999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

不同發育時期桑葚中質地和木質素變化規律及其轉錄組分析

2025-09-05 00:00:00王彬彬代祥龍杜凱群沈子馨王暉高妍夏
果樹學報 2025年8期

圖分類號:S663.2 文獻標志碼:A 文章編號:1009-9980(2025)08-1744-1

Abstract: 【Objective】 Mulberry (Fructus mori),as a typical climacteric fruit, has been extensively studied in areas such as health product development, fruit wine fermentation,analysis of nutritional indicators,identification of aroma components,and postharvest preservation. With the advancement and cost reduction of high-throughput sequencing technologies,transcriptomics and metabolomics have been applied to explore the molecular mechanisms of mulberry ripening and softening. However, there are no reports on the correlation between texture,lignin,and key genes in related pathways during the ripening process of the berry. This study aimed to investigate the changes in texture, lignin,and other indicators during mulberry ripening and softening,analyze transcriptomic data,and identifykey factors influencing the ripening and softening process of the berry. 【Methods】The new mulberry variety Anshen was used as the test material.The beries were collected at three developmental stages: 2O days after flowering (MGF),35 days after flowering (MRF),and 45 days after flowering (MBF).The texture indicators (hardness,adhesiveness,cohesiveness, elasticity, gumminess,and chewiness) were measured usinga texture analyzer,lignin content was determined using the concentrated sulfuric acid method,and transcriptome sequencing was performed. The QRT-PCR experiments were conducted, and redundancy analysis (RDA) was used to analyze the correlation between lignin, berry texture,and lignin biosynthesis-related genes,as wellas to evaluate the relationships among various factors.【Results】As the berries ripened and softened, their hardness gradually decreased, ranging from 3.00 to 50.64N ,while elasticity gradually increased, ranging from 1.86 to 4.41mm . The gumminess and chewiness gradually decreased, with no significant diffrence in chewiness between the green berry and red berry stages, but both were 4.19 times and 3.41 times higher,respectively, than those at the black berry stage,showing significant differences compared with the black fruit stage. The cohesiveness showed no significant change. The adhesiveness showed no significant difference between the green berry and red berry stages,but significant differences were observed among other developmental stages.The lignin content decreased significantly. The transcriptome sequencing identified 51 895 Unigenes,of them 35 395 were successfullyannotated in databases such as the GO,KEGG,KOG,NR,NTand SwissProt.A totalof 10 207 diffrentially expressed genes were identified, with more upregulated genes than downregulated ones.The KEGG pathway enrichment analysis revealed that the lignin biosynthesis pathway contained 45 differentially expressed genes, classified into three expression pattrns: gradually upregulated (2 genes),upregulated first and then downregulated (19 genes),and gradually downregulated (24 genes). The third expression pattern was consistent with the trends in lignin content and texture quality indicators.The twenty-four differentially expressed genes were identified in the lignin biosynthesis pathway, and 10 were randomly selected for qRT-PCR experiments, confirming the reliability of the sequencing results.The redundancy analysis showed that lignin content had the highest positive correlation with fruit chewiness,folowed by gumminess and hardness, with lignin contributing similarly to all three.The lignin content showed the smallest negative correlation with the berry adhesiveness,followed by the elasticity and cohesiveness. The CCR had the greatest influence on the lignin synthesis,followed by the CCoAOMT1, CCoAOMT2,PAL3, C3H and 4CL2,allof them positively contributed to the lignin synthesis.The 4CL2 had the greatest influence on berry hardness and gumminess,followed by the POD13, CCoAOMT1, CCoAOMT2, PAL3, C3H. CAD2 and POD12 negatively contributed to changes in berry hardness, gumminess and chewines, while the CAD2 positively contributed to changes in berry cohesiveness,adhesiveness and Springiness,followed by the CAD1,POD12 and POD15. The RDA results were consistent with the aforementioned gene expression paterns,confirming the reliability of the findings. 【Conclusion】 Based on the physiological indicators and transcriptomic data,it was inferred that the key genes in the lignin biosynthesis pathway,such as the PAL, C4H, 4CL,CCR,POD and CCoAOMT, would regulate lignin synthesis and participate in the ripening and softening process of the berries.These findings would provide theoretical references for improving mulberry ripening, preservation,and flavor.

