-CDs存在晶格,0.21 nm的晶格間距對應于石墨烯的(001)晶面,與文獻報道一致[20]. 圖3(c)是ZIF-L的FE-SEM圖,其外觀呈三維花簇狀,尺寸大約為2~3 μm,比表面積較大,有利于材料的負載. 圖3(d)是N-Ce-CDs,Au@ZIF-L的TEM圖,葉片相對粗糙,表面附著許多細小顆粒,表明N-Ce-CDs和Au NPs吸附在ZIF-L表面.
圖4(a)的XPS全譜圖和圖4(f)能量色譜儀(EDS)所測能譜表明N-Ce-CDs,Au@ZIF-L存在C,N,O,Zn,Ce和Au 6種元素. 圖4(b)N 1s精細譜在398.94 eV和400.73 eV處有2個峰,分別對應于有機配體Hmim的含氮雙鍵和N-Zn鍵[10]. 圖4(c)Zn 2p精細譜在1 021.77 eV和1 044.74 eV處的峰分別對應Zn 2p3/2和Zn 2p1/2的自旋軌道[10]. 圖4(d)Ce 3d精細譜可分為4個峰,858.59 eV和881.63 eV對應Ce 3d3/2的自旋軌道,899.74 eV和903.15 eV對應Ce 3d5/2的自旋軌道,表明N-Ce-CDs中存在Ce3+/Ce4+ [20]. 圖4(e)Au 4f精細譜在88.85 eV和91.98 eV處的峰分別對應于Au 4f7/2和Au 4f5/2"[21]. 以上結(jié)果表明了探針中主要元素的存在形式,證明N-Ce-CDs,Au@ZIF-L的成功合成.
圖5(a)是N-Ce-CDs,Au@ZIF-L的FTIR圖,其在753~685 cm-1出現(xiàn)ZIF-L結(jié)構(gòu)中的Zn-O特征吸收峰[22],同時具有N-Ce-CDs在1 386 cm-1處醚鍵(C-O-C)伸縮振動的吸收峰,以及1 700 cm-1左右C═O的特征吸收峰[13],進一步表明N-Ce-CDs,Au@ZIF-L的成功合成. 圖5(b)為FL圖,當激發(fā)波長為340 nm時,N-Ce-CDs,Au@ZIF-L在435 nm處顯示藍色熒光,而ZIF-L無熒光發(fā)射[8],表明N-Ce-CDs具有熒光性能. 由圖5(c)的ECL圖可知,N-Ce-CDs,Au@ZIF-L的最大發(fā)射波在531 nm,N-Ce-CDs的最大發(fā)射波在504 nm,兩者相接近,而ZIF-L無ECL發(fā)射,進一步證明發(fā)光物質(zhì)是N-Ce-CDs.
2.3 MIP修飾電極的表征
圖6(a)是不同修飾電極在5 mmol·L-1"[Fe(CN)6]3-/4-(含0.1 mol·L-1 KCL)溶液中的電化學阻抗(EIS)曲線. 與GCE相比,引入MIP后電阻值(Rct)顯著增大,這是因為聚合物膜的致密性阻礙了電子的傳輸. 洗脫除去GSH后,Rct顯著減小,這是因為空腔有利于電子傳輸. 孵育GSH后,空腔再次被阻塞,電子傳輸受阻,Rct變大. 當ECL探針通過Au-S鍵被吸附到電極表面后,Rct略微增大,這可能是ZIF-L較差的導電性導致的. 在相同條件下,測試了不同修飾電極的循環(huán)伏安(CV)曲線,如圖6(b)所示,其信號變化與EIS曲線變化趨勢相吻合,兩者的結(jié)果表明MIP修飾電極的成功制備.
2.4 實驗條件的優(yōu)化
為取得較好的實驗效果,實驗中對ECL的發(fā)光條件、MIP制備條件,以及GSH和探針的孵育條件分別進行了優(yōu)化. ECL的發(fā)光條件:檢測底液(PBS溶液)的pH值為7.4,K2S2O8物質(zhì)的量濃度為0.1 mol·L-1,電位掃描速率為120 mV·s-1,探針N-Ce-CDs,Au@ZIF-L的質(zhì)量濃度為1.5 mg·mL-1. MIP制備條件:GSH與OPD的物質(zhì)的量濃度比例為1∶1,在0.2~1.2 V的電位范圍內(nèi)掃描10圈. 模板分子洗脫是在物質(zhì)的量濃度為0.1 mol·L-1 NaOH溶液中,-0.8~+0.8 V的電位范圍內(nèi)掃描5圈. GSH和N-Ce-CDs,Au@ZIF-L探針的孵育時間均為20 min.
