999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

果樹果實著色的分子調(diào)控機制研究進展

2025-09-05 00:00:00馬舒睿遲福梅宋楊
果樹學報 2025年8期

中圖分類號:S66 文獻標志碼:A 文章編號:1009-9980(2025)08-1851-20

Abstract: The color of fruit is one of the core indicators for judging fruit maturity and a necessary condition for evaluating fruit quality, which greatly promotes consumers' purchasing intention and market competitivenes. Traditional cultivation methods have disadvantages such as long cycles and limited effects on targeted trait improvement. Therefore, new gene editing techniques and multi-omics combined analysis (metabolomics,transcriptomics,and proteomics) are being widely used.Whether molecular marker-assisted breeding can be used to precisely and directionally regulate fruit color is a current research focus and a future research direction. Fruit coloring mainly relies on the dynamic balance among three types of pigments, namely carotenoids,anthocyanins,and chlorophyls, in the fruit of fruit trees, involving complex metabolic regulatory networks and multi-pathway interactions.This paper focuses on summarizing the changing trends of the three types of pigments during fruit coloring and classifying the molecular mechanisms involved in environmental factors, gene regulation,and epigenetic levels that affect fruit coloring. Carotenoids give fruits yellow, orange,red,and purple colors due to the conjugated double bonds in their polyene chain. Besides their coloring function,they also have photoprotective,antioxidant,and plant hormone precursor (ABA) synthesis functions.The key enzymes involved in their metabolic pathways mainly include PSY,PDS, ZDS,CHYB,LCYb,and LCYe.The synthesisof carotenoids is regulated by both environmental and transcription factors.Environmental factors mainly include light, temperature,and the application of exogenous plant growth regulators.For temperature, low temperature during storage can promote the synthesis of carotenoids in citrus peels (CcPSY2, CcCHYB ,and CcZEP), but the upregulation of chlorophyll cycle genes may also mask the coloring of carotenoids,resulting in uncolored peels. However,under cultivation conditions,low temperature affects the absorption of nitrogen in the soil and activates the transcriptional activity of related synthesis methyl jasmonate (MeJA),all of which significantly regulate the expression of metabolism-related genes. Transcription factors mainly involve MADS-box, NAC, MYB,and bHLH, which complete the synthesis or degradation of carotenoids through interactions with metabolic genes.In addition,transcription factors related to hormone signal transduction pathways, such as AP2/ERF,can also interact with MADS-box and other transcription factors. The molecular regulatory mechanism of anthocyanin synthesis has been wellstudied. Their biosynthesis is dominated by the MYB-bHLH-WD40 (MBW) complex, and the key enzymes mainly include PAL, CHS, CHI, F3H, DFR,ANS,and UFGT. The MYB family, along with bHLH and WD proteins, forms the transcriptional regulatory network that activates structural genes such as ANS and UFGT. NAC and bZIP enhance regulatory complexity through cross-pathway interactions. The interaction of light and temperature in environmental regulation and the accumulation of anthocyanin content under drought and other stresses significantly enhance the plant's resistance to stress environments. The regulatory pathways of exogenous plant growth regulators are relatively complex. On the one hand, application can directly regulate transcription factors and indirectly activate or inhibit the expression of genes related to the anthocyanin metabolic pathway. On the other hand,the application of exogenous regulators can change the interaction network between the receptors of various endogenous hormone signaling pathways and the MBW complex or other transcription factors. Under the combined action of internal and external hormones,the efficiency of pigment accumulation can be significantly improved. In epigenetics,long-chain noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play a significant role in the accumulation of anthocyanins by regulating transcription factors or chromatin remodeling to influence anthocyanin metabolism. Chlorophyll plays a core role in photosynthesis,and it also hasantioxidant,anti-inflammatory,anti-cancer andanti-obesity medical and health care functions. Its metabolism is regulated by the dynamic balance of synthesis (GluRs,POR,and CAO ) and degradation (PAO,SGR,and PPH) pathways to control fruit de-greening. The transcription factor regulation of chlorophyllincludes gene families such as GOLDEN2-LIKE (GLK), MYB, NAC, bHLH and APRR. Among them,the GLK family (kiwifruit AchGLK and apple MdGLK1) is considered a core regulatory factor for chloroplast development and can jointly regulate chloroplast development and the gene expression of chlorophyll synthase with MYB. Transcription factors related to hormone signal transduction, such as AP2/ERF, mediate de-greening by binding to the promoters of PPH and PAO .The most important environmental factor,light conditions,can induce endogenous ethylene signals to mediate chlorophyll degradation. Different light quality regulation mechanisms also vary. In addition, the regulation of chlorophyll metabolism by environmental factors is particularly special in the case of metal ions, and the gene expression of ion transport proteins is crucial. The gene expression of grape Fe2+ transporter VvIRT and peach peel Mg2+ transporter PpMGT has been studied. DNA hypomethylation in epigenetic regulation leads to abnormal chloroplast development in pineapples,and the reduction of methylation levels in citrus and strawberries inhibits the expression of chlorophyll synthesis genes. Currently, there is a lack of systematic and in-depth analysis of the temporal sequence of chlorophyll and carotenoid accumulation during fruit ripening, the competitive synthesis of anthocyanins and carotenoids, and the synergistic or antagonistic eects among the three. Revealing the key nodes of cross-pathway metabolism,such as the common transcription factors MYB,bHLH and NAC,is beneficial for the global regulation of pigment metabolism. At present, the interaction mechanism between epigenetics and hormone signals is still unclear, and the molecular mechanism by which environmental stress (such as low temperature and drought) regulates pigment metabolism through epigenetic means also needs further study.This is an important direction for improving the stress resistance of fruit trees.Based on the existing molecular mechanisms,the accumulation of fruit pigments can be directly regulated,and a coordinated iteraction model of light quality,temperature and hormones can be established in facility cultivation to maximize the accumulation of fruit pigments. Fruit color is not only an appearance indicator but is also closely related to nutritional value,storability and stress resistance.In the future,it is necessary to explore the relationship between the fruit color regulation network and the comprehensive quality of fruit, so as to meet market demands and efficiently cultivate high-quality fruit tree varieties.

Key Words: Fruit quality; Carotenoid; Anthocyanin; Chlorophyl; Transcriptional regulation

色澤是影響果實市場價值和消費者購買意愿的標準之一。果樹和蔬菜等園藝作物中的類胡蘿卜素、花青素和葉綠素通常是影響著色的三大色素,其呈色主要由類胡蘿卜素或花青素的積累以及葉綠素降解的比例決定[24]。近年來,環(huán)境因素(如光、溫度、植物激素)通過調(diào)控轉(zhuǎn)錄因子以及表觀遺傳修飾對色素代謝的分子機制逐漸被揭示。然而,當前研究多聚焦于單一色素的代謝過程,對跨通路調(diào)控節(jié)點的整合分析還不充分。此外,三類色素間的競爭性合成或協(xié)同積累機制也缺乏系統(tǒng)性的探討。因此,筆者在本文中圍繞近年來果實著色過程中三類色素(類胡蘿卜素、花青素和葉綠素)的分子調(diào)控機制研究展開綜述,結(jié)合多組學以及基因編輯技術(shù),旨在發(fā)現(xiàn)跨通路代謝的關(guān)鍵調(diào)控因子(如MYB、bHLH、NAC)。這將為使用分子標記輔助育種進一步篩選色素代謝關(guān)鍵基因提供理論依據(jù)。同時,定向增強色素積累也可提高果實的營養(yǎng)品質(zhì)、貯藏性和抗逆性,對優(yōu)質(zhì)品種選育和果實產(chǎn)量提質(zhì)增效具有重要意義。

1類胡蘿卜素

類胡蘿卜素(Carotenoid)作為脂溶性萜類化合物,通過異戊二烯骨架構(gòu)建 C40 或 C30 結(jié)構(gòu),通常由其多烯鏈共軛雙鍵賦予果實黃、橙、紅、紫等色澤。除呈色功能外,類胡蘿下素還兼具光保護、抗氧化以及為植物激素(如ABA)的合成提供前體等作用,同時參與光吸收過程,是果實呈色的重要化合物類型之一[8。高等植物體內(nèi)類胡蘿卜素主要通過MEP(甲基赤蘚糖醇)途徑合成,影響類胡蘿卜素合成的關(guān)鍵酶有八氫番茄紅素合成酶(PSY)、八氫番茄紅素脫飽和酶(PDS)、-胡蘿卜素脫飽和酶(ZDS)、 5 胡蘿卜素異構(gòu)酶(ZISO)、胡蘿卜素順式-反式異構(gòu)酶(CRTISO)、 ?β -羥化酶(BCH)、玉米黃質(zhì)環(huán)氧化酶(ZEP) ?β? -胡蘿卜素羥化酶(CHYB) ?β? 環(huán)化酶(LCYb)、番茄紅素 ε? -環(huán)化酶(LCYe)、ε-羥化酶(ECH)和 β. -羥化酶(BCH)等[10-12]。