Keywords:Mulberry;Transcriptome; Fruit softening;Lignin

質地作為衡量果實品質的一個重要因素,不僅影響果實口感和消費者選擇,而且對后期果實貯藏和運輸有較大影響,決定果樹產業的發展。引起果實質地變化的外部因素主要有溫度、機械傷害、光照等,內部因素主要有基因、酶、轉錄因子、激素等。果實的質地變化通常表現為軟化、硬化、糊狀、粉狀和脆性等,軟化是成熟新鮮果實最顯著且不可逆轉的特征之一,也有一些果實如蕃木瓜、枇杷和梨等在收獲后質地硬化。果實組織的滲透狀態和細胞壁結構重塑可能是質地變化的主要原因,質地變化過程涉及多種細胞壁降解酶、修飾酶的活性變化[2。桃果實采后成熟過程中多聚半乳糖醛酸酶(PG)活性升高,且PG活性越高,軟化越快3;忙果的軟化過程中伴隨著細胞壁果膠酶(PE)活性的持續升高,說明PE在控制忙果軟化過程中起主要作用。木聚糖酶基因與草莓果實軟化相關,其在木瓜成熟和軟化過程中起主要作用。植物激素乙烯抑制獼猴桃Ade-miR164及其前體miRNA(Ade-MIR164b)的表達,且轉錄因子AdNAC6、AdNAC7(均為miR164的預測靶標)表達量升高,AdNAC6和AdNAC7蛋白作為轉錄激活因子,并與乙烯合成酶基因的啟動子結合;ABA則通過調控乙烯合成酶和信號蛋白基因(ACS1、ACO1、ETR2、ERF2)的表達,進而影響忙果、桃果實成熟與軟化進程[48]。果實質地變化受多基因協同調控,分別沉默細胞壁修飾基因如SIPG2a、SIPME2、SITBG4、SICEL2、SIEXP1,番茄果實質地只有輕微或無變化;而同時沉默SIPG2a、SL-EXP1基因,其果實在整個成熟期顯著變硬。

果實質地與木質素含量之間存在較強的關聯性。對于大多數果實來說,木質素含量會隨著果實成熟軟化逐漸降低,脅迫狀態下則會導致木質素含量升高。光氧化脅迫與高溫協同作用,刺激蘋果果實引發多種防御機制,導致木質素含量升高、組織的生理生化和形態改變,形成高硬度果肉[。木質素生物合成涉及一系列限速酶、關鍵酶,包括PAL、COMT、4CL、CAD、CCR和POD等,CCR是木質素單體形成的關鍵酶,II類POD在木質素的聚合化過程中起著重要作用[12]。轉錄因子通過調控木質素合成重要基因的功能,促進或抑制木質素合成,改變果實質地[13]。楊樹ERF139抑制維管束射線形成和加快木質素積累,次生細胞壁合成、鹽和干旱脅迫響應基因是其潛在靶基因[14]。PbrMYB4通過結合啟動子區域的AC-I元件激活Pbr4CL1基因表達,顯著提高梨果實木質素含量且木質部和木纖維細胞壁增厚,沉默該基因則降低木質素含量[15]。葡萄VibZIP14轉錄因子與VICOMT基因啟動子區域的G-box結合,直接激活該基因表達,參與木質素合成。

桑葚作為一種呼吸躍變型水果,在成熟后期,果實質地發生劇烈變化,表現為口感軟化且伴隨著果色、黃酮類物質含量的改變。截至目前,關于桑葚的研究大多數聚焦于成分分析、發酵、采后貯藏等方面,未見其質地、木質素變化及影響二者的分子機制報道。結合其他果實研究成果,推測木質素參與桑葚成熟過程中的質地變化,較多木質素不利于桑甚口感的形成。高通量測序具有成本低、數據量大等優點,有助于揭示果實質地變化的潛在分子機制。轉錄組測序結果表明,不同品種西瓜間的質地差異可能主要與果膠、纖維素、半纖維素有關,另外激素、轉錄因子、過氧化物酶等相關基因也可能參與質地變化進程。基于轉錄組的加權基因共表達網絡分析發現,PAL、HCT、4CL2、C4H等11個基因是柚子果實汁胞粒化過程中最顯著的差異表達基因[1;不同質地的刺梨與柑橘果實轉錄組測序數據均鑒定到木質素合成通路基因[19-20]。筆者在本研究中以3個不同發育階段的桑甚為試驗材料,通過測定果實的質地變化及木質素含量,結合轉錄組測序鑒定的差異表達基因,分析桑葚果實質地變化的生理與潛在的分子機制,為解析桑葚成熟過程中的質地軟化機制提供參考。

1 材料和方法

1.1材料

果桑品種為安葚,桑樹種植于承德醫學院蠶桑科技園。2018年6一7月收集桑葚,分別于開花后20 d(綠果期,MulberryGreenFruits,MGF)、35d(紅果期,MulberryRedFruits,MRF)、45d(黑果期,八至九成熟,MulberryBlackFruits,MBF)采集大小一致、無病蟲害果實(圖1),每個時期取3個生物學重復,每個重復采集30個果實,清理表面后迅速投入液氮中,于 -80°C 保存。轉錄組測序工作由北京康普森生物公司完成。

