中圖分類號:Q503.23;TE99 文獻標志碼:A
Abstract:Direct extractionofdeoxyribonucleic acid(DNA)from petroleum is the most fundamentaland most important step foranalyses of its microbial communityanddiversity.The spincolumn based extraction method(SE)and the magnetisable solid phase extraction method(ME)were used toobtainthetotal DNAof microbial genomeof12 petroleumsamples,respectively.Andtheirdiferenceof microbialdiversityandcommunitywereanalyzedfurther more through Illumina highthroughput sequences. The results show that the DNA mass concentration and purity( A260/A280 ratio)are 20.17±31.83 ng/μL and (2 1.01±0.63 of SE ,and 11.14±17.27ng/μL and 1.29±0.20 of ME,respectively. SE detects 30 phyla and 507 genera, while ME detects 38 phyla and 677 genera,in which the relative content of unclassified and uncultured genera are 1 .12% (20 and 0.20% (SE), 1.24% and 1.10% (ME),respectively. Unique genera are detected by both methods (SE:65 genera and ME:235 genera).SEdetects reservoir microorganismssuch as Geobacter,andME detectssuspected reservoir microorganisms such as Xanthobacter.Both methods have advantagesand disadvantages in petroleum DNA extraction. SE has a higherextraction massconcentrationandbetterresponse tooilreservoir microorganisms.MEhasaslightly strongerabilityto detect microbial diversity in petroleum,but both methods have strong detection bias at the taxonomic level.
Keywords : DNA extraction;spincolumn based extraction method;magnetisable solid phase extraction method; microbial diversity ;microbial community
油藏中蘊含了豐富的微生物資源[14],目前研究油藏微生物多樣性主要是培養[5-6]和非培養[7-9]方法,但迄今環境中可培養的微生物資源不足1%[10] ,而非培養方法優勢在于樣本的直接檢測更為快速、靈敏,豐富了油藏微生物群落結構和多樣性等特征[1-I2],其首要問題是核酸提取[4,7-8],原油具有黏稠、濃黑、生物量低和試劑可及性差等特點,這使得提取原油總DNA較為困難[13],基于傳統柱式法(SE)的改進已出現為數不多適用于原油微生物總DNA的提取方法[14-16],但不同核酸提取方法獲取DNA純度和質量濃度的差異將直接影響測序分析的靈敏度[17-18]和特異性[18-19]。核酸提取方法的分類主要基于純化方式,柱式法和磁珠法(ME)是核酸提取最為常用的兩類純化方法[18],迄今尚未有相關報道評價它們對原油樣本的適用性。筆者通過比較這兩類方法對同批次原油微生物檢出結果的差異以評價兩方法對原油樣本的適用性和偏向性。
1 材料與方法
1. 1 材料