2.5 GSH的響應
在經(jīng)優(yōu)化的條件下,測試了本方法對不同物質(zhì)的量濃度的GSH的響應,結(jié)果如圖7所示,當GSH物質(zhì)的量濃度在1.0×10-8~1.0×10-4"mol·L-1之間時,孵育前后ECL信號的差值M? ECL與GSH物質(zhì)的量濃度的對數(shù)呈良好的線性關(guān)系,其線性回歸方程為M? ECL=1 383.3 lg CGSH"+ 12 326,線性相關(guān)系數(shù)R2為0.997 2,檢出限(LOD)為1.87 nmol·L-1(信噪比S/N=3). 同時,將本方法與其他檢測GSH的方法進行了比較,表明本方法線性范圍寬,LOD較低,如表1所示.
2.6 GSH與探針作用機制探討
為探究GSH與探針的作用機制,從不同角度進行了分析. (1)"探針中Au的作用:比較了含Au探針與不含Au探針與GSH的作用,如圖8(a)所示,含Au探針與GSH作用后產(chǎn)生較強的ECL信號,不含Au探針作用后ECL信號較小,說明探針是通過Au被吸附到電極上. (2)"-SH的作用:選取一個含-SH的硫醇物半胱氨酸(L-Cys)和一個不含-SH的AA,用與檢測GSH同樣方法檢測,如圖8(b)所示,含-SH的2個硫醇類物質(zhì)都產(chǎn)生了較強的ECL信號,而不含-SH的AA信號很低,進一步表明GSH與ECL探針之間是通過-SH與Au NPs之間的Au-S鍵將ECL探針帶入電極表面,產(chǎn)生ECL信號.
N-Ce-CDs,Au@ZIF-L在電極表面能產(chǎn)生ECL信號,是因為其中的發(fā)光體N-Ce-CDs屬于“共反應劑型”ECL發(fā)光機理. 在陰極電位下,溶液中的K2S2O8被還原成強氧化中間體"SO4·-,N-Ce-CDs也被還原為中間體N-Ce-CDs·-. 隨后,N-Ce-CDs·-與SO4·-反應生成激發(fā)態(tài)的N-Ce-CDs*,其返回至基態(tài)時伴隨著ECL現(xiàn)象的產(chǎn)生[26].
2.7 選擇性、抗干擾性、穩(wěn)定性和重現(xiàn)性表征
實驗中選取Glu,DA,AA和L-Cys等幾個常見共存物質(zhì)進行了選擇性測試. 如圖9(a)所示,當共存物質(zhì)的物質(zhì)的量濃度為1.0×10-4"mol·L-1(約為GSH的100倍)時,M? ECL值幾乎與空白溶液相同,只有當分析物為GSH時,M? ECL值才顯著提高,表明本方法對GSH具有較好的選擇性. 為了比較,也制備了非分子印跡聚合物(NIP,聚合液中不含GSH)用于檢測GSH,NIP所得M? ECL值與空白溶液相同,進一步突出了MIP的優(yōu)勢. 當檢測混合物(Mix)時,M? ECL值同樣提升,突出了本方法較好的抗干擾性. 隨后,采取連續(xù)掃描的方式進行了穩(wěn)定性測試,如圖9(b)所示,連續(xù)掃描10圈,ECL信號無明顯改變,表明本方法具有較好的穩(wěn)定性. 最后,選擇6根不同電極進行了平行測量,如圖9(c)所示,6根電極的信號幾乎一致,其相對標準偏差(RSD)為1.71%,表明本方法對GSH的檢測具有較好的重現(xiàn)性.
2.8 GSH實際樣品檢測
取100 μL健康人血清樣品(取自上海市第八人民醫(yī)院),用0.1 mol·L-1,pH=7.4的PBS溶液稀釋至10 mL. 向血清樣品中加入一定量的GSH標準溶液,測定回收率. 如表2所示,加標回收率在96.3%~104.8%之間,RSD在2.8%~4.8%之間,表明本方法具有較高的可靠性.