1.1 環(huán)境因素

果實中類胡蘿卜素的合成代謝途徑是一個復雜的、多方面控制的過程。已有的研究結(jié)果表明,環(huán)境因素(如水、溫度、礦質(zhì)元素、外源植物激素等)能夠通過調(diào)節(jié)代謝途徑中相關(guān)酶的基因表達來控制果實中類胡蘿卜素的含量。在遮光的柑橘果實中,類胡蘿卜素生物合成的關(guān)鍵基因PSY、PDS、ZDS1、LCY2a、LCY2b和CHX的表達顯著下調(diào),但并未影響類胡蘿卜素前體途徑(MEP)基因(DXS、HDRI、GGPPSI)以及分解代謝基因(CCD4b1)的表達[13,這表明光照信號對類胡蘿卜素代謝的調(diào)控具有路徑特異性。溫度則對果實中類胡蘿卜素的積累具有雙重調(diào)控特性:在柑橘果實生長過程中,土壤低溫影響根系對氮素的吸收,氮素供應(yīng)的減少會促進類胡蘿卜素合成相關(guān)基因(如PSY)的表達,從而促進果實著色[4];在 5°C 低溫條件下貯藏柑橘時,雖然類胡蘿卜素合成相關(guān)基因 和CcZEP的表達上調(diào),但低溫同樣導致葉綠素循環(huán)相關(guān)基因的上調(diào),葉綠素顯著積累導致類胡蘿卜素的顏色無法呈現(xiàn),果皮無法著色[15]。因此在生產(chǎn)和貯藏過程中,需采取針對性的控溫技術(shù)以促進果樹果實類胡蘿卜素的積累,進而提高果實品質(zhì)和市場價值。

植物激素對促進果實著色起著重要作用。近年來,外源激素應(yīng)用對內(nèi)源激素平衡及類胡蘿卜素合成相關(guān)酶基因表達影響的研究不斷深入,進一步完善了植物激素調(diào)控類胡蘿卜素合成途徑的理論框架。Li等[研究發(fā)現(xiàn)外源施加乙烯(ETH)的藍莓果實中,ETH負調(diào)控VcPSY、VcPDS、VcZ-ISO、VcZDS、VcCHYE/LUT1和VcCHYB/LUT5合成,卻顯著提高了類胡蘿卜素裂解基因(VcCCDI)、ABA生物合成的關(guān)鍵基因(VcNCEDI)表達量,使得ABA在藍莓中得到積累并促進果實成熟。而外源ABA誘導的CsERF110-CsERF53模塊則促進了柑橘果皮類胡蘿卜素的合成,這表明乙烯和ABA之間存在復雜的互作網(wǎng)絡(luò)來調(diào)控類胡蘿卜素的代謝途徑。此外,外源茉莉酸甲酯(MeJA)通過激活柑橘中的CsMPK6-CsMYC2信號模塊,抑制CsMYC2激活CsCCD4b、CsPSY、CsLCYb、CsBCH等基因的啟動子表達,從而抑制類胡蘿卜素的積累[18]。目前,植物激素調(diào)控類胡蘿卜素合成的分子機制逐漸清晰,但外源激素與內(nèi)源激素協(xié)同調(diào)控的作用機制仍需完善,未來研究應(yīng)聚焦于外源激素對內(nèi)源激素信號通路關(guān)鍵基因的調(diào)控,闡明其如何間接激活類胡蘿卜素合成酶基因的轉(zhuǎn)錄,從而完善激素互作的理論框架。

1.2轉(zhuǎn)錄因子

轉(zhuǎn)錄因子對類胡蘿卜素的合成調(diào)控復雜且多樣,目前在果實中鑒定出MADS-box、NAC、MYB、bHLH和bZIP等參與類胡蘿卜素的合成,表1列出主要轉(zhuǎn)錄因子類型、調(diào)控的關(guān)鍵基因以及具體調(diào)控路徑[19-3]。MADS轉(zhuǎn)錄因子通常在柑橘、桃的果皮中促進類胡蘿卜素合成基因(如PSY的表達,并且在柑橘中特異性激活CsSGR(葉綠素降解基因)啟動子,穩(wěn)定葉綠素和類胡蘿卜素的動態(tài)平衡[9-20]。

表1調(diào)控果實類胡蘿卜素合成的轉(zhuǎn)錄因子及具體路徑

Table1Transcription factors and specific pathways regulating carotenoid synthesis in fruits

表1 (續(xù)) Table1 (Continued)

NAC轉(zhuǎn)錄因子則作為忙果、番木瓜中類胡蘿卜素合成的正調(diào)控因子,影響關(guān)鍵合成基因PDS的轉(zhuǎn)錄活性[22-23]。此外NAC還能與乙烯轉(zhuǎn)錄因子CpEIN3a啟動子中的NAC結(jié)合位點(NABS)結(jié)合協(xié)同激活番木瓜CpPDS2/4的表達[24]。MYB、bHLH等轉(zhuǎn)錄因子同樣能夠影響類胡蘿卜素合成途徑中相關(guān)酶的基因表達[26-29],MYB24則能夠在葡萄果皮花青素缺乏的條件下被光照激活,并與類胡蘿下素代謝基因(CRTISO2)的啟動子結(jié)合,調(diào)控花青素和類胡蘿卜素的競爭性合成[2。其他轉(zhuǎn)錄因子如WRKY、SBP-box等蛋白家族的轉(zhuǎn)錄機制也逐漸被闡明[31-33]。

激素信號轉(zhuǎn)導途徑的相關(guān)轉(zhuǎn)錄因子參與果實內(nèi)源激素的合成以及類胡蘿卜素的代謝。乙烯響應(yīng)因子(AP2/ERF)是最主要的轉(zhuǎn)錄因子,能夠直接調(diào)控合成途徑基因的表達,也可與MADS-box、MYB等轉(zhuǎn)錄因子互作間接調(diào)控。在蘋果和柑橘中MdAP2-34、CsERF061結(jié)合PSY、LCYb、CRTISO等啟動子[34-35],也可在木瓜中 CpMADS4 與CpERF9相互作用抑制PDS和LCYe的表達從而減少類胡蘿卜素的積累。除了AP2/ERF外,生長素響應(yīng)因子SIARF、油菜素內(nèi)酯響應(yīng)因子SIBZR等都在調(diào)控番茄果實的類胡蘿卜素合成[38-39],但對于果樹果實來說其他激素信號轉(zhuǎn)導的轉(zhuǎn)錄因子仍缺少深入研究。

1.3 表觀修飾

DNA甲基化是表觀遺傳中一種主要的機制,類胡蘿卜素代謝相關(guān)基因的DNA甲基化變化趨勢也為完善果實著色的分子調(diào)控網(wǎng)絡(luò)提供新的理論支撐。甜櫻桃著色期間類胡蘿卜素降解相關(guān)基因的5'UTR區(qū)域存在DNA低甲基化[40]。目前研究利用改變DNA甲基化的化學抑制劑揭示了DNA甲基化在調(diào)節(jié)類胡蘿卜素生成中的作用途徑[41]。5-氮雜胞苷(5-aza)是一種DNA甲基化抑制劑,應(yīng)用5-aza可激活 CpCCDI 等分解基因的轉(zhuǎn)錄活性,誘導柑橘果實中類胡蘿卜素降解[42-43]。RNA修飾也參與對類胡蘿卜素合成的調(diào)控,miRNAs、lncRNAs能夠靶向調(diào)節(jié)類胡蘿卜素生物合成的相關(guān)TFs和關(guān)鍵酶基因。黃桃果皮中 PpMYB9 與類胡蘿卜素合成相關(guān),mdm-miR858則通過靶向剪切抑制 PpMYB9 基因的表達,為miRNA參與類胡蘿卜素合成提供理論基礎(chǔ)[44]。甜瓜lncRNAs的靶基因則直接富集于NCED1、PSYI等合成基因,促進類胡蘿卜素的積累[45]。

2花青素

花青素(Anthocyanidin),又稱花色素,是屬于植物類黃酮化合物中的一種水溶性糖苷,廣泛存在于果實、葉片和花瓣中,賦予植物器官紅色、橙色、紫色、藍色或黑色4。該色素分子具有類黃酮物質(zhì)所特有的“C6-C3-C6三環(huán)\"碳骨架結(jié)構(gòu),其化學結(jié)構(gòu)為3,5,7-羥基-2-苯基苯并吡喃,在自然界中主要呈現(xiàn)6種基本形態(tài),包括天竺葵素(Pelargonidin)、矢車菊素(Cyanidin)、芍藥花素(Peonidin)、飛燕草素(Del-phinidin)、矮牽牛素(Petunidin)和錦葵素(Malvi-din)[4。在不同pH下花青素呈現(xiàn)不同顏色,當植物細胞液泡 pHlt;7 時呈紅色,酸性越強則顏色越紅,pH在7~8時呈紫色, pH 在8~11范圍時為藍色,堿性越強則為藍黑色[48]。糖基化是提高花青素穩(wěn)定性并改變花青素顏色的重要修飾手段,通常發(fā)生在A環(huán)的糖基化程度越高,花青素越偏向紫色,其中C-5位點糖基化使花青素顏色向紅紫色偏移[4。在金屬離子螯合作用中, Mg2+ 、Fe分別與飛燕草素、矢車菊素結(jié)合形成藍色[50], Cu2+ ) Fe2+ 則能夠提高花青素色澤。此外花青素通過共價鍵與酚類、氨基酸、有機酸和生物堿等其他小分子或次生代謝產(chǎn)物結(jié)合有助于花青素色澤的穩(wěn)定形成。作為植物應(yīng)對生物與非生物脅迫的重要化合物,花青素生物合成的分子調(diào)控機制主要圍繞結(jié)構(gòu)基因的編碼功能及轉(zhuǎn)錄因子的調(diào)控網(wǎng)絡(luò)展開。核心結(jié)構(gòu)基因編碼花青素生物合成途徑中的關(guān)鍵酶,如苯丙氨酸解氨酶(PAL)、查爾酮合成酶(CHS)、查爾酮異構(gòu)酶(CHI)、黃酮3-羥化酶(F3H)、二氫黃酮醇4-還原酶(DFR)、花青素合成酶(ANS)、糖基轉(zhuǎn)移酶(UFGT)等[53]。轉(zhuǎn)錄調(diào)控層面則以MYB-bHLH-WD40(MBW)復合體為代表,通過順式作用元件與結(jié)構(gòu)基因啟動子互作實現(xiàn)多層級調(diào)控。近年來,花青素的抗氧化、抗衰老、預(yù)防心腦血管疾病等醫(yī)療價值被廣泛關(guān)注,因此明確花青素合成的代謝途徑以及分子機制對高效合成花青素至關(guān)重要。