1.2果實質地及木質素含量的測定

果實質地特性指標(硬度、黏附性、內聚性、彈性、膠黏性、咀嚼性)用裝有直徑 5mm 探頭的質構儀(TMS-PRO,美國FTC公司)測定[I;木質素采用濃硫酸法測定[22]。

1.3總RNA提取、文庫制備及轉錄組測序

使用RNAprepPurePlantKit(天根,北京)提取桑葚的總RNA,同時利用Nano Drop 和Agilent 2100評估其純度、濃度和完整性。提取總RNA后,用帶有Oligo(dT)的磁珠富集真核生物mRNA,隨后使用PrimeScriptTMIIFirstcDNA合成試劑盒(TaKa-Ra,美國)合成第一鏈cDNA,并使用隨機引物合成第二條cDNA鏈,然后經過QiaQuickPCR試劑盒純化之后做末端修復并連接測序接頭,在IlluminaHiSeq2500上測序。對獲得的數據經過質控過濾,得到cleanreads,將cleanreads從頭組裝成Unigene。

1.4桑葚轉錄組木質素合成相關基因的表達分析

使用RSEM(v.1.3.0)軟件將基因表達歸一化為RPKM值,采用DEseq(v1.20.0)軟件以 log2 (Fold-Change) amp; Padj?0.05 為標準,對Unigene表達進行差異分析,篩選出顯著差異表達的基因(DEGs)。通過對差異基因KEGG代謝通路途徑的分析,篩選與木質素合成代謝途徑相關的基因,利用TBtools軟件繪制熱圖。

圖1桑葚果實不同成熟時期

Fig.1Thedifferentdevelopmentphasesofmulberryfruits

1.5 qRT-PCR驗證

選擇木質素合成通路中的10個基因(C4H2、C4H7、PAL1、PAL3、4CL2、POD2、POD6、POD14、CCR1、CCoAOMT2),以桑樹Ribosomal proteinL15為內參基因,使用PrimerPremier5.0軟件設計特異性引物(表1)。每個反應體系為 10μL ,包含SYBRGreenMasterMix 5μL 、正、反向引物各 0.2μL ,cD-NA 0.5μL , ddH2O 4.1μL 。擴增反應用熒光定量PCR儀(伯樂CFX96,美國)進行,擴增條件如下:95°C1min,95°C10s,50°C30s ,循環40次,熔解曲線采用儀器默認程序收集。每個樣品3次生物學重復,3次技術重復,使用 2-ΔΔCt 方法進行相對定量計算。差異顯著性分析使用IBMSPSS23.0軟件 (Plt; 0.05)。

1.6木質素與果實質地相關性分析

冗余分析(RDA)使用CANOCO5.0軟件完成。

2 結果與分析

2.1不同成熟期桑葚木質素含量及質地的變化

對綠果期(MGF)、紅果期(MRF)和黑果期(MBF)3個時期桑葚的木質素含量及質地進行比較。結果(表2)表明,桑葚木質素含量從綠果期至黑果期顯著降低,其中綠果期的木質素含量是黑果期的3倍。桑葚硬度隨著果實成熟呈逐漸下降趨勢,各發育時期差異顯著,綠果期硬度分別為紅果期和黑果期的1.85倍和7.70倍。桑甚彈性隨果實成熟度增加逐漸升高,各發育時期之間差異顯著。膠黏性和咀嚼性均隨著果實成熟而逐漸下降,變化規律與果實木質素含量和硬度趨勢一致,其中果實咀嚼性從綠果期到紅果期無顯著差異,分別是黑果期的4.19倍和3.41倍,均與黑果期差異顯著。果實的黏附性在綠果期和紅果期無顯著差異,其他發育時期之間差異顯著。果實的內聚性隨著果實的成熟沒有顯著變化。

表1用于qRT-PCR驗證的引物序列 Table1 Primersequencesof qRT-PCR

表2不同成熟期桑葚果實質地特征參數比較Table 2 Comparison of texture parameters detected from mulberry during different development phases

注:不同小寫字母表示差異顯著 ?lt;0.05. 。Note:Different smallletters significant differenceat Plt;0.05

2.2桑葚轉錄組測序數據分析

對3個不同時期桑甚樣品進行高通量轉錄組測序(表3),共獲得73.39Gbcleandate,每個樣品平均cleandate為 8.16Gb ,各樣品Q20堿基百分比在97.61%~97.91% 之間 5% ), Q30 堿基百分比在93.60%~94.13% 之間( 5% ),GC含量在 45.63%~ 46.41%×1gt;45% ),測序錯誤率均在 0.02% 左右,表明整體測序過濾質量良好,可用于后續的轉錄組分析。總計獲得51895個Unigenes,總長度約為60533gt;58bp,N50 長度為 1885bp ,序列平均長度為1166bp,Unigenes長度在300~400bp區間的數量最多,為10609個,占比 20.44% (圖2),生成的轉錄組數據可以滿足后續試驗要求。

