【摘要】 肥胖和食物成癮已經成為危害人民群眾健康的重要因素,其交互作用加劇代謝異常及并發癥風險。胰高血糖素樣肽-1受體激動劑(GLP-1RA)已成為治療肥胖和食物成癮的有利選擇,其治療機制也逐漸成為研究的熱點和重點。研究表明,GLP-1RA通過中樞與外周機制抑制食欲、延緩胃排空,并作用于中腦邊緣多巴胺系統,減少伏隔核多巴胺釋放,削弱高熱量食物的獎賞效應,從而改善食物成癮行為,進一步治療肥胖。然而,GLP-1RA的胃腸道不良反應及潛在長期風險仍需謹慎管理。文章就GLP-1RA治療肥胖以及食物成癮的臨床研究進展進行綜述,為肥胖和食物成癮的藥物選擇提供參考。
【關鍵詞】 胰高血糖素樣肽-1受體激動劑;肥胖;食物成癮;中腦邊緣多巴胺系統
Mechanism of glucagon-like peptide-1 receptor agonist in the treatment of obesity and food addiction
LIU Luyao, LI Linwei, WANG Chen, DI Jianzhong
(Department of Weight Loss and Metabolism, Shanghai Sixth People’ s Hospital, Shanghai 201306, China)
Corresponding author: DI Jianzhong, E-mail: dijianzhong@stju.edu.cn
【Abstract】 Obesity and food addiction have become major threats to public health, and their synergistic interactions exacerbate metabolic abnormalities and comorbidities. Glucagon-like peptide-1 receptor agonist (GLP-1RA) has emerged as a promising therapeutic option for these conditions, and their mechanism of action has become a major research focus. Evidence indicates that GLP-1RA suppress appetite and delay gastric emptying through central and peripheral pathways. Furthermore, they modulate mesolimbic dopamine system (MLDS), reduce the release of dopamine in the nucleus accumben, attenuate the rewarding effects of high-calorie foods and ameliorate addictive eating behaviors, thereby treating obesity. However, adverse gastrointestinal effects and potential long-term risks of GLP-1RA necessitate cautious clinical management. In this article, recent clinical advances in the application of GLP-1RA applications for the treatment of obesity and food addiction were reviewed, providing reference for drug selection for obesity and food addiction.
【Key words】 GLP-1RA; Obesity; Food addiction; Mesolimbic dopamine system
肥胖已經成為危害人民健康的重要因素之一,根據世界肥胖聯合會2023年發布的《世界肥胖地圖》,預計到2035年全球將有超過40億人肥胖或超重,占全球人口的51%[1]。肥胖分為原發性肥胖和繼發性肥胖[2],當患者體質量指數(body mass index,BMI)超過40 kg/m2時,即為“病態肥胖”。這類患者的身體代謝功能嚴重失衡,將面臨心血管疾病、糖尿病、骨關節病變等多種并發癥的升高風險[3]。肥胖與多種代謝性疾病及心血管疾病密切相關:在代謝性疾病方面,肥胖增加了2型糖尿病患病風險;在心血管系統損害中,肥胖可誘發動脈粥樣硬化(atherosclerosis,AS)、心力衰竭(heart failure,HF)、心房顫動(atrial fibrillation,AF)[4]等病理改變。此外,長期代謝紊亂還會導致糖尿病心肌病(diabetic cardiomyopathy,DCM)等特異性器官損傷。食物成癮(food addiction,FA)是肥胖的危險因素和流行的關鍵原因之一,研究揭示在實施減重手術的肥胖患者中,約有1/3存在食物成癮現象,并且患者的BMI越高,越易出現食物成癮[5]。