從某油田長6層位12口不同的油井采集不同的輕質原油樣本,于 4°C 冰盒中保存并迅速轉移至實驗室。實驗試劑耗材若無特別說明,均為市售分析純,經無菌處理使用[1]
1.2 實驗方法
1.2.1原油樣本基因組DNA的提取和驗證分別使用土壤基因組DNA提取試劑盒(DP336,天根生化科技(北京)有限公司,中國)和FineMag磁珠法通用型基因組DNA提取試劑盒(M202,濟凡生物科技(北京)有限公司,中國)對12份原油樣本進行平行基因組DNA提取,其中土壤基因組DNA提取試劑盒按說明書進行人工提取,FineMag磁珠法搭配該公司的核酸自動提取儀和適配的耗材進行提取,兩方法提取過程嚴格按照對應說明書的要求進行。使用超微量分光光度計(Nanodrop2000,賽默飛世爾科技有限公司,美國)檢測提取產物的純度和質量濃度。
1.2.2 高通量測序
聚合酶鏈式反應使用覆蓋細菌16SrRNA基因V3-V4區引物 338F ( 5′ -ACTCCTACGGGAGGCAG-CA-3′ 和806R( 5′ -GGACTACHVGGGTWTCTAAT-3′ )[20],擴增程序為 95°C 預變性 5min ;之后 95°C 30s,54%90s,72%90s/45; s,共26個循環;最后72C 延伸 8min 。擴增產物經 1% 的瓊脂糖凝膠電泳反應后切膠回收(DP219,天根生化科技(北京)有限公司,中國),由北京新科開源基因科技有限公司進行因美納(Ilumina)高通量建庫和測序[421]。
2結果分析
2.1 結果
2.1.1 原油基因組總DNA提取結果
SE 檢測12原油樣本的總DNA 純度(A260/A280 ,其中A為吸光度)主要分布在 0~1.67 之間,平均純度為 1.01±0.63 ,質量濃度分布范圍在 0~109. 39 ng/μL ,平均質量濃度為 20.17±31.83ng/μL ; ME檢測的純度范圍為 1.10~1.84 ,平均純度為 1.29± 0.20,質量濃度分布范圍為 0.90~52.20ng/μL ,平均質量濃度為 11.14±17.27ng/μL (圖1)。
2.1.2 柱式法和磁珠法檢出的菌群多樣性
稀釋曲線描述了SE和ME處理原油樣本時檢出的微生物DNA樣本多樣性,柱式法和磁珠法檢出原油微生物的OTU(分類操作單元)稀釋曲線見圖2??梢钥闯?,當測序深度約為10000時,兩法對應的曲線均趨于平臺期,且操作分類單元數目 nOTU (SE) ort(ME) 。
圖1柱式法和磁珠法提取原油樣本基因組總DNA的純度和質量濃度Fig.1 Purity and mass concentration of genomic DNA of petroleum samplesextracted bySE and ME

柱式法和磁珠法檢出的阿爾法多樣性結果見表1。可以看出,ME和SE的趙1(Chao1)、豐富度(richness)、辛普遜(Simpson)和香農(Shannon)等4種不同的阿爾法多樣性指數均顯示noTu(SE)
表1柱式法和磁珠法檢出的阿爾法多樣性
Table1Alpha diversity detected by SE and ME

圖2柱式法和磁珠法檢出原油微生物的OTU稀釋曲線 Fig.2 OTU dilution curves of petroleum microorganisms detectedbySEandME

2.1.3柱式法和磁珠法檢出的菌群結構
基于 97% 相似度的分類水平,注釋到1505個細菌和古菌的分類操作單元(0TU),有效序列1140006條,共分為40門和742屬。其中,SE 注釋到890 個OTU,有效序列507363條;ME為1335個,632643條。
SE 和ME分別檢出30門和38門,其中共有門30門,ME專有8門;SE和ME分別檢出507屬和677屬,其中共有屬442屬,SE專有65屬,ME專有235屬(圖3)。SE檢出的未分類屬和未培養屬分別為39屬和41屬,ME為57屬和53屬(圖3)。圖3中,在門分類水平上本方法有檢出,另一方法無檢出;在屬分類水平上本方法有檢出,另一方法無檢出。
圖3柱式法和磁珠法對原油微生物檢出的多樣性在門和屬水平的比較
Fig.3Comparison of microbial diversity detected in petroleum by SE and ME at phylumand genus level