2.3不同成熟期桑葚差異表達基因分析與功能注釋

3個發育時期桑葚共表達的Unigene有36385個,綠果期和黑果期特有表達Unigene均為5343個,而紅果期特有表達Unigene為3189個(圖3-A)。采用DESeq2軟件以|log(FoldChange) 1≥1 amp;FDR≤0.05為篩選條件對不同發育時期基因Unigene表達進行差異分析,篩選差異表達基因(DEGs)。結果表明,3個比較組共有10207個DEGs,紅果期相較于綠果期,黑果期相較于綠果期,黑果期相較于紅果期,共有656個共表達的DEGs(圖3-B)。通過比較綠果期和紅果期DEGs,共獲得8572個DEGs,其中上調基因有4353個、下調基因4219個;比較綠果期和黑果期的DEGs,共獲得1900個DEGs,其中上調基因有1140個、下調基因760個;比較紅果期和黑果期的DEGs,共獲得6716個DEGs,其中上下調基因分別有3599個、3117個。3個比較組中上調DEGs數目均多于下調DEGs數目,且DEGs最多的是綠果期和紅果期的比較組(圖3-B~D)。

2.4與木質素合成相關基因的表達分析

通過對3個發育時期桑葚中與木質素相關的DEGs進行篩選,共鑒定到45個DEGs(圖4),并對其FPKM值繪制熱圖分析。45個DEGs可以聚類為3種表達模式,2個候選DEGs[TRINITY_DN45720_c2_g6(POD15)、TRINITY_DN37868_c0_g1(POD12)]表達呈逐漸上調趨勢,即桑甚成熟過程中2個基因的FPKM值逐漸升高。19個候選DEGs表現為在紅果期高表達,在綠果期和黑果期低表達,FPKM值總體表現為先上調后下調的趨勢。24個候選DEGs在綠果期高表達,在紅果期和黑果期表現為低表達,整個發育時期表現為下調趨勢,即桑甚轉色期時低表達,與桑甚果實發育過程中3個時期的木質素含量和質地指標變化趨勢相一致。

表39個樣本轉錄組數據質控

Table3Summaryof9samplessequencingdataquality

圖2Unigene長度分布

圖3韋恩圖及DEGs表達模式

Fig.3Venn diagram and expression pattern ofDEG

A.不同發育階段Unigene維恩圖;B.不同發育階段DEGs維恩圖;C.DEGs的表達模式;D.DEGs統計圖。 A.VenndiagraofUnigenedeetedfrodiferentsmps;BVediagofGsmogdiferentdevelopnttages;CExpepat tern of DEGs; D.DEGs statistics.

對苯丙烷代謝通路分析發現(圖5),上游木質素合成通路中鑒定出4個苯丙氨酸解氨酶(PALI、PAL2、PAL3、PAL4)DEGs、5個肉桂酸-4-羥化酶(C4H1、C4H2、C4H3、C4H5、C4H7)DEGs、1個4-香豆酸輔酶-A-連接酶(4CL2)DEGs、1個阿魏-5-羥化酶(F5H)DEGs、3個咖啡酰輔酶A3-O-甲基轉移酶(CCoAOMT1、CCoAOMT2、CCoAOMT3)DEGs、1個肉桂酰輔酶A還原酶(CCR)DEGs,共計15個DEGs,且均顯著下調,與木質素含量和質地品質指標變化趨勢相一致。下游代謝物木質素(lignin)、紫丁香基木質素(syringyllignin)、對羥基苯酚木質素( -Hydroxyphenyllignin)、愈創木酚木質素(Guaiac-yl lignin)和5-羥基愈創木酚木質素(5-Hydroxy-guaiacyllignin)等合成通路中鑒定到16個DEGs,其中9個過氧化氫酶(POD1、POD2、POD4、POD5、POD6、POD10、POD11、POD13、POD14)DEGs在綠果期高表達,在轉色期低表達,并且和木質素含量和質地品質指標變化趨勢相一致。綜合上述結果,篩選出上下游木質素合成通路中24個DEGs(PAL1、PAL2、PAL3、PAL4、C4H1、C4H2、C4H3、C4H5、C4H7、4CL2、F5H、CCoAOMT1、CCoAOMT2、CCoAOMT3、CCR、POD1、POD2、POD4、POD5、POD6、POD10、PODI1、POD13、POD14),推測其可能是桑甚成熟過程中參與果實軟化進程的重要基因。