近年來,隨著肥胖問題的加劇,抗肥胖藥物的使用逐漸增加。胰高血糖素樣肽-1受體激動劑(glucagon-like peptide-1 receptor agonists,GLP-1RA)作為一類新型抗肥胖藥物,其使用率和效果在臨床研究中得到了廣泛關注。根據多項臨床試驗和流行病學研究發現,使用司美格魯肽的患者在68周內平均體質量(體重)減輕了14.9%,并且2型糖尿病的發病率下降[6-8]。此外,GLP-1RA還被發現能夠降低心血管事件的發生率,特別是在高風險人群中[9]。STEP 4研究進一步證實,持續使用GLP-1RA的患者在20周內平均體重減輕了10.6%,并且在停藥后仍能維持顯著的體重減輕效果[10]。這些研究為GLP-1RA在肥胖和代謝疾病治療中的應用提供了強有力的證據。GLP-1RA類藥物在治療肥胖方面有顯著效果,其作用機制不僅涉及對食欲和能量平衡的調節,還可能通過影響食物成癮相關的神經環路發揮治療作用,見圖1。研究表明,GLP-1RA可通過作用于中腦邊緣多巴胺系統,調節與食物獎賞相關的神經遞質釋放,從而改善食物成癮行為[11]。此外,GLP-1RA還被發現能夠影響前額葉皮層和杏仁核等與決策控制和情緒調節相關的腦區活動,這可能是其改善強迫性進食行為的重要機制[12],并且可能對食物成癮有治療潛力[13],但其具體機制還需要進一步研究。本文系統綜述GLP-1RA在治療肥胖和食物成癮的具體過程和機制,以及通過調控食物成癮改善肥胖及超重人群代謝異常的分子與神經機制,以期為基于成癮行為的肥胖治療提供理論依據。
1 肥胖與食物成癮
食物成癮是一種功能失調的慢性心理學疾病,指長期無法控制地進食以高熱量、高脂肪、高糖類為主的食物[14],并且在得知盡管有負面影響,卻仍有進食的沖動,并建立耐受性,以及在不進食或減少進食時出現戒斷癥狀[15]。耶魯大學心理學系根據美國第4版《精神疾病診斷和統計手冊》中的內容制定了診斷食物成癮的耶魯大學食物成癮量表(The Yale Food Addiction Scale,YFAS)[16],這是首個也是唯一一個用于評估食物成癮的量表。但隨著研究的進一步深入,YFAS已不再能完全滿足當下研究需求,因此在原版本上進行了進一步完善,形成了YFAS 2.0。YFAS 2.0在診斷標準和評估項目上進行了更新,以期能更準確地反映食物成癮的特征[17]。
“食物成癮是導致肥胖的根本源頭”的論斷讓不少學者將肥胖與食物成癮聯系起來。食物成癮的核心機制與中腦邊緣多巴胺系統(mesolimbic dopamine system,MLDS)功能失調密切相關。長期高熱量飲食過度激活MLDS,導致多巴胺受體敏感性下降,導致個體通過增加進食量維持快感,形成類似藥物成癮的耐受循環[14, 18]。該過程同時受乙酰膽堿對伏隔核神經元的興奮性調控[19]及內源性阿片系統對欣快感的強化作用[20]驅動。值得注意的是,腸-腦軸的雙向調控進一步加劇成癮行為:腸道菌群紊亂通過迷走神經增強對高糖/高脂食物的渴求,并刺激黑質多巴胺釋放以維持MLDS過度激活[21-22]。臨床數據顯示,24.2%~47.4%的肥胖患者存在食物成癮[23-24],其攝食后獎賞相關腦區(如島葉、眶額皮層)激活強度升高,且與BMI呈正相關[25-26]。近年研究顯示,GLP-1RA可通過多靶點干預這一病理過程,如通過激活下丘腦GLP-1受體(glucagon-like peptide 1 receptor,GLP-1R)抑制刺豚鼠相關肽(agouti-related protein,AgRP)神經元活性,從而降低饑餓感與對高熱量食物的獎賞預期[27]。在動物實驗中,研究者通過向大鼠伏隔核注射GLP-1RA,證實了其能夠減少伏隔核多巴胺釋放,進而削弱甜食誘導的進食快感[28]。此外,GLP-1RA通過延緩胃排空、促進膽囊收縮素分泌,阻斷迷走神經向中樞傳遞的進食激勵信號[29]。進一步臨床研究證實,GLP-1RA治療可使肥胖患者對高脂/高糖食物的主動回避率提升2~3倍,YFAS評分改善率達65%以上[30],提示其不僅能調節代謝,更能從神經獎賞層面重塑進食行為模式。
2 胰高血糖素樣肽-1受體激動劑治療肥胖
胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)是由遠端回腸的L細胞分泌的,通過與胰島β細胞及其他靶細胞表面的GLP-1R結合,發揮降低血糖的作用[27]。GLP-1R是B型G蛋白偶聯受體(G protein-coupled receptor,GPCR),在多個大腦區域如杏仁核、室旁核等發揮作用,通過激活GLP-1R,可以抑制食欲、增強飽腹感,從而幫助控制體重[31]。然而,天然GLP-1在體內會被二肽激肽酶-4(dipeptidyl peptidase 4,DPP-4)降解[29],限制了其在治療中的應用。為克服這一問題,研究者開發了GLP-1RA,它們能夠抵抗DPP-4的水解,具有較長的半衰期,可以每周或每月注射1次。GLP-1RA治療肥胖的機制包括中樞機制和外周機制:在中樞水平上,下丘腦和腦干在食欲控制機制中起著主要作用[30],通過迷走神經傳遞到外周組織包括胃腸道、胰腺、脂肪組織等[32],激活特定部位的GLP-1R從而達到延緩胃排空、刺激飽腹感等的效果,幫助減輕體重,同時保護和促進胰島β細胞的增殖,且不會導致低血糖[33],見圖2。GLP-1RA的中樞和外周機制并非獨立作用,而是通過腸-腦軸相互影響[30]。常見的GLP-1RA包括司美格魯肽、替西帕肽、艾塞納肽和利拉魯肽等,它們在治療肥胖等方面具有重要的臨床應用前景。常見GLP-1RA的藥學特性對比見表1[6, 34-36]。
基于肥胖與多種并發癥,如非酒精性脂肪性肝病[37]、睡眠呼吸暫停低通氣綜合征[38]的強關聯性,臨床指南已將肥胖治療納入一級預防,強調早期干預以改善遠期預后[39]。生活方式改變難以維持減重效果,而減重手術有嚴格指征和術后并發癥風險,因此GLP-1RA因其安全性及有效性,逐漸成為肥胖管理中具有前景的藥物治療選擇[6]。一項長達13年的研究顯示,對于糖尿病病程不超過10年的患者,減重代謝手術的病死率低于GLP-1RA治療,但在病程超過10年的患者中,2種方式的死亡風險無顯著差異[13]。GLP-1RA如司美格魯肽、艾塞那肽和利拉魯肽等在治療肥胖方面效果顯著,已被多個國際組織推薦。司美格魯肽每周注射2.4 mg可有效減輕體重[40],并減輕心力衰竭癥狀[4],減重效果可持續長達4年[41]。利拉魯肽也對肥胖有良好療效,研究顯示其可使無糖尿病的成年肥胖患者體重減輕48.2%~88.7%[42]。度拉糖肽雖然在減重效果上不如司美格魯肽顯著,但對于患有多囊卵巢綜合征的肥胖女性,其減重效果明顯[43]。值得注意的是,新型多靶點激動劑的研發為這一領域提供了新方向。例如,替爾泊肽(tirzepatide)作為GLP-1/抑胃肽(gastric inhibitory polypeptide,GIP)雙受體激動劑,可通過同時激活下丘腦弓狀核中阿黑皮質素原(pro-opiomelanocortin,POMC)神經元和抑制AgRP神經元,實現對食欲調節通路的雙重調控,研究顯示替爾泊肽的體重減輕幅度大于司美格魯肽[44-45]。GLP-1RA通過中樞系統與外周系統的雙重機制調控代謝,其與腸-腦軸的交互作用可抑制食物成癮相關的神經獎賞通路。以司美格魯肽為代表的GLP-1RA不僅能改善能量代謝,還可通過調節POMC/AgRP神經元平衡以及杏仁核GABA釋放,削弱患者對高熱量食物的“成癮性偏好”,從而減輕體重。
3 胰高血糖素樣肽-1受體激動劑治療食物成癮
代謝減重手術后復胖率在5%~20%不等[46],研究顯示,食物成癮可能是造成復胖的主要原因,食物成癮可能解釋了減肥干預措施效果不佳以及復胖的原因[47]。食物成癮與大腦中的特定神經環路密切相關。研究表明,外側下丘腦-腹側被蓋區-伏隔核神經環路、腹側被蓋區-前邊緣皮質-伏隔核等神經通路在食物成癮中起著關鍵作用。這些神經通路通過釋放多巴胺等神經遞質來增強對食物的渴望和獎勵感,從而導致過度進食和依賴某些高熱量、高糖或高脂肪的食物[48]。研究表明,饑餓信號受到腸道激素的調節,使人類產生各種渴望,包括酒精、食物成癮,表明不同的成癮性疾病可能受相同的激素通路調控,即認為成癮是一種涉及食欲和腸道激素的疾病[49]。GLP-1RA與GLP-1R結合,通過腸-腦軸調控胃饑餓素,從而治療成癮性疾病。參與食物獎勵的通路主要包括中腦邊緣通路和皮質邊緣通路,中腦邊緣通路主要涉及MLDS,皮質邊緣通路主要產生對食物的快感與偏好[50]。MLDS涉及腹側被蓋區(ventral tegmental area,VTA)、伏隔核等區域[51],而GLP-1RA治療食物成癮的主要作用機制則是通過影響伏隔核和VTA從而影響MLDS,減輕獎賞相關行為[52],見圖3。司美格魯肽和替西帕肽還會特異地調節杏仁核中央區和邊緣下皮層的γ-氨基丁酸的釋放,通過調節多巴胺信號傳導,使患者在面對誘人的愉悅選擇/刺激時更加理性[53]。既往研究通過磁共振功能成像(functional magnetic resonance imaging,fMRI)檢查表明,靜脈注射艾塞那肽可降低肥胖受試者的右側杏仁核和島葉等的腦區激活,降低了被試在食欲和獎勵相關腦區對食物線索的大腦反應,這與食物攝入量的減少有關[11]。