3 "結(jié)"語
本文成功制備了一種金屬和非金屬雙摻雜的N-Ce-CDs,有效提高了CDs的ECL性能. 將其與Au NPs同時負載在ZIF-L表面上,得到一種對硫醇類物質(zhì)GSH產(chǎn)生選擇性響應的ECL探針(N-Ce-CDs,Au@ZIF-L),結(jié)合MIP技術(shù),實現(xiàn)了GSH的選擇性靈敏檢測. 并探討了其作用機制,證明探針與GSH的作用是通過探針中的Au與GSH中-SH的作用,將探針帶入電極表面,產(chǎn)生ECL信號. 本方法不僅可以檢測GSH,也可以檢測其他硫醇類物質(zhì),該方法簡單靈敏,引入MIP技術(shù),有效排除了其他共存物質(zhì)的干擾,具有實際應用價值.
參考文獻:
[1] KORAH B K,"MURALI A,"JOHN B K,"et al. Carbon dots as a sustainable nanoplatform [J]. Biomass Conversion and Biorefinery,"2024,14(20):24889-24910.
[2] LIU H X,"ZHONG X,"PAN Q,"et al. A review of carbon dots in synthesis strategy [J]. Coordination Chemistry Reviews,"2024,498:215468.
[3] CHEN A Y,"LIANG W B,"WANG H J,"et al. Anodic electrochemiluminescence of carbon dots promoted by nitrogen doping and application to rapid cancer cell detection [J]. Analytical Chemistry,"2020,92(1):1379-1385.
[4] PARK Y,"YOO J,"LIM B,"et al. Improving the functionality of carbon nanodots:"doping and surface functionalization [J]. Journal of Materials Chemistry A,"2016,4(30):11582-11603.
[5] LI R R,"ZHU Z K,"PAN P,"et al. One-step synthesis of nitrogen-doped carbon quantum dots for paper-based electrochemiluminescence detection of Cu2+"ions [J]. Microchemical Journal,"2022,174:107057.
[6] CHEN Y H,"LIN J S,"ZHANG R Z,"et al. Electrochemiluminescence of water-dispersed nitrogen and sulfur doped carbon dots synthesized from amino acids [J]. Analyst,"2021,146(17):5287-5293.
[7] LIU H C,"DING J,"ZHANG K,"et al. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis [J]. TrAC Trends in Analytical Chemistry,"2019,118:315-337.
[8] HE J,"XIONG Y Y,"MU H X,"et al. Antibacterial properties of three-dimensional flower cluster ZIF-L modified by N-doped carbon dots [J]. Crystals,"2023,13(4):564.
[9] ZHANG B,"LIU J,"MA X R,"et al. Ultrasensitive and selective assay of glutathione species in arsenic trioxide-treated leukemia HL-60 cell line by molecularly imprinted polymer decorated electrochemical sensors [J]. Biosensors and Bioelectronics,"2016,80:491-496.
[10] GAO W Y,"LIU Z Y,"QI L M,"et al. Ultrasensitive glutathione detection based on lucigenin cathodic electrochemiluminescence in the presence of MnO2"nanosheets [J]. Analytical Chemistry,"2016,88(15):7654-7659.
[11] 劉祥苗,"劉婷,"楊敏麗. 氮摻雜碳量子點電化學發(fā)光檢測谷胱甘肽"[J]. 上海師范大學學報(自然科學版),"2023,52(1):38-45.
LIU X M,"LIU T,"YANG M L. Determination of glutathione based on electrochemiluminescence of N-CQDs [J]. Journal of Shanghai Normal University (Natural Sciences),"2023,52(1):38-45.
[12] ZHANG J Z,"LIU X,"LIU H X,"et al. Construction of electrochemiluminescence biosensor for monitoring of glutathione released by living cancer cells [J]. Analytica Chimica Acta,"2022,1226:340251.
[13] ZHANG Z T,"FAN Z F. Application of cerium-nitrogen co-doped carbon quantum dots to the detection of tetracyclines residues and bioimaging [J]. Microchemical Journal,"2021,165:106139.
[14] RAN Y Q,"WANG T T,"HE Y F,"et al. Fabrication of electrochemiluminescence aptasensor for PD-L1 detection based on luminescent CdS@Ce-MOF@Au [J]. Microchemical Journal,"2023,193:109005.