2.5 差異表達基因的qRT-PCR驗證

從木質素上下游合成通路中的24個DEGs中隨機選擇10個木質素合成途徑的關鍵DEGs進行qRT-PCR試驗驗證(圖6)。隨著桑葚果實的成熟,C4H7、CCR、PAL1、PAL3、POD2、POD14、CCoAOMT2等7個基因的熒光定量檢測結果與轉錄組數據一致且均下調表達,特別是綠果期表達量均高于紅果期,推測這7個基因可能負調控桑甚成熟軟化進程。雖然4CL2、C4H2、POD6等基因的qRT-PCR檢測表達量與轉錄組數據的變化倍數存在部分差異,但是基因表達水平的趨勢是一致的,說明轉錄組分析可靠。

2.6果實質地變軟的關鍵因素分析

通過RDA分析木質素與6種果實質地特性的關系,結果(圖7-A)表明,木質素與果實咀嚼性呈現極顯著的正相關性,其次為膠黏性和硬度,其中木質素與三者的相關性基本一致;而木質素與果實的黏附性、彈性和內聚性呈負相關。通過RDA分別分析了木質素和果實質地特性與木質素合成代謝相關基因相關性,結果(圖7-B、C)表明,CCR對木質素的生成影響最大,其次為CCoAOMT1、CCoAOMT2、PAL3、C3H和4CL2等,POD12和CAD2等基因對木質素的生成無顯著關聯。4CL2對果實硬度和膠黏性變化影響最大,其次為POD13、CCoAOMT1、CCoAOMT2、PAL3、C3H。CCoAOMT1對果實的咀嚼性影響最大,其次為CCoAOMT2、PAL3、C3H。POD12與果實硬度、膠黏性、咀嚼性無顯著關聯。CAD2對果實彈性、粘附性和內聚性變化影響最大,其次為CAD1、POD12、POD15。RDA分析結果與前述中基因表達模式趨勢一致,證明了試驗結果的可靠性。

3討論

桑葚果實在發育前期表現為口感硬、味道差等特點,成熟期口感硬度則顯著降低且風味濃郁。果實質地的評價通常采用感官評價、儀器測定兩種方式。感官評價比較主觀,能真正反映人對果實質地的感覺信息,儀器測量可量化、客觀、數據重現性較好,理想情況下,感官評價與儀器測量相結合是識別和評價果實質地的最佳方法。圍繞果實質地形成及影響因素,已有大量的報道,這一過程涉及多種物質的轉化、多個基因的表達與沉默等,其生理與分子機制較復雜。高通量測序技術的特點為解析果實質地形成的分子機制提供了新的途徑和視角。

木質素是細胞壁的重要組成成分之一,為細胞壁提供剛性支撐,是引起果實質地變化的主要因素之一[23-24]。Wang等[25]研究發現,隨著甜瓜木質素含量增加,其愈傷組織的硬度隨之增大,而內聚性和彈性隨之減小,這與本研究中桑甚木質素含量與果實硬度呈正相關、與果實內聚性和彈性呈負相關的結果相一致,推測桑葚的成熟軟化與木質素含量降低存在關聯性。木質素的合成主要是通過苯丙烷途徑,其中PAL、C4H、4CL、CCR、POD、CCoAOMT等基因是木質素合成途徑關鍵調控基因,且這些基因表達量與木質素合成量呈正相關[26-27]。筆者在本研究中鑒定獲得木質素合成通路中的45個DEGs,其中24個DEGs的表達量與木質素合成含量變化趨勢一致,C4H7、CCR、PAL1、PAL3、POD2、POD14、CCoAOMT2等7個基因可能協作調控桑甚成熟軟化進程。PAL是木質素生物合成途徑關鍵限速基因,Korth等[2研究表明,在煙草中過表達PAL基因,PAL酶活性和木質素含量均顯著升高;Cai等2在低溫儲藏枇杷試驗中發現, PAL 表達量與木質素含量呈正相關。本研究結果表明,PAL1、PAL2、PAL3、PAL4等4個基因PAL表達量與木質素含量呈正相關,其中PAL1對木質素的合成及硬度軟化影響最大且呈正相關,推測PAL可能是參與調控木質素合成的重要基因。C4H是一類細胞色素P450基因,主要功能為調控細胞結構。Sewalt等[2研究發現,在煙草中抑制C4H基因表達,其細胞構成發生變化且木質素含量出現下降,C4H表達量與木質素含量呈正相關。桑葚C4H1、C4H2、C4H3、C4H5、C4H7等5個基因表達量與木質素含量呈正相關,表明C4H基因對桑葚軟化過程發揮重要作用。CCR、CCoAOMT對木質素生成也有較大影響。CCR是木質素生物合成單信號通路中的第一個固定酶,研究發現在轉基因楊樹[30、玉米[3中CCR的活性降低,木質素含量顯著下降。桑葚CCR基因在木質素的生成中表現為正相關,且隨著桑葚的成熟,CCR表達量隨之降低。CCoAOMT基因在木質素合成及組分構成中起到重要的調控作用,在亞麻植物研究中發現,抑制CCoAOMT基因的表達,木質素含量顯著降低,同時植株形態表現為畸形[32]。桑葚轉錄組數據中共篩選到3個CCoAOMT差異表達基因,CCoAOMTI和CCoAOMT2與木質素的合成呈正相關。這些結果對桑甚的質地評價具有參考意義,為優質遺傳資源的有效選擇和精確定位育種方法的建立提供了依據。

A.木質素含量與果實質地特性相關性;B.木質素含量與木質素合成代謝相關基因相關性;C.果實質地特性與木質素合成代謝相關基因相關性;橫縱坐標分別表示在整體解釋量中的重要值。A.ThecoreatietwltetdtureaityLintetdgeattsthtietab;C.iteequalitynddteabtaldildatpaltation volume.