Nicolau等[54]對113例肥胖患者進行4個月的司美格魯肽干預,結果表明司美格魯肽在短期內可有效減輕食物成癮癥狀,干預前后具有食物成癮癥狀的人數從57.5%下降至4.2%。該研究還顯示,在肥胖人群中,不管是否具有食物成癮的癥狀,司美格魯肽均可使體重下降、脂肪減少,即司美格魯肽對于肥胖的治療不被食物成癮癥狀所影響。但對于司美格魯肽能否長期改善食物成癮癥狀仍需進一步研究。此外,暴食癥得分與食物成癮得分呈強相關。另有研究表明,暴食癥與食物成癮的潛在機制都是“渴望”[55],對食物渴望的描述可以概括為“一種難以抗拒的強烈欲望,想要吃某種特定的食物”[56]。多項研究表明,GLP-1RA在治療暴食癥方面有明顯效果:動物研究闡明了GLP-1RA通過5-羥色胺途徑調節食欲和暴飲暴食行為的影響;對44例患有暴食癥的肥胖患者進行利拉魯肽干預,接受利拉魯肽干預的患者較之未接受的患者,其暴飲暴食行為下降幅度更大[57];司美格魯肽可以改善對暴飲暴食的控制,減少對食物的渴望,并降低對高脂肪、高熱量食物的偏好[58]。綜上,GLP-1RA通過調控腸-腦軸及神經遞質,短期可以改善食物成癮癥狀,從而減輕體重,在肥胖治療中具有一定潛力,但其長期效益仍需深入研究,未來需進一步探索相關機制以優化治療方案。
4 胰高血糖素樣肽-1受體激動劑的不良反應
多項臨床研究表明,GLP-1RA在治療肥胖、食物成癮方面有明顯效果[40-42, 54],但其產生的不良反應也同樣不可小覷。GLP-1RA 在治療過程中所產生的不良反應主要表現在消化系統上,包括胃腸道、胰腺、膽道等不良反應,其中最為常見的是胃腸道不良反應。胃腸道不良反應常表現為惡心、嘔吐、腹瀉、便秘等癥狀,其中惡心的發生率最高,便秘的持續時間最長[59]。不同的GLP-1RA在其結構功能方面有較強的相似性和關聯性,但是其產生的不良反應仍有所差別,研究顯示,皮下注射司美格魯肽相較于其他GLP-1RA更容易使患者出現惡心、嘔吐的癥狀[60]。短效GLP-1RA可能更容易導致惡心、嘔吐的發生,而長效GLP-1RA則與更高的腹瀉發生率有關。有研究者發現,在利拉魯肽、司美格魯肽以及替西帕肽這3種GLP-1RA中,利拉魯肽和司美格魯肽導致消化道不良反應的概率高于替西帕肽,這可能是由于替西帕肽同時激活了GLP-1和GIP受體,但具體機制仍在研究中[61]。同一藥物的不同給藥方式也會導致不同的不良反應。研究顯示,口服司美格魯肽所導致的不良反應與胃腸道相關,而皮下注射司美格魯肽與惡性腫瘤以及內分泌疾病的關聯性更大,產生上述情況的原因可能是司美格魯肽對胃排空和胃腸蠕動減慢的抑制作用,進而導致食物轉運時間延長,刺激胃腸道感覺器官,但皮下注射導致的惡性腫瘤等情況的機制仍然是研究熱點[62]。嚴重的不良反應主要表現為胰腺炎、胰腺癌、甲狀腺癌等,但其發病率均較低,一項長達7年的隨訪研究并未發現GLP-1RA治療后胰腺癌的發病率增加[63]。除此之外,關于GLP-1RA心血管疾病方面的不良反應集中表現為用藥后心率加快。目前對于患者使用GLP-1RA需要配合有效的飲食管理以及更為專業的用藥指導,以減少各類不良反應的出現。由于該類藥物臨床使用時間短,尚可能有諸多不良反應未被發現。
5 結語與展望
全球肥胖問題日益嚴峻,GLP-1RA作為新型抗肥胖藥物,通過作用于下丘腦的中樞神經系統抑制饑餓信號,調節伏隔核多巴胺釋放降低食物獎賞效應,并通過腸-腦軸作用于外周神經系統,從而達到延緩胃排空增強飽腹感的作用。臨床研究顯示,司美格魯肽等藥物可使患者體重降低[6],并改善食物成癮癥狀;新型多靶點激動劑如替爾泊肽也展現出更優勝的療效[44-45]。盡管GLP-1RA在臨床前已經得到了相對廣泛的研究,但目前仍然缺乏臨床研究來驗證這些系統在人類成癮性疾病中的治療效果,并且在既往研究中發現,女性在接受GLP-1RA治療后的整體效果要優于男性,這可能是因為女性有更大的藥物暴露,并且性別可能是不良事件發生的決定因素,但具體機制仍需研究[64]。另外GLP-1RA在治療食物成癮方面仍有較大空白,需要更加深入的研究進行填補,其能否長期改善食物成癮癥狀仍需進一步研究,對在正常體重人群中食物成癮的影響是否具有相同的作用同樣值得進一步研究。另外,目前的GLP-1RA治療肥胖與食物成癮的給藥方式多為皮下注射,在便捷度方面仍然有較大的提高空間,例如研制GLP-1RA的口服劑型,但目前面臨的挑戰較多:GLP-1RA半衰期較短、易被胃腸道酶降解,且難以通過腸道屏障等。這都是未來研究中需要攻克的難關。同時,GLP-1RA在治療肥胖與食物成癮過程中所產生的不良反應,尤其是對尚未被發現和重視的并發癥需要加以關注。
隨著對GLP-1RA認識的深入以及研究的深入,關于GLP-1RA改善肥胖、食物成癮的更多內在機制被逐漸闡明,相信在不久的將來,GLP-1RA定會在肥胖以及食物成癮的治療中展現出廣闊的應用前景。
利益沖突聲明:本研究未受到企業、公司等第三方資助,不存在潛在利益沖突。
參 考 文 獻
[1] World Obesity Federation. World obesity atlas 2023[EB/OL]. (2023-03-01)[2025-02-27]. https: //s3-eu-west-1.amazonaws.com/wof-files/World_Obesity_Atlas_2023_Report.pdf.