門分類水平上,ME相對于SE多檢出的8門分別為納古菌門(Nanoarchaeota)、NB1-j、廣古菌門(Euryarchaeota)GAL15、候選_甲基奇麗菌門(Meth-ylomirabilota)、鹵桿菌門(Halobacterota)糞熱桿菌門(Coprothermobacterota)和熱液菌門(Hydrother-mae)。兩種方法具有相同的的優勢菌門,均為假單胞菌門(Pseudomonadota)、彎曲桿菌門(Campy-lobacterota)厚壁菌門(Firmicutes)、放線菌門(Acti-nobacteriota)和桿狀菌門(Bacteroidota)等,其中主要優勢門均為假單胞菌門(SE相對含量為 69.6% ,ME為 61.1% )(圖4)。圖4中柱式法從下到上不同顏色順序表示菌門相對含量由高至低,此順序對應的(兩列)圖例順序為從下到上、從左到右,磁珠法相對含量排序同柱式法。

屬分類水平上,假單胞菌屬(Pseudomonas,SE相對含量為 51.4% ,ME為 19.7% )和軟體桿菌屬(Malaciobacter,SE相對含量為 20.3% ,ME 為15.0% )是兩法共同的主要菌屬,也是共同的優勢菌屬,SE的其余菌屬相對含量均不足 5.0% ,而ME相對含量超出 5.0% 的還有玫瑰變菌屬(Roseovarius,7.7% )、竿菌屬 (Bacillus,7.0%) )、不運桿菌屬(Acin-etobacter, 6.2% )和淖單胞菌屬(Pelomonas, 5.9% )(圖5)。其他屬中,SE檢出未分類和未培養屬的相對含量分別為 1.12% 和 0.20% ,ME的分別為1.24% 和 1.10% 。圖5中柱式法從下到上不同顏色順序表示菌屬相對含量由高至低,此順序對應圖例順序為從下到上,磁珠法相對含量排序同柱式法
SE檢出的65屬專有菌屬中,檢出率較高的菌屬(由高到低)依次為地桿菌屬( 100% )、莫拉姓菌科屬 (91.7% )異海源菌屬( 83.3% )、硫小螺體屬( 83.3% )、諾卡氏菌屬 (75.0% 、葉小桿菌屬( 75% )、醋微菌屬( 66.7% )等;在ME檢出的235屬專有屬中,檢出率較高的菌屬依次為潘濃桿菌屬L (91.7% )、活膠菌屬( 91.7% )、氮小螺體屬( 75% )、黃桿菌屬( 75% )、間孢囊菌科_未分類( 66.7% )、洋竿菌屬( 66.7% )、玫假單胞菌屬( 66.7% )、糖單胞菌目屬( (66.7% 等(表2)
圖5柱式法和磁珠法檢出原油菌群屬水平相對含量 Fig.5Relative content of genus classification level in petroleumdetectedbySEandME

2.2 討論
SE和ME代表方法及其對原油DNA純度(A260/A280) )、質量濃度的檢出差異。純度方面,ME1 (1.29±0.20) 檢測值大于
,雖然兩方法檢測值均低于正常檢出水平,這可能與輕質原油低密度相關[40],但ME更高的純度值和更小的相對誤差,可能得益于其標準化程序和更少的人為誤差;質量濃度方面,SE 檢測值( 20. 17±31. 83ng/ μL )高于ME(11.
)。基于SE和ME兩方法的純度分析,可能無法直接判斷出其對核酸物質的捕獲能力強弱,但較低的相對誤差或說明ME的檢測穩定性優于SE。
SE和ME檢出的原油微生物菌群多樣性差異阿爾法多樣性揭示了SE和ME 檢出的原油微生物種群及群落內物種的豐富度、多樣性及差異[41]。其中,ME的4種指數均高于SE,表明ME檢出原油微生物的物種豐富度、物種數量、均勻度和多樣性等均高于SE。
SE和ME檢出的原油微生物菌群結構。門分類水平上,ME檢出的38門包含了SE的30門,并多檢出8門,這可能是ME對微生物核酸捕獲能力更強的直接證明;屬分類水平上,SE和ME分別檢出507屬和677屬,其中,共有442屬,SE專有65屬(約占SE檢出屬總數的 12.8% ),ME專有235屬(約占ME檢出屬總數的 34.7% ),但值得一提的是,SE的檢出屬中假單胞菌屬(OTU有效序列260742條)以 51.4% 的相對含量遠高于其它菌屬,而在ME中該屬(OTU有效序列124315條)僅為19.7% ,所以從檢出菌群的門和屬結構看,ME對原油微生物總菌群呈現出更高的覆蓋度,而SE則表現出更強的專性檢出。但另一方面,SE仍檢出了數量不低的專有屬,也表明該SE并非僅是具備更高檢出限,也表現出一定的專有響應,因而在原油微生物的檢測方面,ME和SE各有優勢。而對于樣本中含量較低的其它類菌屬,其中的未分類和未培養屬在SE中檢出的相對含量( 1.12% 和 0.20% )略低于自動化程度高的ME( 1.24% 和 1.10% )。