圖7RDA分析影響質地的主要因子

Fig.7ThemainfactorsthataffectedtexturewasidentifiedbyRDA

4結論

通過質地、木質素測定分析,發現桑葚果實成熟過程中的硬度等質地指標在不同的發育時期呈現不同特征,即硬度、膠黏性和咀嚼性逐漸下降,彈性逐漸升高,黏附性在成熟期顯著變化,內聚性無顯著變化;木質素含量逐漸降低。轉錄組測序數據中共鑒定到45個木質素合成相關的差異表達基因。21個差異基因表達量與木質素合成含量變化趨勢一致且均下調表達。RDA分析表明不同的基因與質地指標、木質素合成等的相關性不一致,說明桑甚質地形成、木質素合成是由多因素、多基因參與調控的生長發育進程,本研究結論為后續開展相關的分子機制探討奠定了理論基礎。

參考文獻References:

[1] CONTADOR L,SHINYA P,INFANTE R. Texture phenotyping infresh fleshy fruit[J].Scientia Horticulturae,2015,193:40-46.

[2] SHIYN,LIBJ,SUGQ,ZHANGMX,GRIERSOND, CHENK S.Transcriptional regulation of fleshy fruit texture[J]. Journal ofIntegrativePlant Biology,2022,64(9):1649-1672.

[3] QIANM,ZHANGYK,YANXY,HANMY,LIJJ,LIF,LIF R,ZHANG D, ZHAO C P. Identification and expression analysis of polygalacturonase family members during peach fruit softening[J]. International Journal of Molecular Sciences,2016,17 (11):1933.

[4]ZAHARAH S S,SINGH Z,SYMONSGM,REIDJB. Mode of action of abscisic acid in triggering ethylene biosynthesis and softening during ripening in mango fruit[J]. Postharvest Biology amp; Technology,2013,75:37-44.

[5] HIRSCH M,LANGER S E,MARINA M,ROSLI HG,CIVELLO P M,MARTiNEZ G A, VILLARREAL N M. Expression profiling of endo-xylanases during ripening of strawberry cultivars with contrasting softening rates. Influence of postharvest and hormonal treatments[J].Journal of the Science of Food and Agriculture,2021,101(9):3676-3684.

[6] SHENYH,LUBG,FENGL,YANGFY,GENGJJ,MING R,CHEN X J. Isolation of ripening-related genes from ethylene/ 1-MCP treated papaya through RNA-seq[J]. BMC Genomics, 2017,18(1):671.

[7] WANG WQ,WANGJ,WUYY,LID W,ALLANAC,YIN X R.Genome-wide analysis of coding and non-coding RNA reveals a conserved miR164-NAC regulatory pathway for fruit ripening[J]. New Phytologist,2020,225(4):1618-1634.

[8] LUOH,DAISJ,RENJ,ZHANGCX,DINGY,LIZ,SUNY F,JIK,WANGYP,LIQ,CHENP,DUANCR,WANGY, LENG P.The role of ABA in the maturation and postharvest life ofanonclimacteric sweet cherry fruit[J].Journal of Plant Growth Regulation,2014,33(2):373-383.

[9] WANG D D,SAMSULRIZAL N H, YAN C,ALLCOCK N S, CRAIGON J,BLANCO-ULATEB,ORTEGA-SALAZARI, MARCUSSE,BAGHERIHM,PEREZFONSL,FRASERP D,FOSTER T,FRAYR,KNOXJP,SEYMOURGB. Characterization of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato[J].Plant Physiology,2019,179 (2):544-557.

[10]POWELL A L T,KALAMAKI M S,KURIEN P A,GURRIERI S,BENNETT A B. Simultaneous transgenic suppression of a fresh market tomato variety[J].Journal of Agricultural and Food Chemistry,2003,51(25):7450-7455.

[11]TORRES C A,AZOCAR C,RAMOSP,PEREZ-DIAZ R, SEPULVEDA G,MOYA-LEON M A. Photooxidative stress activatesa complex multigenic response integrating the phenylpropanoid pathway and ethylene,leading to lignin accumulation in apple (Malus domestica Borkh.) fruit[J]. Horticulture Research, 2020,7:22.