[2] 劉春燕. 肥胖癥的分類、診斷和鑒別診斷[J]. 醫師進修雜志, 2004, 27(15): 3-5. DOI: 10.3760/cma.j.issn.1673-4904.
2004.15.002.
LIU C Y. Classification, diagnosis and differential diagnosis of obesity[J]. J Postgrad Med, 2004, 27(15): 3-5. DOI: 10.3760/cma.j.issn.1673-4904.2004.15.002.
[3] JENSEN M D, RYAN D H, APOVIAN C M, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society[J]. Circulation, 2014, 129(25 suppl 2): S102-S138. DOI: 10.1161/01.cir.0000437739.71477.ee.
[4] HARRINGTON J, FELKER G M, JANUZZI J L, et al. Worth their weight an update on new and emerging pharmacologic agents for obesity and their potential role for persons with cardiac conditions[J]. Curr Cardiol Rep, 2024, 26(3): 61-71. DOI: 10.1007/s11886-023-02016-z.
[5] 周圓媛, 伏天雨, 鐘靈毓, 等. 超重/肥胖患者食物成癮的現狀調查及影響因素分析[J]. 成都醫學院學報, 2023, 18(2): 219-223.DOI: 10.3969/j.issn.1674-2257.2023.02.018.
ZHOU Y Y, FU T Y, ZHONG L Y, et al. Investigation on the current situation of food addiction in overweight/obese patients and analysis of influencing factors [J]. J Chengdu Med Col, 2023, 18 (2): 219-223.DOI: 10.3969/j.issn.1674-2257.
2023.02.018.
[6] WILDING J P H, BATTERHAM R L, CALANNA S, et al. Once-weekly semaglutide in adults with overweight or obesity[J]. N Engl J Med, 2021, 384(11): 989-1002. DOI: 10.1056/NEJMoa2032183.
[7] CHAO A M, TRONIERI J S, AMARO A, et al. Semaglutide for the treatment of obesity[J]. Trends Cardiovasc Med, 2023,
33(3): 159-166. DOI: 10.1016/j.tcm.2021.12.008.
[8] SINGH G, KRAUTHAMER M, BJALME-EVANS M. Wegovy (semaglutide): a new weight loss drug for chronic weight management[J]. J Investig Med, 2022, 70(1):5-13. DOI: 10.1136/jim-2021-001952.
[9] HUSAIN M, BIRKENFELD A L, DONSMARK M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes[J]. N Engl J Med, 2019, 381(9): 841-851. DOI: 10.1056/NEJMoa1901118.
[10] RUBINO D, ABRAHAMSSON N, DAVIES M, et al. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: the STEP 4 randomized clinical trial[J]. JAMA, 2021, 325(14): 1414-1425. DOI: 10.1001/jama.2021.3224.
[11] VAN BLOEMENDAAL L, IJZERMAN R G, TEN KULVE J S, et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans[J]. Diabetes, 2014, 63(12): 4186-4196. DOI: 10.2337/db14-0849.
[12] BUHMANN H, LE ROUX C W, BUETER M. The gut-brain axis in obesity[J]. Best Pract Res Clin Gastroenterol, 2014, 28(4): 559-571. DOI: 10.1016/j.bpg.2014.07.003.
[13] NESTOR L J, ERSCHE K D. Gut hormones: possible mediators of addictive disorders [J]. Eur Addict Res, 2024, 30(6): 339-346. DOI: 10.1159/000540743.