2.1 轉(zhuǎn)錄因子

研究表明,MYB、bHLH、WD蛋白家族成員及其形成的MYB-bHLH-WD40(MBW)復合物是花青素生物合成的核心轉(zhuǎn)錄調(diào)控模塊[54]。這些轉(zhuǎn)錄因子通過特異性識別結(jié)構(gòu)基因的啟動子區(qū)域并特異性結(jié)合,動態(tài)調(diào)節(jié)靶基因的轉(zhuǎn)錄活性,從而調(diào)控花青素的生物合成。

在果樹果實中,MYB家族的調(diào)控花青素合成的功能具有顯著多樣性。紅肉蘋果是目前遺傳育種研究的熱點,新疆1號紅肉蘋果中MYB10通過直接激活花青素生物合成的基因ANS、UFGT,顯著提升果實花青素的含量[]。而Wang等[發(fā)現(xiàn),野生紅肉蘋果具有較高的黃酮類化合物含量。進一步研究發(fā)現(xiàn),蘋果果實中的MYB12能夠與bHLH3/33形成異源二聚體,并特異性結(jié)合無色花青素還原酶(LAR)基因啟動子,促進 LAR 基因表達,從而驅(qū)動原花青素合成。根據(jù)蘋果和擬南芥的R2R3-MYB蛋白序列,在梨基因組中共鑒定出184個R2R3-MYB轉(zhuǎn)錄因子候選基因[],梨果實中 PyMYBIO 的轉(zhuǎn)錄水平與花青素合成的結(jié)構(gòu)基因 (PyANS,PyDFR) 表達呈正相關(guān)[;藍莓中已鑒定出437條具有SANT結(jié)構(gòu)域的MYB序列,共88個VcMYBs在果皮中更高表達[]。VcMYB1激活A(yù)tPAL、AtCHS和AtDFR等花青素結(jié)構(gòu)基因的表達,從而使花青素積累,而VmMY-BYPA1.1的敲除顯著抑制 CHS,DFR 和ANS啟動子的活性,果實花青素含量下降[61-62]。

bHLH作為堿性螺旋-環(huán)-螺旋(basic helix-loop-helix,bHLH)結(jié)構(gòu)域轉(zhuǎn)錄因子,具有調(diào)控植物生長發(fā)育、參與植物抗逆性、次生代謝等作用[],在果樹果實中,bHLH通常與MYBs家族協(xié)同調(diào)控花青素合成途徑中的關(guān)鍵基因。Li等研究表明bHLH轉(zhuǎn)錄因子的N端存在MYB相互作用區(qū)(IR),能夠與R2R3-MYB蛋白相互作用,早酥梨果皮中PbbHLH2與PbMYB9/10形成復合物,協(xié)同激活類黃酮合成途徑基因的轉(zhuǎn)錄起始。在蘋果中MdbHLH162破壞花青素激活的MdMYB1-MdbHLH3/33復合物的形成,并削弱MdDFR、MdUF3GT表達,同時整合GA和JA信號,負調(diào)控花青素的生物合成。通過轉(zhuǎn)錄組分析,Wang等在紅心獼猴桃中發(fā)現(xiàn),AcMYB123-AcbHLH42復合體通過激活A(yù)cANS和AcF3GT基因的表達,促進果實內(nèi)果皮紅色表型形成。

WD蛋白作為MBW復合物的核心組分,能夠增強MBW調(diào)控網(wǎng)絡(luò)的穩(wěn)定性。Liu等從弼猴桃中鑒定出AcMYBF110-AcbHLH4-AcWDR1和Ac-MYBF110-AcbHLH5-AcWDR1兩種復合體,通過調(diào)控AcbHLHI和AcWDR1的轉(zhuǎn)錄活性來間接影響花青素代謝。草莓FaMYB5主導的FaMYB5-FaEGL3-FaLWD1-like復合物通過直接激活F3'H、AHA10和LAR基因來促進花青素和原花青素的積累[8]。無花果的WD蛋白FcTTG1與FcMYB114、FcMYB123和FcbHLH42蛋白形成互作網(wǎng)絡(luò),精細調(diào)控花青素的合成[9]。

近年研究發(fā)現(xiàn),除了MBW復合體的多層級調(diào)控外,其他轉(zhuǎn)錄因子家族也被逐漸發(fā)掘參與花青素合成代謝。不同于MBW轉(zhuǎn)錄因子間的互作機制,其他轉(zhuǎn)錄因子則更多通過與MYB、bHLH協(xié)同調(diào)控花青素生物合成的關(guān)鍵酶基因表達,從而影響花青素的積累或降解(表2)[70-85]。bZIP家族成員HY5已被鑒定為擬南芥、蘋果、血橙和番茄花青素生物合成的正調(diào)控因子,藍莓中VcbZIP55與VcMYB1啟動子上的G-BOX基序結(jié)合,激活VcMYBI的表達,從而促進花青素的合成[7]。NAC轉(zhuǎn)錄因子是跨通路代謝的重要節(jié)點,能夠調(diào)控多種色素的合成,藍莓 Vc NAC072可與MYB轉(zhuǎn)錄因子AtPAP1互作并激活花青素合成基因的表達[,蘋果MdNAC52也能通過MdMYB9和MdMYBI1協(xié)同提高MdDFR、MdANS、MdUFGT的轉(zhuǎn)錄活性[。而葡萄的VvNAC17則能促進花青素的合成,從而提高植物的抗干旱脅迫能力,為轉(zhuǎn)錄因子互作的多層級調(diào)控花青素的合成網(wǎng)絡(luò)提供新思路。WRKY基因家族除了能與MYB、bHLH相互作用外[9],還能夠在光照條件下與HY5轉(zhuǎn)錄因子協(xié)同促進蘋果果實中花青素的合成[73]。此外,乙烯信號途徑的相關(guān)轉(zhuǎn)錄因子ERF也能與不同MYB轉(zhuǎn)錄因子互作,通過不同的作用途徑對花青素合成進行正向或反向調(diào)控[8I-82]。ARF、BZR轉(zhuǎn)錄因子則更多抑制花青素合成基因的表達,從而負調(diào)控花青素和積累[83-85]。

2.2 環(huán)境因素

近年來,環(huán)境因素對果樹果實花青素合成的分子調(diào)控機制研究取得了顯著進展。其核心調(diào)控路徑在于通過調(diào)控MBW復合物的動態(tài)形成從而激活花青素代謝通路。研究表明環(huán)境信號可雙向調(diào)控花青素生物合成通路的關(guān)鍵基因,花青素的穩(wěn)定性低[88],環(huán)境因子和內(nèi)源激素協(xié)同調(diào)控花青素合成-降解的動態(tài)平衡,目前已知的主要調(diào)控因子包括光、溫度、糖、水分和外源植物激素等。

在光照條件下,光信號通常激活HY5(bZIP家族成員),通過與MYB、bHLH等形成復合物從而促進果實花青素的合成。光信號通路通過FvHY5-FvbHLH9異源二聚體來調(diào)控草莓果實的花青素合成[。Xing等在蘋果中研究發(fā)現(xiàn),MdMPK6激酶介導的MdHY5蛋白磷酸化可顯著提高MdMYB1、MdCHI和MdUFGT基因的表達水平。HY5轉(zhuǎn)錄因子還能夠與B-BOX(BBX)共同在光信號傳導通路中調(diào)控花青素的生物合成。蘋果的MdBBX22與MdHY5相互作用并增強MdHY5與其靶基因MdCHS啟動子的結(jié)合能力,從而促進UV-B誘導的花青素積累[75]。在藍光的特異性激活條件下,草莓建立FaCRY1-FaCOP1-FaHY5信號模塊從而顯著上調(diào)CHS、ANS等結(jié)構(gòu)基因的表達,同時FaHY5在單獨作用下必須依靠FaBBX22蛋白相互作用,協(xié)同調(diào)控花青素的生物合成。此外光照不僅可以單一影響花青素合成,在溫度的作用下,二者可以協(xié)同調(diào)控花青素的積累,Huang等[2]在血橙中發(fā)現(xiàn)的CsRuby1基因啟動子區(qū)域,同時包含光響應(yīng)G-box元件、LTRE(低溫響應(yīng)元件)和MYC結(jié)合位點,在光照和低溫的同時誘導下,血橙中的CsRuby1基因被顯著激活,提高花青素的積累效率。低溫也能通過影響MYB、bHLH等復合物從而促進花青素的合成。海棠果實在低溫脅迫下ABA顯著在果皮積累,誘導Mp-MYB11-MpbHLH79復合物的形成,激活花青素合成關(guān)鍵基因MpCHS的表達[93]。黃酮、類黃酮化合物的積累被證實可以改善植物對干旱脅迫的適應(yīng)性[4,ABA信號通路、MYB/bHLH轉(zhuǎn)錄因子的信號級聯(lián)調(diào)控發(fā)揮著重要作用。對藍莓在干旱脅迫下的代謝組和轉(zhuǎn)錄組分析發(fā)現(xiàn),黃酮類代謝物顯著積累,ABA信號通路中的ABF、MYBs、bHLHs和黃酮生物合成基因的調(diào)控網(wǎng)絡(luò)能夠調(diào)節(jié)干旱誘導的藍莓葉片中黃酮代謝物的積累[95]。