[12] WANG Y, ZHANG X F, YANG S L, YUAN Y B. Lignin involvement in programmed changes in peach-fruit texture indicated by metabolite and transcriptome analyses[J]. Journal of Agricultural and Food Chemistry,2018,66(48):12627-12640.

[13]ZHAO X W,WANG Q, WANG D,GUO W,HU M X,LIU Y L, ZHOUG K,CHAIGH,ZHAO ST,LUMZ.PagERF81 regulates lignin biosynthesis and xylem cell differentiationin poplar[J]. Journal of Integrative Plant Biology,2023,65(5):1134-1146.

[14]WESSELS B,SEYFFERTH C,ESCAMEZ S,VAIN T,ANTOS K,VAHALAJ,DELHOMMEN,KANGASJARVIJ,EDERM, FELTEN J, TUOMINEN H. An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition[J].NewPhytologist,2019,224(4):1585-1599.

[15]LIUDL,XUEY S,WANGRZ,SONG BB,XUEC,SHANY F,XUE ZL,WU J.PbrMYB4,a R2R3-MYB protein,regulates pearstone cell lignification through activation of lignin biosynthesis genes[J]. Horticultural Plant Journal,2025,11(1):105- 122.

[16]YUP,LI SQ,SUNYD,MENG XX,SHIQF,ZHAO XC, YUYH. Transcription factor VlbZIPl4 inhibits postharvest grape berry abscission by directly activating VlCOMT and promoting lignin biosynthesis[J]. International Journal of Molecular Sciences,2024,25(17):9479.

[17]GAO Y,GUO Y,SU ZY,YUY,ZHU Z C,GAO P,WANG X Z.Transcriptome analysis of genes related to fruit texture in watermelon[J]. Scientia Horticulturae,2020,262:109075.

[18]LI X T,HUANG HT,RIZWAN H M, WANG NY,JIANG JY, SHE WQ,ZHENG G H,PAN HL,GUO Z X,PAN D M,PAN TF.Transcriptome analysis reveals candidate lignin- related genes and transcription factors during fruit development in pomelo (Citrus maxima)[J].Genes,2022,3(5):845.

[19]LU M,MA WT,LIU YQ,ANHM,LUDLOWRA. Transcriptome analysis reveals candidate lignin-related genes and transcription factors in Rosa roxburghii during fruit ripening[J]. PlantMolecular Biology Reporter,2020,38(2):331-342.

[20] WANG X,LINLJ,TANGY,XIAH,ZHANG XC,YUE ML, QIUX,XU K,WANG ZH. Transcriptomic insights into citrus segment membrane's cell wall components relating to fruit sensory texture[J]. BMC Genomics,2018,19(1):280.

[21] 王彬彬,李娜,賈漫麗,陳秀靈,范偉,夏愛華,高玉軍,李季生. 質構儀檢測桑葚質地品質的方法研究[J].果樹學報,2021,38 (11):2014-2020. WANGBinbin,LI Na,JIAManli,CHENXiuling,FANWei, XIAAihua,GAO Yujun,LI Jisheng.Measuring texturequality ofmulberry fruit usinga texture analyser[J].Journal ofFruit Science,2021,38(11):2014-2020.

[22]王廣龍.胡蘿卜肉質根發育過程中激素和品質的變化規律研 究[D].南京:南京農業大學,2016. WANG Guanglong. Change patterns of hormones and quality characters during taproot growth and development in carrot[D]. Nanjing:NanjingAgricultural University,2016.

[23] ZHAO Q,DIXON RA. Transcriptional networks for lignin biosynthesis:More complex than we thought [J]. Trends in Plant Science,2011,16(4):227-233.

[24]COSGROVE D J.Plant expansins:Diversity and interactions with plant cell walls[J]. Current Opinion in Plant Biology,2015, 25:162-172.

[25]WANG B,LI ZC,HAN ZH,XUE SL,BIY,PRUSKY D.Effects of nitric oxide treatment on lignin biosynthesis and texture properties at wound sites of muskmelons[J]. Food Chemistry, 2021,362:130193.

[26] LIX,ZANG C,GE H, ZHANG J,GRIERSON D,YIN X R, CHENK S. Involvement of PAL,C4H,and 4CL in chilling injury-induced flesh lignification of loquat fruit[J].HortScience, 2017,52(1):127-131.

[27]CAIC,LI X,CHENK S.Acetylsalicylic acid alleviates chilling injuryof postharvest loquat (Eriobotrya japonica Lindl.) fruit[J]. European Food Research and Technology,2006,223(4):533- 539.

[28]KORTHKL,BLOUNTJW,CHENF,RASMUSSEN S, LAMBC,DIXONR A. Changes in phenylpropanoid metabolites associated with homology-dependent silencing of phenylalanineammonia-lyase and itssomatic reversion in tobacco[J]. Physiologia Plantarum,2001,111(2):137-143.