從兩方法檢出的專有屬看,在SE檢出的65屬專有屬中,地桿菌屬和硫小螺體屬作為常見的油藏采出液微生物,其高檢出率(分別為 100% 和 83.3% )證明了SE對油藏原位微生物檢出的準確性,其它菌屬雖然不是常見的油藏源微生物(表2),但一定程度上能代表油藏地層或土壤中的本源微生物,它們在本研究涉及的原油中均出現較高檢出率,或表明SE對油藏地層中本源微生物具有較強的響應能力;在ME檢出的235屬專有屬中,活膠菌屬、黃桿菌屬和氮小螺體屬已有過在油藏采出液中檢出的報道且在本研究中有較高的檢出率,而其他菌屬均為與原油污染相關的土壤修復功能菌屬(表2),可說明此法對油藏地層微生物也具有良好的響應。從兩法在屬分類水平上的差異性檢出看,ME和SE均具備各自獨有的偏向性,也反映了兩法對原油中微生物的檢測靈敏度不足,單一微生物總DNA提取方法不足以全面檢出或覆蓋已知的油藏微生物,易造成整體上生物信息數據的缺失。
表2柱式法和磁珠法具有高檢出率的專有屬及其生境來源
Table 2Unique genera with high detection rate detected by SE and ME,and habitat sources of these genera

注:a.使用醇類化學試劑沉淀核酸的純化方法,屬于更早期的DNA提取方法;b.從樣本中分離、純化培養以獲得純菌株。
3結束語
絕大多數油藏微生物多樣性的報道多為基于油井采出液,筆者首次在油藏微生物領域比較SE和ME直接對原油微生物DNA提取的適用性,進一步揭示了兩類主流核酸提取方法的應用前景。本研究中對同一批的12個原油樣本使用SE和ME兩種方法提取核酸并進行了質量檢測及菌群多樣性分析,結果表明兩方法對部分微生物存在專有的響應性,SE提取質量濃度更高并對油藏微生物有更好響應,ME靈敏度更高、穩定性更強并對微生物群落結構
和多樣性有更好的響應。
致謝感謝濟凡生物科技(北京)有限公司提供的核酸提取試劑盒及自動化核酸提取儀(包含全套耗材),并分配專業的實驗員提供客觀和可靠的實驗數據。
參考文獻:
[1] 穆紅梅,萬云洋.稠油藏不同開發方式地層水微生物 群落功能多樣性[J].生物資源,2018,40(2):120-129. MU Hongmei,WAN Yunyang. Functional diversity on microbial communities in formation water with different exploitation methods in heavy oil reservoirs[J].Biotic
生物資源專業委員會,2014:12-14.
[3]MARK P,LISA K,HUBERT M,et al. Oil reservoirs, an exceptional habitat for microorganisms[J].New Biotechnology,2019,49:1-9.
[4]TIANY,WAN YY,MU H M,et al. Microbial diversity in high-temperature heavy oil reservoirs[J]. Geomicrobiology Journal,2020,37(1) :59-66.
[5]田燕,萬云洋,孫午陽,等.高效石油降解菌的篩選及 穩定性[J].中國石油大學學報(自然科學版),2018, 42(5) :126-134. TIAN Yan, WAN Yunyang, SUN Wuyang,et al. Screening and stability of high efficiency oil-degradation microorganisms[J]. Journal of China University of Petroleum (Edition of Natural Science),2018,42(5) :126-134.
[6]WAN Y Y,LUO N, LIU X L,et al. Cupidesulfovibrio liaohensis gen nov, sp nov,a novel sulphate-reducing bacterium isolated from an oil reservoir and reclassification of Desulfovibrio oxamicus and Desulfovibrio termitidis as Cu pidesulfovibrio oxamicus comb nov and Cupidesulfovibrio termitidis comb nov[J]. International Journal of Systematic and Evolutionary Microbiology,2021,71(2) :004618.