噴施外源植物激素作為調(diào)控花青素代謝的關(guān)鍵技術(shù)方法,在果樹栽培中能夠顯著促進花青素的積累。各種內(nèi)源激素的信號通路受體與MBW復合物之間的互作網(wǎng)絡(luò)是目前研究的熱點,外源激素如何影響或改變調(diào)控網(wǎng)絡(luò)的形成仍是未來的研究方向,主要包括ETH、ABA、IAA和JA等植物激素。轉(zhuǎn)錄因子互作網(wǎng)絡(luò)中MYB基因家族能夠整合多激素信號。ABA通過MdABI5-MdMYB1-MdbHLH3三元復合體激活靶基因MdDFR、MdUF3GT的表達[]。在藍莓中首次鑒定出6個SnRK2家族成員(VcS-nRK2.I~6) ,其中VcSnRK2.3的表達與果實成熟和ABA信號通路呈正相關(guān),ABA誘導的VcSnRK2.3(蔗糖非發(fā)酵-1-相關(guān)蛋白激酶2)能與VcMYB1相互作用,促進花青素的生物合成[。內(nèi)源JA信號通路蛋白MdJAZ1抑制MdTRB1-MdMYB9途徑對花青素的合成,負向調(diào)節(jié)MeJA誘導的花青素和PA的積累[8]。此外外源NAA處理后MdIAA121-His蛋白的迅速降解可釋放與之結(jié)合的MdARF13,隨后MdARF13與MdMYB10形成復合體協(xié)同抑制靶基因的表達,負調(diào)控花青素的生物合成。乙烯信號通路響應(yīng)因子AP2/ERFs也在不同激素處理條件下調(diào)控花青素的合成:梨果實中ETH通過PpERF9(ERF轉(zhuǎn)錄因子)構(gòu)建雙重抑制機制,一方面PpERF9與PpMYB114的啟動子結(jié)合直接抑制其表達,另一方面形成一個PpERF9-PpRAP2.4-PpMYB114的調(diào)控回路,從而抑制梨中花青素的生物合成[°];Li等[]發(fā)現(xiàn)同時用ETH和NAA處理蘋果果實后,MdARF5-1抑制正調(diào)控因子MdERF3的表達來負向調(diào)控花青素合成,而MdIAA29可通過競爭結(jié)合減弱抑制作用。

表2其他調(diào)控花青素合成的轉(zhuǎn)錄因子及作用機制

Table 2Other transcription factors regulating anthocyanin synthesis and mechanisms of action

2.3 表觀修飾

DNA甲基化水平的下降能有效促進果實中花青素的合成。蘋果的MdROS1通過降低花青素相關(guān)基因CHS、CHI、F3'H、ANS、UFGT和MYB10的啟動子甲基化水平從而促進花青素的積累[102]。桃果實在 16°C 低溫貯藏下, .PpF3H,PpANS 等基因的甲基化水平顯著降低,同時用5-aza處理桃果肉,顯著誘導花青素積累[103]。長鏈非編碼RNA(lncRNA)作為表觀遺傳的調(diào)控網(wǎng)絡(luò)的核心部分,在果實花青素積累中發(fā)揮著重要作用,Ma等[104]在蘋果中構(gòu)建了一個MdWRKY1-MdLNC499-MdERF109的轉(zhuǎn)錄級聯(lián),光信號轉(zhuǎn)錄因子MdWRKYI通過激活lncRNAMdLNC499的轉(zhuǎn)錄活性,進而誘導MdERF109表達,最終MdERF109蛋白誘導蘋果著色前期花青素相關(guān)基因的表達。而在草莓果實中的lncRNAFRILAIR作為一種非規(guī)范的靶模擬物,能夠結(jié)合miR397分子并且促進一種漆酶-11樣蛋白LAC11a的轉(zhuǎn)錄,進而使花青素在果實成熟過程中沉淀著色[105]。近年來研究發(fā)現(xiàn),miRNAs-MYB協(xié)同調(diào)控花青素的生物合成[,Zhang等[]在梨果實中發(fā)現(xiàn)一個PyPIF5-PymiR156a-PySPL9-PyMYB114/10模塊,光照下調(diào)光敏色素因子PIF5并釋放miR156a,隨后PySPL9被miR156a切割降解,進而抑制PySPL9-Py-MYB114/10異源聚體的形成,重新激活花青素的生物合成[108]。此外,組蛋白修飾作用在果實中同樣調(diào)控花青素的合成。蘋果中MdSnRKl.1與MdJAZ18相互作用并磷酸化,以促進其26S蛋白酶體介導的降解并釋放MdbHLH3,MdbHLH3與MdMYB1/9、MdTTG1形成MBW復合物,從而激活MdDFR、MdANS、MdANR和MdUF3GT的表達,并促進花青素和原花青素(PA)的生物合成[109]。同時蘋果的MdBT2通過泛素化-蛋白酶體途徑調(diào)控MdTCP46的穩(wěn)定性,形成動態(tài)的“MdBT2-MdTCP46-MdMYB1”調(diào)控模塊,在高光強刺激下MdBT2表達受抑制,增強MdTCP46與MdMYB1的協(xié)同作用并激活花青素合成基因,促進果實著色[0]。

3葉綠素

葉綠素(Chlorophylls,CHIs)是一種廣泛存在于植物、藻類和某些細菌中的四吡咯化合物[-12],CHIs經(jīng)過修飾后主要有5種類型,分別為葉綠素a、葉綠素b、葉綠素c(c1、c2、c3)、葉綠素d和葉綠素f]。葉綠素在光合作用過程中起核心作用,吸收光能并驅(qū)動電子傳遞鏈最終產(chǎn)生ATP、NADPH等化學能[13],同時葉綠素的抗氧化活性、抗炎癥、抗癌以及抗肥胖等醫(yī)療保健作用也逐漸被關(guān)注[14]。值得注意的是,葉綠素代謝網(wǎng)絡(luò)與類胡蘿卜素、花青素等代謝途徑存在復雜的交互作用,三類色素共同調(diào)控果實色澤的形成[115-116],因此更需進一步探究和完善葉綠素代謝途徑涉及的分子調(diào)控機制。現(xiàn)階段,針對果實葉綠素代謝的分子調(diào)控研究,更多集中于葉綠素合成或降解途徑關(guān)鍵基因的轉(zhuǎn)錄活性。合成途徑關(guān)鍵酶包括谷氨酰-tRNA合成酶(GluRS)、原葉綠素酸酯氧化還原酶(POR)、脫植基葉綠素a加氧酶(CAO)和葉綠素合酶(CHLG),降解途徑則由脫鎂葉綠酸a加氧酶(PAO)、脫鎂螯合酶(SGR)、脫鎂葉綠素脫鎂葉綠酸水解酶(PPH)、紅色葉綠素分解產(chǎn)物還原酶(RCCR)、葉綠素b還原酶(NYC、NOL)等協(xié)同調(diào)控[117-118]。

3.1 轉(zhuǎn)錄因子

果實葉綠素代謝的分子機制離不開轉(zhuǎn)錄因子的精細調(diào)控,已有較多的轉(zhuǎn)錄因子被發(fā)現(xiàn)能夠在植物中影響葉綠素的代謝過程。但對于果樹果實來說,已經(jīng)驗證并具有明確調(diào)控葉綠素代謝功能的調(diào)控因子仍然較少,目前研究的主要核心包括GOLDEN2-LIKE(GLK)、MYB、NAC、bHLH和APRR等轉(zhuǎn)錄因子家族(表3)[28,115,119-134]。

GLK被認為是葉綠素生物合成的主調(diào)控因子[35],弼猴桃的AchGLK在番茄中異源表達使葉綠素得到積累,過表達AchGLK的果實葉綠體大小和類囊體顆粒堆疊厚度都顯著增加[]。桃果實中利用VIGS病毒沉默 PpGLKI 的表達,其靶基因PpPO-RA?PpCHLH 等轉(zhuǎn)錄水平下降[120]。An等[121]發(fā)現(xiàn)異位表達MdGLK1則能恢復擬南芥glklglk2雙突變體的葉綠體缺陷表型,如葉綠體發(fā)育不良和葉片黃化等,并提高HEMA1、GUN4、CHLH和CAO的表達水平,促進葉綠素的合成。Frangedakis等[1s]發(fā)現(xiàn)在擬南芥glk突變體中仍有葉綠素殘留,并尋找到MYB轉(zhuǎn)錄因子與GLK共同調(diào)控葉綠體發(fā)育和葉綠素合成酶基因表達的證據(jù)。在果樹果實中,盡管研究已發(fā)現(xiàn)較多MYB參與葉綠素代謝,但其與GLK協(xié)同作用的調(diào)控路徑仍需深入研究。獼猴桃的AdMYB7促進SGR1表達上調(diào)并降解葉綠素[123],香蕉Ma-MYB60在高溫脅迫下被MaBAH1E3連接酶介導的泛素化修飾并降解,減弱MaMYB60對葉綠素分解代謝基因的激活,這也為環(huán)境因子通過翻譯后修飾MYB-TFs提供了新證據(jù)[124]。NAC在調(diào)控果實成熟過程中發(fā)揮著關(guān)鍵作用,在果樹果實中NAC的研究較多集中于類胡蘿卜素和花青素合成代謝[13,對葉綠素的代謝調(diào)控有待進一步探討。但歐李果實在干旱脅迫時過表達ChNAC1能促進葉綠素積累并提高抗逆性,幫助果實在脅迫環(huán)境下更好成熟[125]。荔枝中的LcNAC002顯著激活LcSGR和LcMYB-1的表達,降解葉綠素并提高花青素含量,促進荔枝果實的著色[12]。bHLH轉(zhuǎn)錄因子在柑橘果皮中的呈色機制表現(xiàn)出多重作用,通過與葉綠素降解相關(guān)基因(CcNYC、CcPAO、CcRCCR和CcSGR)以及類胡蘿卜素合成關(guān)鍵基因(CcPSY1、CcBCH2、CcNCED5)的結(jié)合激活[127-128],形成兩類色素的代謝平衡。此外bHLH的功能也在白梨等中得到驗證[129]。不同于通過轉(zhuǎn)錄組分析方式挖掘果實中與葉綠素代謝有關(guān)的轉(zhuǎn)錄因子,Oren等[130利用雙親/多親群體設(shè)計和深度測序,發(fā)現(xiàn)甜瓜的多等位基因CmAPRR2是葉綠素合成的正調(diào)控因子,這為研究葉綠素代謝途徑中的分子作用機制提供了新思路。