[29]SEWALT VJH,NI W,BLOUNTJW,JUNG HG,MASOUD S A,HOWLESPA,LAMBC,DIXONRA. Reduced lignin contentandaltered lignincomposition in transgenictobaccodownregulated in expression of ?L -phenylalanineammonia-lyase or cinnamate4-hydroxylase[J].PlantPhysiology,1997,115(1):41-50.

[30]LEPLEJC,DAUWER,MORREEL K,STORMEV,LAPIERREC,POLLETB,NAUMANNA,KANGKY,KIMH,RUELK,LEFEBVREA,JOSELEAUJP,GRIMA-PETTENATI J, DERYCKER,ANDERSSON-GUNNERASS,ERBAN A, FEHRLEI,PETIT-CONILM,KOPKAJ,POLLEA,MESSENSE,SUNDBERGB,MANSFIELD SD,RALPHJ,PILATEG,BOERJAN W. Downregulation of cinnamoyl-coenzymeA reductase in poplar:Multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure[J].The Plant Cell,2007,19(11):3669-3691.

[31] TAMASLOUKHT B,LAM S JW Q,MARTINEZ Y,TOZO K, BARBIERO,JOURDAC,JAUNEAUA,BORDERIESG, BALZERGUES,RENOUJP,HUGUETS,MARTINANTJP, TATOUTC,LAPIERREC,BARRIEREY,GOFFNERD,PICHON M.Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize:Effects on lignification,fibre development,and global gene expression[J].Journal ofExperimental Botany,2011,62(11):3837-3848.

[32]DAYA,NEUTELINGSG,NOLINF,GRECS,HABRANTA, CRONIER D,MAHER B,ROLANDO C,DAVID H, CHABBERTB,HAWKINS S. Caffeoyl coenzyme A O-methyltransferase down-regulation is associated with modifications in lignin and cell-wall architecture in flax secondary xylem[J]. Plant Physiology and Biochemistry,2009,47(1):9-19.

主站蜘蛛池模板: 久久久久人妻一区精品色奶水| 精品乱码久久久久久久| 精品午夜国产福利观看| 亚洲国内精品自在自线官| 亚洲精品卡2卡3卡4卡5卡区| 国产一区二区三区在线观看免费| 欧美福利在线观看| 噜噜噜久久| 国产在线精品美女观看| 免费无遮挡AV| 欧美天天干| 国产一在线| 99热这里只有精品国产99| 九九免费观看全部免费视频| 青青国产在线| 一级不卡毛片| 欧美日韩精品一区二区视频| 亚洲日韩AV无码一区二区三区人| 伊人五月丁香综合AⅤ| 国产另类视频| 国产成人午夜福利免费无码r| 91在线国内在线播放老师| 国产丝袜无码精品| 欧美一区二区三区欧美日韩亚洲| 综合色区亚洲熟妇在线| 国产精品视频系列专区| 国产麻豆福利av在线播放| 国产精品毛片在线直播完整版| 综合色亚洲| 国产肉感大码AV无码| 狠狠色成人综合首页| 91欧洲国产日韩在线人成| 亚洲日本在线免费观看| 高清不卡一区二区三区香蕉| 国产精品黑色丝袜的老师| 亚洲大尺码专区影院| 国产亚洲男人的天堂在线观看| 久久久久夜色精品波多野结衣| 免费人成在线观看成人片| 国产精品免费入口视频| 欧美精品另类| 999国内精品久久免费视频| 曰韩免费无码AV一区二区| 国产www网站| 国产欧美日韩一区二区视频在线| 日韩精品成人网页视频在线| 亚洲区第一页| 国产精品3p视频| 亚洲最大福利网站| 999福利激情视频| 精品国产黑色丝袜高跟鞋| 国产欧美精品一区二区| 国产欧美在线观看视频| 久久精品国产免费观看频道| 免费看a级毛片| 亚洲欧美国产五月天综合| 四虎在线高清无码| 国产区免费精品视频| 成人一级黄色毛片| 日本日韩欧美| av在线无码浏览| 成人午夜视频免费看欧美| 性色在线视频精品| 成人午夜久久| 日韩国产黄色网站| 岛国精品一区免费视频在线观看| 国产91色在线| 69av在线| 天堂av综合网| 一本大道视频精品人妻| 久久中文电影| 欧美日在线观看| 91精品情国产情侣高潮对白蜜| 国产成人高清精品免费软件| 日韩乱码免费一区二区三区| 伊人久久大香线蕉综合影视| 国产精品无码翘臀在线看纯欲| 真实国产乱子伦视频| 亚洲一区二区黄色| 欧美一区二区福利视频| yy6080理论大片一级久久| 亚洲AV无码久久天堂|