[7]熊駟駿,萬云洋,穆紅梅,等.基于自主核酸提取方法 分析單油井采出液微生物[J].油氣田環境保護, 2022,32(2) :16-22. XIONG Sijun, WAN Yunyang,MU Hongmei,et al. Analyses of oil-water microorganisms in an exploiting sigle well based on home-made DNA extraction method[J]. Environmental Protection of Oil amp; Gas Fields,2022,32 (2) :16-22.
[8]ZHANG F,SHE Y,CHAI L,et al. Microbial diversity in long-term water-flooded oil reservoirs with diferent in situ temperatures in China[J]. Scientific Reports,2012, 2(1) :1-10.
[9]MU HM,WAN YY,WUB C,et al. A rapid change in microbial communities of the shale gas drilling fluid from 3548 m depth to the above- ground storage tank[J]. Science of the Total Environment,2021,784:147009.
[10]KAEBERLEIN T,LEWIS K, EPSTEIN S S. Isolating \" uncultivable\" microorganisms in pure culture in a simulated natural environment[J]. Science,2002,296 (5570) :1127-1129.
[11]萬云洋,董海良.環境地質微生物學實驗指導[M]. 北京:石油工業出版社,2014:185-187.
[12]董海良,蔣宏忱.地質微生物學[M].北京:高等教育 [C].北京:中國化學會,2014:1.
[14]WANG L Y,KE W J,SUN XB,et al. Comparison of bacterial community in aqueous and oil phases of waterflooded petroleum reservoirs using pyrosequencing and clone library approaches[J]. Applied Microbiology and Biotechnology,2014,98(9) :4209-4221.
[15]萬云洋,穆紅梅,洪寧,等.提取原油總脫氧核糖核酸 的方法及試劑盒:ZL 201710116846.5[P].2019- 08-13.
[16]萬云洋,穆紅梅,熊駟駿,等.提取稠油基因組脫氧核 糖核酸的方法及試劑盒和應用:ZL 201980096695.9 [P].2024-01-19.
[17]GUO F,ZHANG T. Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing[J].Applied Microbiology and Biotechnology, 2013,97(10) :4607-4616.
[18]EMAUS M N,VARONA M,EITZMANN D R, et al. Nucleic acid extraction: fundamentals of sample preparation methodologies, current advancements,and future endeavors[J]. Trac Trends in Analytical Chemistry, 2020,130:115985.
[19]NAEGELE K,WEISSBACH F H,LEUZINGER K,et al. Impact of nucleic acid extraction procedures on human papillomavirus (HPV) detection and genotyping [J].JournalofMedicalVirology,2023,95 (2) :e28583.
[20] KLINDWORTH A,PRUESSE E, SCHWEER T,et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencingbased diversity studies[J]. Nucleic Acids Research, 2013,41(1) :e1.
[21]LIU Y,XU P P,YANG F Z,et al. Composition and diversity of endophytic bacterial community in seeds of super hybrid rice 'Shenliangyou 5814'(Oryza sativa L.) and its parental lines[J].Plant Growth Regulation, 2019,87(2) :257-266.
[22]穆紅梅.中國典型稠油藏微生物生物量和硫循環功 能研究[D].北京:中國石油大學(北京),2019. MU Hongmei. Study on microbial biomass and sulfur cycle function in typical heavy oil reservoirs in China[D]. Beijing : China University of Petroleum (Beijing),2019.
[23]SILVA TR,VERDELCL,NETO EV S,et al.Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields[J]. International Biodeterioration amp; Biodegradation,2013,81:57-70.
[24]BASIM Y,MOHEBALI G,JORFI S,et al.Bacterial strains diversity in contaminated soils and their potential for bioremediation of total petroleum hydrocarbons in south west of Iran[J]. Journal of Environmental Health Science and Engineering, 2022,20(2) :601-608.
[25]LAVERNTYEVA E,ERDYNEEVA EB,BANZARAKTSAEVA T G,et al. Prokaryotic diversity in the biotopes of the gudzhirganskoe saline lake( barguzin valley,Russia)[J].Microbiology,2020,89(3): 359-368.