激素信號轉(zhuǎn)導相關(guān)轉(zhuǎn)錄因子通過調(diào)控葉綠素代謝相關(guān)基因的表達,在葉綠素代謝中同樣重要,從而影響果實的著色和成熟。乙烯響應(yīng)因子(AP2/ERFs)幫助果實去綠和軟化,MdERF17基因編碼區(qū)絲氨酸(Ser)重復數(shù)量影響ERF17蛋白的轉(zhuǎn)錄活性以及與葉綠素降解基因(MdPPH的結(jié)合能力,是影響蘋果果皮退綠的重要遺傳因素[131]。同時葡萄、柑橘中也存在相應(yīng)的ERFs激活葉綠素降解基因如PPH、PAO和RCCR等,完成果實在成熟和采后中的脫綠過程[132-133]。內(nèi)源ABA通常在葉綠素降解開始迅速增加,三種ABA響應(yīng)因子(ABF1/2/3)是荔枝著色的重要轉(zhuǎn)錄調(diào)控因子,其識別LcPAO和LcSGR啟動子區(qū)域的ABA響應(yīng)元件并激活LcMYB1,從而促進葉綠素降解和花青素合成[115]。IAA響應(yīng)因子(ARFs)也在果實的葉綠素代謝中有所報道,Chen等[134通過分析香蕉中MaIAA17-like在正常和低溫儲藏時的轉(zhuǎn)錄水平,發(fā)現(xiàn)冷害會抑制MaIAA17-like的表達,間接影響MaIAA17-like對MaNOL和MaSGR1的激活表達,這也表明冷儲會延緩香蕉果實的脫綠和成熟。轉(zhuǎn)錄組分析揭示香蕉成熟過程中乙烯、ABA和IAA激素信號響應(yīng)因子的表達趨勢,發(fā)現(xiàn)在香蕉脫綠時MaERFs和MaARF19-like表達上調(diào),相應(yīng)促進葉綠素降解相關(guān)基因MaSGR1、MaPPH1的表達,但MaABI5-like卻顯著下調(diào)[137]。細胞分裂素氧化酶(CKX)則抑制MaS-GRI的表達,延緩葉綠素的分解[138]。乙烯和ABA信號通路的相關(guān)轉(zhuǎn)錄因子能夠在果實脫綠過程中靶向激活葉綠素降解的關(guān)鍵基因 (SGR,PAO) ,從而促進葉綠素的降解,而IAA、CK則拮抗乙烯和ABA的協(xié)同作用,抑制降解基因的表達從而延緩果實的脫綠。

3.2 環(huán)境因素

果樹果實的葉綠素代謝離不開栽培環(huán)境的改良和完善,但目前只有較少的研究以分子機制為落點探究環(huán)境因素對葉綠素代謝的影響,現(xiàn)有的研究主要聚焦光環(huán)境、金屬離子元素和外源植物激素等。

光照是植物進行光合作用不可或缺的外界條件,不同光質(zhì)影響果實顏色轉(zhuǎn)變的途徑存在差異。采后柑橘經(jīng)藍光LED處理可激活內(nèi)源乙烯合成通路的關(guān)鍵基因(CitACS1、CitACO)以及信號轉(zhuǎn)導元件(CitETR1、CitEIN2、CitEIL1和CitERF2)等基因的表達間接促進葉綠素降解[139],而LED白光處理貯藏早酥梨則表現(xiàn)出CAO酶基因的高表達,抑制果實內(nèi)乙烯生成和葉綠素降解[140]。除了光質(zhì),光信號轉(zhuǎn)錄因子的調(diào)控對葉綠素代謝也尤為重要,在番茄、馬鈴薯等園藝作物上HY5、PIFs等光響應(yīng)因子的作用機制逐漸清晰[141-142],但果樹果實中光信號轉(zhuǎn)導與葉綠素代謝的分子互作網(wǎng)絡(luò)仍需探究。

表3調(diào)控葉綠素合成的主要轉(zhuǎn)錄因子及作用機制

Table3Main transcription factors and mechanisms regulating chlorophyll synthesis

葉綠素合成的核心途徑之一為原葉啉IX(proto-porphyrinIX,ProtoIX)的合成,鎂、鐵螯合酶將鎂、鐵離子送入ProtoIX中推動葉綠素的合成[143],金屬離子的穩(wěn)態(tài)調(diào)控對葉綠素代謝同樣重要。Song等[144研究了缺鐵條件時葡萄Fe2+轉(zhuǎn)運蛋白VvIRT的基因表達趨勢,發(fā)現(xiàn)IRT1缺失突變體的葉綠素含量顯著低于野生型。而桃樹噴施 MgCl2 可誘導 Mg2+ 轉(zhuǎn)運蛋白 PpMGT 家族基因表達上調(diào),加快植物體對外源 Mg2+ 的吸收利用,進而影響葉綠素的生物合成[145]。這些研究表明了離子轉(zhuǎn)運蛋白在葉綠素代謝途徑中發(fā)揮的關(guān)鍵作用。

外源激素處理通過調(diào)控轉(zhuǎn)錄因子網(wǎng)絡(luò)進而動態(tài)平衡葉綠素的合成或降解,同時幫助果實更快地著色和成熟。乙烯是促進果實褪綠和成熟過程中使用較為廣泛的外源激素,不但直接影響著葉綠素降解基因的表達,還對ERFs和某些轉(zhuǎn)錄因子起調(diào)控作用。早熟柑橘往往有果皮和果肉無法同時成熟的特性[4,因此外源乙烯處理使柑橘果皮褪綠和著色十分必要。已有研究證實CcbHLH35、CitERF13都被顯著誘導并結(jié)合葉綠素降解基因NYC1、PAO、RCCR和PPH,協(xié)同介導乙烯誘導的葉綠素降解[128.147]。此外,檸檬、蘋果等果實經(jīng)乙烯處理后促進PPH、NYC等基因表達,加速葉綠素的降解[148-149]。除了乙烯,ABA同樣是促進果實成熟的主要外源激素,單獨施用ABA能促進葉綠素的降解[150]。利用ABA作為對照,外源NAA雖能降低葉綠素的含量,但其對葉綠素降解基因的轉(zhuǎn)錄激活水平低于ABA[151]。而外源細胞分裂素(CPPU)對比ABA則表現(xiàn)出直接對SGR表達的抑制作用,從而緩解葉綠素的降解[152]。此外,其他激素如GA、MeJA等也參與葉綠素代謝相關(guān)基因的表達[153-154],形成復雜的激素互作網(wǎng)絡(luò)。

3.3 表觀遺傳

葉綠素代謝的表觀遺傳調(diào)控機制研究近年來取得重要突破,特別是DNA甲基化方面,DNA甲基化修飾與基因表達之間的相互作用是動態(tài)且復雜的,調(diào)控效果取決于具體的基因和表觀遺傳的環(huán)境。在菠蘿組織培養(yǎng)過程中,低DNA甲基化水平導致葉綠素降解途徑相關(guān)基因高度表達同時引起葉綠體的發(fā)育異常[155],柑橘和草莓低水平的DNA甲基化也會引起葉綠素合成基因的表達下降,導致無法著色[43,156]。長鏈非編碼RNA在果實成熟過程中是重要的調(diào)節(jié)因子。藍莓miR156a-SPL12模塊能動態(tài)調(diào)控葉綠素代謝相關(guān)基因(CAB、CLH2、NYCI)的表達[157]。桃果實在UV-B的處理下 miRI7Ic 表達顯著下調(diào),解除其對SCL的抑制,從而間接促進葉綠素的合成[158]。組蛋白修飾的泛素化作用能夠調(diào)控葉綠素的生物合成:高溫誘導香蕉中MaNIP1蛋白表達從而泛素化降解MaNYC1,抑制香蕉的褪綠過程[159];乙烯則促進蘋果E3泛素連接酶MdPUB24表達上調(diào),后者泛素化MdBEL7并解除其對葉綠素降解基因(MdCLH、MdPPH2和MdRCCR2)的抑制[160]。