[15] ZHAN X H,"HU S Y,"WANG J Q,"et al. One-pot electrodeposition of metal organic frameworks composite accelerated by gold nanoparticles and electroreduced carbon dots for electroanalysis of bisphenol A in real plastic samples [J]. Sensors and Actuators B:"Chemical,"2021,346:130499.
[16] 向莉,"劉意明,"楊敏麗. 基于Au-g-C3N4"NS納米復合材料的分子印跡電化學發(fā)光傳感器檢測葉酸"[J]. 上海師范大學學報(自然科學版中英文),"2024,53(1):17-27.
XIANG L,"LIU Y M,"YANG M L. A molecule-imprinted electrochemiluminescence sensor based on Au-g-C3N4"NS nanocomposite for detection of folic acid [J]. Journal of Shanghai Normal University (Natural Sciences),"2024,53(1):17-27.
[17] MATHEW A,"VARGHESE A,"DEVI K R S,"et al. Comprehensive understanding of biomedical usages of metal and non metal doped carbon dots [J]. Materials Today Communications,"2023,37:106991.
[18] PEI L C,"ZHANG W Y,"YANG S Q,"et al. Nitrogen and sulfur Co-doped carbon dots as a turn-off fluorescence probe for the detection of cerium and iron [J]. Journal of Fluorescence,"2023,33(3):1147-1156.
[19] LI X C,"FU Y Z,"ZHAO S J,"et al. Metal ions-doped carbon dots:"synthesis,"properties,"and applications [J]. Chemical Engineering Journal,"2022,430:133101.
[20] ZHANG M Z,"ZHAI X Y,"MA T F,"et al. Multifunctional cerium doped carbon dots nanoplatform and its applications for wound healing [J]. Chemical Engineering Journal,"2021,423:130301.
[21] WANG X R,"XU R X,"WANG X Q,"et al. Molecularly imprinted electrochemiluminescence sensor based on flake-like Au@Cu:ZIF-8 nanocomposites for ultrasensitive detection of malathion [J]. Sensors and Actuators B:"Chemical,"2024,399:134837.
[22] TAMMINA S K,"WAN Y,"LI Y Y,"et al. Synthesis of N,"Zn-doped carbon dots for the detection of Fe3+ ions and bactericidal activity against Escherichia coli"and Staphylococcus aureus"[J]. Journal of Photochemistry and Photobiology B:"Biology,"2020,202:111734.
[23] CHEN X,"BAI J L,"YUAN G J,"et al. One-pot preparation of nitrogen-doped carbon dots for sensitive and selective detection of Ag+ and glutathione [J]. Microchemical Journal,"2021,165:106156.
[24] HE L L,"WANG Y,"WANG Y J,"et al. Tetraphenylethene-based platinum (II)"complex with aggregation-induced electrochemiluminescence for the detection of glutathione [J]. Electrochimica Acta,"2024,475:143596.
[25] NIU W J,"ZHU R H,"COSNIER S,"et al. Ferrocyanide-ferricyanide redox couple induced electrochemiluminescence amplification of carbon dots for ultrasensitive sensing of glutathione [J]. Analytical Chemistry,"2015,87(21):11150-11156.
[26] ZHU Z K,"LI R R,"LI Y P,"et al. Paper-based electrodes with nitrogen-doped graphene quantum dots for detection of copper ions via electrochemiluminescence [J]. Materials Chemistry and Physics,"2023,296:127300.
(責任編輯:郁慧,顧浩然)
基金項目:"上海師范大學“儀器分析”課程教學團隊建設項目(304-AC9103-21-368011523)
作者簡介:"唐春元(1998—),"男,"碩士研究生,"主要從事電化學發(fā)光傳感器方面的研究. E-mail:"274454851@qq.com
* 通信作者:"楊敏麗(1965—),"女,"教授,"主要從事生物傳感器及電化學發(fā)光分析方面的研究. E-mail:"yml_nx@shnu.edu.cn
引用格式:"唐春元,"向莉,"楊敏麗. 基于N-Ce-CDs,Au@ZIF-L的電化學發(fā)光體系檢測谷胱甘肽"[J]. 上海師范大學學報"(自然科學版中英文),"2025,54(1):8?18.
Citation format:"TANG C Y,"XIANG L,"YANG M L. The electrochemiluminescence system based on N-Ce-CDs,Au@ZIF-L for glutathione detection [J]. Journal of Shanghai Normal University (Natural Sciences),"2025,54(1):8?18.