[14] 韓莉, 張麗娟, 鄒大進. 食物成癮癥的原因與對策[J]. 中華糖尿病雜志, 2023, 15(1): 82-87. DOI: 10.3760/cma.j.
cn115791-20221122-00670.
HAN L, ZHANG L J, ZOU D J. Causes and countermeasures of food addiction [J]. Chin J diabet, 2023,15 (1): 82-87. DOI:10.3760/cma.j.cn115791-20221122-00670.
[15] FLORIO L, LASSI D L S, DE AZEVEDO-MARQUES PERICO C, et al. Food addiction: a comprehensive review[J]. J Nerv Ment Dis, 2022, 210(11): 874-879. DOI: 10.1097/NMD.
0000000000001555.
[16] PAN X F, WANG L, PAN A. Epidemiology and determinants of obesity in China[J]. Lancet Diabetes Endocrinol, 2021, 9(6): 373-392. DOI: 10.1016/S2213-8587(21)00045-0.
[17] American Psychiatric Association. DSM-5-TR[EB/OL]. (2024-09-01)[2024-11-25]. https://www.psychiatry.org/getmedia/2ed086b0-ec88-42ec-aa0e-f442e4af74e6/APA-DSM5TR-Update-September-2024.pdf.
[18] GOLD M S. From bedside to bench and back again: a 30-year Saga[J]. Physiol Behav, 2011, 104(1): 157-161. DOI: 10.
1016/j.physbeh.2011.04.027.
[19] OCHOA M, LALLèS J P, MALBERT C H, et al. Dietary sugars: their detection by the gut-brain axis and their peripheral and central effects in health and diseases[J]. Eur J Nutr, 2015, 54(1): 1-24. DOI: 10.1007/s00394-014-0776-y.
[20] PANDIT R, DE JONG J W, VANDERSCHUREN L J M J, et al. Neurobiology of overeating and obesity: the role of melanocortins and beyond[J]. Eur J Pharmacol, 2011, 660(1): 28-42. DOI: 10.1016/j.ejphar.2011.01.034.
[21] LI M, TAN H E, LU Z, et al. Gut-brain circuits for fat preference[J]. Nature, 2022, 610(7933): 722-730. DOI: 10.1038/s41586-022-05266-z.
[22] HAN W, TELLEZ L A, PERKINS M H, et al. A neural circuit for gut-induced reward[J]. Cell, 2018, 175(3): 887-888. DOI: 10.1016/j.cell.2018.10.018.
[23] MEULE A, DE ZWAAN M, MüLLER A. Attentional and motor impulsivity interactively predict ‘food addiction’ in obese individuals[J]. Compr Psychiatry, 2017, 72: 83-87. DOI: 10.1016/j.comppsych.2016.10.001.
[24] STEWARD T, MESTRE-BACH G, VINTRó-ALCARAZ C,
et al. Food addiction and impaired executive functions in women with obesity[J]. Eur Eat Disord Rev, 2018, 26(6): 574-584. DOI: 10.1002/erv.2636.
[25] MEULE A. Food addiction and body-mass-index: a non-linear relationship[J]. Med Hypotheses, 2012, 79(4): 508-511. DOI: 10.1016/j.mehy.2012.07.005.
[26] SMEETS P A M, DE GRAAF C, STAFLEU A, et al. Effect of satiety on brain activation during chocolate tasting in men and women[J]. Am J Clin Nutr, 2006, 83(6): 1297-1305. DOI: 10.1093/ajcn/83.6.1297.
[27] FERREIRA J P, SARAIVA F, SHARMA A, et al. Glucagon-like peptide 1 receptor agonists in patients with type 2 diabetes with and without chronic heart failure: a meta-analysis of randomized placebo-controlled outcome trials[J]. Diabetes Obes Metab, 2023, 25(6): 1495-1502. DOI: 10.1111/dom.14997.
[28] DICKSON S L, SHIRAZI R H, HANSSON C, et al. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors[J]. J Neurosci, 2012, 32(14): 4812-4820. DOI: 10.1523/JNEUROSCI.6326-11.2012.
[29] KIEFFER T J, MCINTOSH C H, PEDERSON R A. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV[J]. Endocrinology, 1995, 136(8): 3585-3596. DOI: 10.1210/endo.136.8.7628397.
[30] NICZE M, DEC A, BORóWKA M, et al. Molecular mechanisms behind obesity and their potential exploitation in current and future therapy[J]. Int J Mol Sci, 2024, 25(15): 8202. DOI: 10.3390/ijms25158202.
[31] DOSSAT A M, KOKOSKA M M, WHITAKER-FORNEK J R, et al. Glucagon-like peptide-1 receptors in the gustatory cortex influence food intake[J]. J Neurosci, 2023, 43(23): 4251-4261. DOI: 10.1523/jneurosci.1668-22.2023.