4展望

類胡蘿卜素、花青素與葉綠素代謝的動態(tài)平衡受環(huán)境、激素與轉(zhuǎn)錄網(wǎng)絡(luò)協(xié)同調(diào)控。目前對于葉綠素與類胡蘿卜素在果實成熟過程中積累的時序性、花青素和類胡蘿卜素的競爭性合成以及三者間的協(xié)同或拮抗效應(yīng)仍缺乏系統(tǒng)和深入的解析。當前研究焦點逐漸從單一的色素代謝轉(zhuǎn)向三類色素的協(xié)同或拮抗機制,并逐漸發(fā)掘更多調(diào)控三類色素代謝的關(guān)鍵基因節(jié)點(如MYB、bHLH、NAC)。多組學聯(lián)合分析(如代謝組、轉(zhuǎn)錄組、蛋白質(zhì)組)在揭示三類色素代謝的分子調(diào)控途徑中至關(guān)重要。轉(zhuǎn)錄組分析篩選三類色素代謝途徑的關(guān)鍵基因及其表達水平,鑒定核心轉(zhuǎn)錄因子并明確其在跨通路中的整合功能,代謝組動態(tài)分析色素代謝物(如類黃酮代謝物、葉綠素a/b 以及 β. -胡蘿下素)的積累趨勢,將代謝物水平與核心轉(zhuǎn)錄因子進行關(guān)聯(lián)分析,明確關(guān)鍵基因的具體調(diào)控功能。而蛋白質(zhì)組學則聚焦翻譯后修飾對酶活性的動態(tài)調(diào)控,在蛋白層面明確核心轉(zhuǎn)錄因子的修飾對色素代謝的調(diào)控模式。核心轉(zhuǎn)錄因子通過完善的基因編輯手段(如CRISPR/Cas9),進行敲除或過表達,定向調(diào)節(jié)目標色素的積累或降解,協(xié)調(diào)三類色素的代謝平衡(圖1)。

目前,表觀遺傳的研究方向也逐漸與環(huán)境脅迫和激素信號進行關(guān)聯(lián)。但表觀遺傳與激素信號的互作機制尚不完善,例如表觀遺傳如何通過激活激素信號傳導途徑的相關(guān)轉(zhuǎn)錄因子從而影響果實呈色仍需進一步研究。此外,環(huán)境脅迫(如低溫、干旱)如何通過表觀遺傳手段調(diào)控色素代謝的分子機制,是提高果樹果實抗逆性的重要方向。

本文整合了三類色素代謝的分子調(diào)控框架,提圖中箭頭表示促進作用。該圖根據(jù)梁敏華等[22]、Zhang等[26]、Sun等[29]、An等[65] Sun 等[7]、Jin等[8]、Xing等[9]、Wei等[124]、Wang等[125]、Zou等[126]、Wang等[127]的研究繪制。

圖1跨通路代謝關(guān)鍵轉(zhuǎn)錄因子調(diào)控網(wǎng)絡(luò)

出了跨通路色素代謝的關(guān)鍵節(jié)點,通過系統(tǒng)梳理環(huán)境-基因-色素代謝的調(diào)控途徑,為設(shè)施栽培定向調(diào)控果實色素積累提供理論依據(jù)。在設(shè)施栽培中建立光質(zhì)、溫度與激素協(xié)同互作模式,最大程度實現(xiàn)果實色素積累,提高市場競爭力和經(jīng)濟收益。同時整合表觀遺傳修飾涉及的分子調(diào)控機制,合理利用外源激素或小分子抑制劑(如甲基化抑制劑5-AZ),實現(xiàn)對果實著色的精準控制。

果實的色澤不僅是外觀指標,也與營養(yǎng)性(如三類色素的抗氧化性等醫(yī)用價值)、貯藏性(葉綠素降解與果實軟化)以及抗逆性(花青素響應(yīng)脅迫)密切相關(guān)。果實著色的分子調(diào)控正從單一途徑向多維度的調(diào)控網(wǎng)絡(luò)邁進,未來需探索果實色澤調(diào)控網(wǎng)絡(luò)與果實綜合品質(zhì)的關(guān)聯(lián),通過深化理論研究并整合新型技術(shù)手段,實現(xiàn)果實色澤的精準設(shè)計,為順應(yīng)市場需求高效化、高品質(zhì)培育優(yōu)良果樹品種。

參考文獻References:

[1] MUHAMMADN,LUOZ,YANGM,LIUZG,LIUMJ.The underlying molecular mechanisms of external factors influencingfruit coloration in fruit trees[J].ScientiaHorticulturae,2023, 309:111615.

[2] MUHAMMADN,LIUZG,WANGLX,YANGMS,LIUMJ. The underlying molecular mechanisms of hormonal regulation offruit color in fruit-bearing plants[J].Plant Molecular Biology, 2024,114(5):104.

[3] 刁衛(wèi)楠,朱紅菊,劉文革.蔬菜作物中類胡蘿卜素研究進展[J]. 中國瓜菜,2021,34(1):1-8. DIAOWeinan,ZHU Hongju,LIU Wenge.Research progress on carotenoids in vegetable crops[J].China Cucurbits and Vegetables,2021,34(1):1-8.

[4] 胡紫蔚,張蕾琛,陳英子,朱勇,章豪,黃蕓萍.西瓜果實類胡蘿 卜素組分含量與瓢色相關(guān)性分析[J].中國瓜菜,2025,38(1): 31-38. HU Ziwei,ZHANG Leichen,CHEN Yingzi,ZHU Yong, ZHANG Hao,HUANG Yunping.Correlation analysis between tent[J].China Cucurbitsand Vegetables,2025,38(1):31-38.

[5] 陸晨飛,高月霞,黃河,戴思蘭.植物類胡蘿卜素代謝及調(diào)控 研究進展[J].園藝學報,2022,49(12):2559-2578. LU Chenfei, GAO Yuexia,HUANG He,DAI Silan. Carotenoid metabolism and regulation in plants[J]. Acta Horticulturae Sinica,2022,49(12):2559-2578.

[6] MAOKA T. Carotenoids as natural functional pigments[J]. Journal of Natural Medicines,2020,74(1): 1-16.

[7] SUNTH,RAOS,ZHOUXS,LIL.Plant carotenoids:Recent advancesand future perspectives[J].MolecularHorticulture, 2022,2(1) :3.

[8] 何靜娟,范燕萍.觀賞植物花色相關(guān)的類胡蘿卜素組成及代 謝調(diào)控研究進展[J].園藝學報,2022,49(5):1162-1172. HE Jingjuan,F(xiàn)AN Yanping. Progress in composition and metabolic regulation of carotenoidsrelated to floral color[J].Acta Horticulturae Sinica,2022,49(5):1162-1172.

[9] 樊寶蓮,王曉云.轉(zhuǎn)錄因子調(diào)控植物類胡蘿卜素合成途徑的 研究進展[J].分子植物育種,2021,19(13):4401-4408. FAN Baolian,WANG Xiaoyun. Research progress of transcription factors regulating carotenoid synthesis pathway in plant[J]. Molecular Plant Breding,2021,19(13):4401-4408.

[10]ZHOUWQ,ZHAO SR,XUM,NIUYY,NASIER M,F(xiàn)ANG Q,QUAN S W,ZHANG S K, WANG YT,LIAO K. Identification ofkey genes controlling carotenoid metabolism during apricot fruit development by integrating metabolic phenotypes and gene expression profiles[J]. Journal of Agricultural and Food Chemistry,2021,69(32):9472-9483.

[11]LEVIN G.Promoting carotenoid biosynthesis in the NUD (X23)[J]. The Plant Cell,2024,36(5): 1588-1589.

[12]KARNIEL U, BERKE N A,MANN V,HIRSCHBERG J. Perturbations in the carotenoid biosynthesis pathway in tomato fruit reactivate the leaf-specific phytoene synthase2[J].Frontiers in Plant Science,2022,13:844748.

[13]LADO J,ALOS E,MANZI M,CRONJE P JR,GOMEZ-CADENAS A,RODRIGO M J, ZACARIAS L. Light regulation of carotenoid biosynthesis in the peel of mandarin and sweet orange fruits[J].Frontiers in Plant Science,2019,10:1288.

[14] MESEJO C,LOZANO-OMENACA A,MARTINEZ-FUENTES A,REIG C,GAMBETTA G,MARZAL A,MARTINEZALCANTARA B,GRAVINA A,AGUSTI M. Soil-to-fruit nitrogen flux mediates the onset of fruit-nitrogen remobilization and color change in citrus[J]. Environmental and Experimental Botany,2022,204:105088.

[15]GE X X,CAO T T,YI L H,YAO S X,ZENG KF,DENG L L. Lowand high storage temperature inhibited the coloration of mandarin fruit (Citrusunshiu Marc.)with different mechanism[J]. Journal of the Science ofFood and Agriculture,2022,102(15): 6930-6941.

[16]LI XB, ZHANGD D,PAN XH,KAKAR KU,NAWAZ Z. Regulation of carotenoid metabolism and ABAbiosynthesis during blueberry fruit ripening[J].Plant Physiologyand Biochemistry,2024,206:108232.

[17]SUNQ,HE ZC,F(xiàn)ENGD,WEIRR,ZHANGY Z,YEJL, CHAI L J,XU J,CHENG Y J,XU Q,DENG X X. The abscisic acid-responsive transcriptional regulatory module CsERF110- CsERF53 orchestrates citrus fruit coloration[J].Plant Communications,2024,5(11):101065.

[18]YUE P T,JIANG ZH,SUNQ,WEI RR,YIN Y Z,XIE Z Z, LARKIN R M,YEJ L,CHAI L J,DENG X X. Jasmonate activates a CsMPK6-CsMYC2 module that regulates the expression of β -citraurin biosynthetic genes and fruit coloration in orange (Citrus sinensis)[J].The Plant Cell,2023,35(4):1167-1185.

[19] ZHU KJ,CHEN HY,MEI XH,LU SW,XIE HP,LIU J W, CHAI L J,XU Q, WURTZEL E T, YE J L,DENG X X. Transcription factor CsMADS3 coordinately regulates chlorophyll and carotenoid pools in Citrus hesperidium[J]. Plant Physiology, 2023,193(1):519-536.