[26]KODAMA Y,HA L T,WATANABE K. Sulfurospirillum cavolei sp nov,a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity[J]. International Journal of Systematic and Evolutionary Microbiology,2007,57(4) :827-831.
[27]SANTOS JC D,LOPES DRG,DA SILVA JD,et al. Diversity of sulfate-reducing prokaryotes in petroleum production water and oil samples[J]. International Biodeterioration amp; Biodegradation,2020,151:104966.
[28]WANG S J,WANG X. Bioremediation of petroleum contaminated soils collected all around China: the extensive application and the microbial mechanism[J]. Petroleum Science and Technology,2018,36(13): 974-980.
[29]MSADDAK A, MARS M, QUINONES M A, et al. Lupin,a unique legume that is nodulated by multiple microsymbionts: the role of horizontal gene transfer[J]. International Journal of Molecular Sciences,2023,24 (7) :6496.
[30]PRADEL N, FARDEAU M, BUNK B, et al. Aminithiophilus ramosus gen nov,sp nov, a sulphur-reducing bacterium isolated from a pyrite-forming enrichment culture, and taxonomic revision of the family Synergistaceae[J]. International Journal of Systematic and Evolutionary Microbiology,2023,73(2):005691.
[31]JINJN,SHI YH,ZHANG B Z,et al.Biotransformation of benzo[a] pyrene by Pannonibacter sp JPA3 and the degradation mechanism through the initially oxidized benzo[a]pyrene-4,5-dihydrodiol to downstream metabolites[J].Royal Society of Chemistry,2023,13(27): 18878-18887.
[32]ZHOU L,WU J,JI J H,et al. Characteristics of microbiota,core sulfate-reducing taxa and corrosion rates in production water from five petroleum reservoirs in China [J].Science of the Total Environment,2023, 858:159861.
[33]FARKAS M, TANCSICS A,KRISZT B,et al. Zo0gloea oleivorans sp nov,a floc-forming ,petroleum hydrocarbon-degrading bacterium isolated from biofilm[J]. International Journal of Systematic and Evolutionary Microbiology,2015,65(Pt1) :274-279.
[34] OJEDA-MORALES M E,DOMINGUEZ-DOMINGUEZ M,HERNANDEZ-RIVERA M A,et al. Biosurfactant production by strains of Azospirillum isolated from petroleum-contaminated sites[J].Water Air and Soil Pollution,2015,226(12) :401.
[35]GAO P K,TIAN H M,LI G Q,et al. Microbial diversity and abundance in the Xinjiang Luliang long-term water-flooding petroleum reservoir[J].Microbiologyopen,2015,4(2) :332-342.
[36]LUO S W,ZHEN Z,TENG T T,et al. New mechanisms of biochar-assisted vermicomposting by recognizing diferent active di-(2- ethylhexyl) phthalate(DEHP) degraders across pedosphere,charosphere and intestinal sphereJ].Journal of Hazardous Materials,2023, 458:131990.
[37]ZHU N,WANG J, WANG Y, et al. Diffrences in geological conditions have reshaped the structure and diversity of microbial communities in oily soils[J]. Environmental Pollution,2022,306:119404.
[38]NALVOTHULA R, CHALLA S, PEDDIREDDY V, et al.Isolation,molecular identification and amino acid profiling of single-cell-protein-producing phototrophic bacteria isolated from oil-contaminated soil samples[J]. Molecules,2022,27(19) :6265.
[39]CHEN WM,WANG F,ZENGL,et al. Bioremediation of petroleum-contaminated soil by semi-aerobic aged refuse biofilter:optimization and mechanism[J]. Journal of Cleaner Production,2021,294:125354.
[40]WAN Y Y,MU H M,LUO N,et al. Rapid accuracy determining DNA purity and concentration in heavy oils by spectrophotometry methods[J]. Petroleum Science, 2023,20(6) :3394-3399.
[41]萬云洋,董海良.油氣田微生物學實驗研究方法 [M].北京:石油工業出版社,2023:208-212. (纻輯劉為清)