[32] CHATZIGEORGIOU A, KANDARAKI E, PAPAVASSILIOU A G, et al. Peripheral targets in obesity treatment: a comprehensive update[J]. Obes Rev, 2014, 15(6): 487-503. DOI: 10.1111/obr.12163.
[33] 苗瑞田, 高萍. GLP-1RA對2型糖尿病合并心血管疾病的影響[J]. 心血管康復醫學雜志, 2023, 32(1): 99-102. DOI: 10.3969/j.issn.1008-0074.2023.01.27.
MIAO R T, GAO P. Effect of GLP-1RA on type 2 diabetes with cardiovascular disease [J]. J Cardiovas Rehab Med, 2023,
32(1): 99-102. DOI: 10.3969/j.issn.1008-0074.2023.01.27.
[34] JASTREBOFF A M, ARONNE L J, AHMAD N N, et al. Tirzepatide once weekly for the treatment of obesity[J]. N Engl J Med, 2022, 387(3): 205-216. DOI: 10.1056/NEJMoa2206038.
[35] DRUCKER D J, BUSE J B, TAYLOR K, et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study[J]. Lancet, 2008, 372(9645): 1240-1250. DOI: 10.1016/S0140-6736(08)61206-4.
[36] PI-SUNYER X, ASTRUP A, FUJIOKA K, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management[J]. N Engl J Med, 2015, 373(1): 11-22. DOI: 10.1056/NEJMoa1411892.
[37] YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
[38] SCHWARTZ A R, PATIL S P, LAFFAN A M, et al. Obesity and obstructive sleep apnea: pathogenic mechanisms and therapeutic approaches[J]. Proc Am Thorac Soc, 2008, 5(2): 185-192. DOI: 10.1513/pats.200708-137MG.
[39] Section 1: improving care and promoting health in populations[J]. Clin Diabetes, 2024, 42(2): 182. DOI: 10.2337/cd24-a001.
[40] DICKER D, SAGY Y W, RAMOT N, et al. Bariatric metabolic surgery vs glucagon-like peptide-1 receptor agonists and mortality[J]. JAMA Netw Open, 2024, 7(6): e2415392. DOI: 10.1001/jamanetworkopen.2024.15392.
[41] KOSIBOROD M N, PETRIE M C, BORLAUG B A, et al. Semaglutide in patients with obesity-related heart failure and type 2 diabetes[J]. N Engl J Med, 2024, 390(15): 1394-1407. DOI: 10.1056/NEJMoa2313917.
[42] RYAN D H, LINGVAY I, DEANFIELD J, et al. Long-term weight loss effects of semaglutide in obesity without diabetes in the SELECT trial[J]. Nat Med, 2024, 30(7): 2049-2057. DOI: 10.1038/s41591-024-02996-7.
[43] MARIAM Z, NIAZI S K. Glucagon-like peptide agonists: a prospective review[J]. Endocrinol Diabetes Metab, 2024,
7(1): e462. DOI: 10.1002/edm2.462.
[44] FRíAS J P, DAVIES M J, ROSENSTOCK J, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes[J]. N Engl J Med, 2021, 385(6): 503-515. DOI: 10.1056/NEJMoa2107519.
[45] MüLLER T D, FINAN B, BLOOM S R, et al. Glucagon-like peptide 1 (GLP-1)[J]. Mol Metab, 2019, 30: 72-130. DOI: 10.1016/j.molmet.2019.09.010.
[46] ZHANG Y, QU Z, LU T, et al. Effects of a dulaglutide plus calorie-restricted diet versus a calorie-restricted diet on visceral fat and metabolic profiles in women with polycystic ovary syndrome: a randomized controlled trial[J]. Nutrients, 2023, 15(3): 556. DOI: 10.3390/nu15030556.
[47] O’BRIEN P E, HINDLE A, BRENNAN L, et al. Long-term outcomes after bariatric surgery: a systematic review and meta-analysis of weight loss at 10 or more years for all bariatric procedures and a single-centre review of 20-year outcomes after adjustable gastric banding[J]. Obes Surg, 2019, 29(1): 3-14. DOI: 10.1007/s11695-018-3525-0.
[48] CULLEN A J, BARNETT A, KOMESAROFF P A, et al. A qualitative study of overweight and obese Australians’ views of food addiction[J]. Appetite, 2017, 115: 62-70. DOI: 10.1016/j.appet.2017.02.013.
[49] 牟連偉, 王雅榕, 嚴夢思, 等.食物成癮及其神經環路調控機制[J]. 生物化學與生物物理進展, 2024, 51(4): 881-889. DOI: 10.16476/j.pibb.2023.0237.