[20] 肖翔,周儲江,金舒婉,施麗愉,楊震峰,曹士鋒,陳偉. PpMADS2與PpMADS3 協(xié)同調(diào)控黃肉桃果實類胡蘿卜素積 累機制的研究[J].園藝學報,2023,50(6):1173-1186. XIAO Xiang,ZHOU Chujiang,JIN Shuwan,SHI Liyu, YANG Zhenfeng,CAO Shifeng,CHENWei.MechanismofPpMADS2 and PpMADS3 synergistically regulating carotenoids accumulation in peach fruit[J].Acta Horticulturae Sinica,2023,50(6): 1173-1186.

[21]TANTISUWANICHKUL K,KOMAKI S,WATANABE M, TOHGE T,SIRIKANTARAMAS S. Unveiling the regulatory role ofDzAGL6-1 in carotenoid biosynthesis during durian (Durio zibethinus) fruit development[J].Plant Cell Reports,2024,43 (9):217.

[22] 梁敏華,梁瑞進,楊震峰,鄧鴻鈴.NAC6 轉(zhuǎn)錄因子在芒果果實 采后類胡蘿卜素代謝過程中的表達及影響[J].食品科學, 2024,45(16): 77-87. LIANG Minhua,LIANG Ruijin,YANG Zhenfeng,DENG Hongling.Expression of NAC6 transcription factor and its impact on carotenoid metabolism in postharvest mango fruit[J]. Food Science,2024,45(16):77-87.

[23]FUC C,HAN YC,F(xiàn)AN ZQ,CHEN JY,CHEN WX,LU WJ, KUANG J F. The papaya transcription factor CpNAC1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening[J]. Journal of Agricultural and Food Chemistry,2016,64(27):5454-5463.

[24]FU CC,HAN Y C,KUANG JF,CHEN JY,LU W J. Papaya CpEIN3a and CpNAC2 co-operatively regulate carotenoid biosynthesis-related genes CpPDS2/4,CpLCY-e and CpCHY-b during fruit Ripening[J]. Plant and Cell Physiology,2017,58(12): 2155-2165.

[25] GONGJL,ZENGYL,MENGQN,GUANYJ,LICY, YANG HB,ZHANGY Z,AMPOMAH-DWAMENAC,LIU P, CHENC W,DENG X X,CHENG Y J,WANG PW. Red lightinduced kumquat fruit coloration is atributable to increased carotenoid metabolism regulated by FcrNAC22[J]. Journal of Experimental Botany,2021,72(18):6274-6290.

[26] ZHANGC,DAIZW,F(xiàn)ERRIERT,ORDUNAL,SANTIAGO A,PERIS A,WONG D CJ,KAPPEL C,SAVOI S,LOYOLA R,AMATOA,KOZAKB,LIMM,LIANGAK,CARRASCO D,MEYER- REGUEIRO C,ESPINOZA C,HILBERT G, FIGUEROA-BALDERAS R, CANTU D,ARROYO-GARCIA R,ARCE-JOHNSONP,CLAUDELP,ERRANDONEAD,RODRIGUEZ-CONCEPCION M,DUCHENE E,HUANG S C, CASTELLARINSD,TORNIELLIGB,BARRIEUF,MATUS JT. MYB24 orchestrates terpene and flavonol metabolism as light responses to anthocyanin depletion in variegated grape berries[J].ThePlant Cell,2023,35(12):4238-4265.

[27]FUC C,CHEN HJ,GAO HY,LUY,HAN C,HAN Y C. Two papaya MYB proteins function in fruit ripening by regulating some genes involved in cell-wall degradation and carotenoid biosynthesis[J]. Journal of the Science of Food and Agriculture, 2020,100(12):4442-4448.

[28]TIAN S L, YANG Y Y,F(xiàn)ANG B, UDDIN S, LIU X G. The CrMYB33 transcription factor positively coordinate the regulation of both carotenoid accumulation and chlorophyll degradation in the peel of citrus fruit[J].Plant Physiology and Biochemistry,2024,209:108540.

[29]SUNQ,HEZC,WEIRR,YINYZ,YEJL,CHAILJ,XIE Z Z,GUO WW,XU J,CHENG YJ,XU Q,DENG X X. Transcription factor CsTT8 promotes fruit coloration by positively regulating the methylerythritol4-phosphatepathwayand carotenoid biosynthesis pathway in citrus (Citrusspp.)[J].Horticulture Research,2023,10(11):uhad199.

[30]SUNQ,HE ZC,WEIRR,ZHANGY,YEJL,CHAILJ,XIE Z Z,GUOWW,XUJ,CHENGYJ,XUQ,DENGXX.The transcriptional regulatory module CsHB5-CsbZIP44 positively regulates abscisic acid-mediated carotenoid biosynthesis in citrus (Citrus spp.)[J].Plant Biotechnology Journal,24,2(3): 722-737.

[31]宋聰豪,姜超,金自清,張海朋,王小貝,侯楠,程鈞,王偉,鄭先 波,馮建燦,連曉東,譚彬.PpWRKY4通過影響PpCCD4表 達調(diào)控桃果實類胡蘿卜素積累[J].果樹學報,2024,41(8): 1504-1512. SONG Conghao, JIANG Chao,JIN Ziqing, ZHANG Haipeng, WANGXiaobei,HOUNan,CHENGJun,WANGWei,ZHENG Xianbo,F(xiàn)ENG Jiancan,LIAN Xiaodong,TAN Bin. PpWRKY4 regulates carotenoids accumulation in peach fruit by affecting the expression of PpCCD4[J]. Journal of Fruit Science,2024,41 (8): 1504-1512.

[32]YUY,BAO ZY,ZHOUQH,WU W,CHENW,YANG Z F, WANG L,LI X W,CAO SF,SHI L Y. EjWRKY6 is involved in the ABA-induced carotenoid biosynthesis in loquat fruit during ripening[J].Foods,2024,13(17):2829.

[33]SONGHY,ZHAOK,JIANGGL,SUNSX,LIJ,TUMY, WANGL L,XIE HJ,CHEN D.Genome-wide identification and expression analysis of the SBP-box gene family in loquat fruit development[J].Genes,2024,15(1):23.

[34]DANGQY,SHAHY,NIEJY,WANGY Z,YUANYB,JIA D J.An apple (Malus domestica) AP2/ERF transcription factor modulates carotenoid accumulation[J]. Horticulture Research, 2021,8(1):223.

[35]ZHUKJ,SUNQ,CHEN HY,MEI XH,LU SW,YE JL, CHAI L J,XU Q,DENG X X.Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERFo61[J]. Journalof Experimental Botany,2021,72(8):3137-3154.

[36]JIAD J,LIYC,JIA K,HUANG BC,DANGQY,WANG H M,WANGXY,LICY,ZHANGYG,NIEJY,YUANYB. Abscisicacid activates transcription factor moduleMdABI5-MdMYBS1 during carotenoid- derived apple fruit coloration[J]. Plant Physiology,2024,195(3):2053-2072.

[37]FU C C,HAN Y C. CpMADS4 and CpERF9 jointly regulate carotenoid synthesis related genes during papaya fruit ripening[J]. Food Research International,2025,203:115864.

[38]HAO YW,HUG J,BREITEL D,LIU MC,MILAI,F(xiàn)RASSE P,F(xiàn)U Y Y,AHARONI A,BOUZAYEN M, ZOUINE M. Auxin response factor SlARF2 is an essential component of the regulatorymechanism controlling fruit ripening in tomato[J].PLoS Genetics,2015,11(12):e1005649.

[39]LIU L H,JIA C G,ZHANG M,CHEN DL,CHEN S X,GUO R F,GUO D P,WANG Q M. Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato[J]. Plant Biotechnology Journal,2014,12(1):105-115.

[40]KUHN N,ARELLANO M, PONCE C,HODAR C,CORREA F,MULTARI S,MARTENS S,CARRERA E,DONOSO JM, MEISEL L A. RNA-seq and WGBS analyses during fruit ripening and in response to ABA in sweet cherry (Prunus avium) reveal genetic and epigenetic modulation of auxin and cytokinin genes[J].Journal ofPlant Growth Regulation,2025,44(3):1165- 1187.

[41]ANWAR S,BRENYA E,ALAGOZ Y,CAZZONELLI C I. Epigenetic control of carotenogenesis during plant development[J]. CriticalReviewsinPlant Sciences,2021,40(1):23-48.

[42]XUJD,WANG X,CAO HB,XU HD,XUQ,DENG X X. Dynamic changes in methylome and transcriptome paterns in response to methyltransferase inhibitor 5-azacytidine treatment in citrus[J].DNA Research,2017,24(5):509-522.

[43]HUANG H,LIU R E,NIU QF,TANG K,ZHANG B,ZHANG H,CHENKS,ZHUJK,LANGZB.Global increasein DNA methylation during orange fruit development and ripening[J]. Proceedingsof theNational AcademyofSciencesof the United States of America,2019,116(4):1430-1436.

[44] ZHENG JR,YANG X Y,YE J B,SU D X,WANG L N,LIAO YL,ZHANGWW,WANGQJ,CHENQW,XUF.Multiomics analysis provides new insights into the regulatory mechanism of carotenoid biosynthesis in yellow peach peel[J]. MolecularHorticulture,2023,3(1):23.

[45]TIAN YY,BAI S,DANG ZH,HAO JF,ZHANG J,HASI A. Genome-wide identification and characterization of long noncoding RNAs involved in fruit ripening and the climacteric in Cucumis melo[J].BMC Plant Biology,2019,19(1):369.