MOU L W, WANG Y R, YAN M S, et al. Food addiction and its neural circuit regulation mechanism [J]. Adv Biochem Biophy, 2024, 51 (4): 881-889. DOI:10.16476/j.pibb.2023.0237.
[50] BERRIDGE K C, HO C Y, RICHARD J M, et al. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders[J]. Brain Res, 2010, 1350: 43-64. DOI: 10.1016/j.brainres.2010.04.003.
[51] 文松, 蕭文澤, 金建蘭, 等. 胰升糖素樣肽1通過特定腦神經核團調節食欲[J]. 中華內分泌代謝雜志, 2018, 34(2): 174-180. DOI: 10.3760/cma.j.issn.1000-6699.2018.02.019.
WEN S, XIAO W Z, JIN J L, et al. Glucagon like peptide-1 regulates appetite via specific nuclei in the central nervous system[J]. Chin J Endoc Metabol, 2018, 34(2): 174-180. DOI: 10.3760/cma.j.issn.1000-6699.2018.02.019.
[52] O’KEEFE J H, FRANCO W G, O’KEEFE E L. Anti-consumption agents: tirzepatide and semaglutide for treating obesity-related diseases and addictions, and improving life expectancy[J]. Prog Cardiovasc Dis, 2024: S0033-620(24)00179-8. DOI: 10.1016/j.pcad.2024.12.010.
[53] SHEVCHOUK O T, TUFVESSON-ALM M, JERLHAG E. An overview of appetite-regulatory peptides in addiction processes; from bench to bed side[J]. Front Neurosci, 2021, 15: 774050. DOI: 10.3389/fnins.2021.774050.
[54] NICOLAU J, TAMAYO M I, SANCHíS P, et al. Short-term effects of semaglutide among patients with obesity with and without food addiction: an observational study[J]. J Addict Dis, 2024, 42(4): 535-543. DOI: 10.1080/10550887.2024.2315365.
[55] SCHULTE E M, GRILO C M, GEARHARDT A N. Shared and unique mechanisms underlying binge eating disorder and addictive disorders[J]. Clin Psychol Rev, 2016, 44: 125-139. DOI: 10.1016/j.cpr.2016.02.001.
[56] WHITE M A, WHISENHUNT B L, WILLIAMSON D A, et al. Development and validation of the food-craving inventory[J]. Obes Res, 2002, 10(2): 107-114. DOI: 10.1038/oby.2002.17.
[57] NAESSéN S, CARLSTR?M K, HOLST J J, et al. Women with bulimia nervosa exhibit attenuated secretion of glucagon-like peptide 1, pancreatic polypeptide, and insulin in response to a meal[J]. Am J Clin Nutr, 2011, 94(4): 967-972. DOI: 10.3945/ajcn.111.014837.
[58] DA PORTO A, CASARSA V, COLUSSI G, et al. Dulaglutide reduces binge episodes in type 2 diabetic patients with binge eating disorder: a pilot study[J]. Diabetes Metab Syndr, 2020, 14(4): 289-292. DOI: 10.1016/j.dsx.2020.03.009.
[59] GORGOJO-MARTíNEZ J J, MEZQUITA-RAYA P, CARRETERO-GóMEZ J, et al. Clinical recommendations to manage gastrointestinal adverse events in patients treated with glp-1 receptor agonists: a multidisciplinary expert consensus[J]. J Clin Med, 2022, 12(1): 145. DOI: 10.3390/jcm12010145.
[60] SMITS M M, Van RAALTE D H. Safety of semaglutide[J]. Front Endocrinol (Lausanne), 2021, 12: 645563. DOI: 10.3389/fendo.2021.645563.
[61] YANG Q, WANG J, WANG M, et al. Stratified analysis of the association between anti-obesity medications and digestive adverse events: a real-world study based on the FDA adverse event reporting system database[J]. BMC Pharmacol Toxicol, 2024, 25(1): 64. DOI: 10.1186/s40360-024-00789-9.
[62] NIU K, FAN M, GAO W, et al. Adverse events in different administration routes of semaglutide: a pharmacovigilance study based on the FDA adverse event reporting system[J]. Front Pharmacol, 2024, 15: 1414268. DOI: 10.3389/fphar.
2024.1414268.
[63] DANKNER R, MURAD H, AGAY N, et al. Glucagon-like peptide-1 receptor agonists and pancreatic cancer risk in patients with type 2 diabetes[J]. JAMA Netw Open, 2024, 7(1): e2350408. DOI: 10.1001/jamanetworkopen.2023.50408.
[64] RENTZEPERI E, PEGIOU S, KOUFAKIS T, et al. Sex differences in response to treatment with glucagon-like peptide 1 receptor agonists: opportunities for a tailored approach to diabetes and obesity care[J]. J Pers Med, 2022, 12(3): 454. DOI: 10.3390/jpm12030454.
(責任編輯:林燕薇)