[46]SUNLP,HUO JT,LIU JY,YUJY,ZHOUJL,SUNCD, WANGY,LENGF.Anthocyaninsdistribution,transcriptional regulation,epigenetic and post- translational modification in fruits[J].Food Chemistry,2023,411:135540.

[47]王碩,鄭秀文,王琪,馮慧智,劉冠,張萌萌.果樹中花青素合成 及其分子調(diào)控機制研究進展[J/OL].分子植物育種,2022:1- 10.(2022- 07- 29). https://kns.cnki.net/kcms/detail/46.1068. S.20220728.1710.014.html. WANG Shuo,ZHENG Xiuwen,WANG Qi,F(xiàn)ENG Huizhi ,LIU Guan,ZHANG Mengmeng. Research progress on anthocyanin synthesis and its molecular regulation mechanism in fruit trees[J/ OL].Molecular Plant Breeding,2022:1-10.(2022-07-29).https:// kns.cnki.net/kcms/detail/46.1068.S.20220728.1710.014.html.

[48]喬廷廷,郭玲.花青素來源、結(jié)構(gòu)特性和生理功能的研究進展[J]. 中成藥,2019,41(2):388-392. QIAO Tingting,GUO Ling. Research progress on the source, structural properties and physiological functions of anthocyanins[J]. Chinese Traditional Patent Medicine,2019,41(2): 388- 392.

[49]張麗,范維娟,鄭臻穎,楊俊,康樂,王紅霞.花青素糖基化、甲 基化和酰基化修飾的研究現(xiàn)狀[J].分子植物育種,2023,21 (7):2378-2387. ZHANG Li,F(xiàn)AN Weijuan,ZHENG Zhenying,YANG Jun,KANG Le,WANG Hongxia. Research progress of anthocyanin glycosylation,methylation and acylation modification in plants[J]. Molecular Plant Breeding,2023,21(7):2378-2387.

[50]朱曉路,陳文博,王玉玲,賈國超.食品中的花青素及其與金 屬離子的相互作用[J].食品工業(yè),2022,43(9):249-253. ZHUXiaolu,CHENWenbo,WANG Yuling,JIA Guochao. Anthocyanins in food and the interaction with metal ions[J].The Food Industry,2022,43(9):249-253.

[51]崔海鵬,郭健龍,王大全,楊劍婷.花青素加工穩(wěn)定性及其研 究進展[J].食品與發(fā)酵工業(yè),2024,50(13):388-397. CUI Haipeng,GUO Jianlong, WANG Daquan,YANG Jianting. Stability of anthocyanins during processing and research progress[J].Food and Fermentation Industries,2024,50(13):388- 397.

[52]WANG JD,ZHAO YQ,SUN B,YANG Y T,WANG S P, FENG Z R,LI JY. The structure of anthocyanins and the copigmentation by common micromolecular copigments : A review[J].FoodResearchInternational,2024,176:113837.

[53]GAO HN,JIANG H,CUI JY,YOU CX,LIY Y. Review:The effectsof hormones and environmental factors on anthocyanin biosynthesis inapple[J]. Plant Science,2021,312:111024.

[54] GIL- MUNOZ F, SANCHEZ- NAVARRO J A, BESADA C, SALVADOR A, BADENES M L, NAVAL M D M, RIOS G. MBW complexes impinge on anthocyanidin reductase gene regulation for proanthocyanidin biosynthesis in persimmon fruit[J]. Scientific Reports,2020,10:3543.

[55]孫曉紅.紅肉蘋果MYB10及其啟動子對花青苷合成相關(guān)基 因的調(diào)控作用[D].長沙:湖南農(nóng)業(yè)大學,2017. SUN Xiaohong.Regulation of related genes involved in anthocyanin biosynthesis bythe MYB10 and its promoter in red flesh apple[D]. Changsha:Hunan Agricultural University,2017.

[56]WANG N,XU HF,JIANG SH,ZHANG ZY,LUNL,QIU H R,QUC Z,WANG YC,WU SJ,CHEN X S. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesisinred-fleshedapple (Malussieversii f.niedzwetzkyana)[J].ThePlant Journal,2017,90(2):276-292.

[57]FENGSQ,XUYC,YANGL,SUN S S,WANG DY,CHEN XS Genome-wide identification and characterization ofR2R3- MYB transcription factors in pear[J].Scientia Horticulturae, 2015,197:176-182.

[58]FENG SQ,WANGY L,YANG S,XU Y T,CHEN X S.Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10[J].Planta,2010,232(1):245-255.

[59]WANG HY,ZHAI LL,WANG S W,ZHENG B T,HU HL,LI X Y,BIAN S M. Identification of R2R3-MYB family in blueberryandits potential involvement of anthocyanin biosynthesisin fruits[J].BMCGenomics,2023,24(1):505.

[60]TANG Q,CHI F M,LIU HD,ZHANG H J,SONG Y. Singlemolecule real-time and illumina sequencing to analyze transcriptional regulation of flavonoid synthesis in blueberry[J]. Frontiers in Plant Science,2021,12:754325.

[61]KARPPINEN K,LAFFERTYD J,ALBERT N W,MIKKOLA N,MCGHIET,ALLANAC,AFZALBM,HAGGMANH,ESPLEYRV,JAAKOLAL. MYBA and MYBPA transcription factorsco-regulate anthocyanin biosynthesis in blue-coloured berries[J].New Phytologist,2021,232(3):1350-1367.

[62]GUNTHER C S,DARE AP,MCGHIETK,DENG C,LAFFERTYDJ,PLUNKETTBJ,GRIERSONERP,TURNERJ L,JAAKOLAL,ALBERTNW,ESPLEYRV.Spatiotemporal modulation of flavonoid metabolism in blueberries[J]. Frontiers inPlant Science,2020,11:545.

[63]安昌,陸琳,沈夢千,陳盛圳,葉康卓,秦源,鄭平.植物bHLH 基因家族研究進展及在藥用植物中的應(yīng)用前景[J].生物技術(shù) 通報,2023,39(10):1-16. AN Chang,LU Lin,SHEN Mengqian,CHEN Shengzhen,YE Kangzhuo,QIN Yuan,ZHENG Ping.Research progress of bHLH gene family in plants and its application prospects in medical plants[J].Biotechnology Bulletin,2023,39(10):1-16.

[64]LI X Y,XIANGF X,HAN W,QIE BQ,ZHAI R,YANG C Q, WANGZG,XULF.TheMIR-domain of PbbHLH2isinvolved inregulationoftheanthocyanin biosyntheticpathwayin“Red Zaosu”(PyrusbretschneideriRehd.)pearfruit[J].International Journal of Molecular Sciences,2021,22(6):3026.

[65]AN JP,XU RR,WANG X N,ZHANG X W,YOU C X,HAN Y P. MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple[J]. Journal of Integrative Plant Biology,2024,66(2):265-284.

[66]WANG L H,TANG W,HU Y W,ZHANG Y B,SUN JQ,GUO XH,LUH,YANGY,F(xiàn)ANGCB,NIUXL,YUEJY,F(xiàn)EIZJ, LIUYS.AMYB/bHLHcomplexregulates tissue-specific anthocyanin biosynthesisin the inner pericarp of red-centered kiwifruit Actinidia chinensis cv.Hongyang[J]. The Plant Journal, 2019,99(2):359-378.

[67]LIUYF,MA KX,QIY W,LV GW,RENXL,LIU ZD,MAF W.Transcriptional regulation of anthocyanin synthesis by MYBbHLH-WDR complexes in kiwifruit (Actinidia chinensis)[J]. JournalofAgricultural and Food Chemistry,2021,69(12):3677- 3691.

[68]YUE ML,JIANG LY,ZHANG N T,ZHANG L X,LIU Y Q, LINYX,ZHANGYT,LUOY,ZHANGY,WANGY,LIMY, WANG XR,CHEN Q,TANG HR.Regulation of flavonoids in strawberry fruitsbyFaMYB5/FaMYB10 dominated MYBDHLH-WD4U ternary compiexes[J]. rronuers in Piant Science, 2023,14:1145670.

[69]FAN ZY, ZHAI Y L,WANG Y, ZHANG L,SONG MY, FLAISHMAN M A,MA H Q. Genome-wide analysis of anthocyanin biosynthesis regulatory WD40 gene FcTTG1 and related familyinFicuscaricaL.[J].FrontiersinPlantScience,2022, 13:948084.

[70]TANG Q,WANG X,MA S R,F(xiàn)AN S T,CHI F M, SONG Y. Molecular mechanism of abscisic acid signaling response factor VcbZIP55 to promoteanthocyanin biosynthesis in blueberry (Vaccinium corymbosum)[J]. Plant Physiology and Biochemistry,2024,210:108611.

[71]GAI S L,DU B Y, XIAO Y Q,ZHANG X,TURUPU M, YAO Q S,WANG X Y,YAN Y Z,LI T H. bZIP transcription factor PavbZIP6 regulates anthocyanin accumulation by increasing abscisic acid in sweet cherry[J]. International Journal of Molecular Sciences,2024,25(18):10207.

[72]SHEN SL,HU XL,CHENG J,LOU L C,HUAN C,ZHENG X L.PsbZIP1 and PsbZIP10 induce anthocyanin synthesis in plums (Prunus salicina cv. Taoxingli) via PsUFGT by methylsalicylate treatment during postharvest[J].Postharvest Biology and Technology,2023,203:112396.

[73]ZHAO Y,MIN T,CHEN M J, WANG H X,ZHU C Q,JIN R, ALLANAC,KUI L W,XUCJ.The photomorphogenic transcription factor PpHY5 regulates anthocyanin accumulation in response to UVA and UVB irradiation[J].Frontiers inPlant Science,2021,11:603178.

[74]WANG YY,ZHANG XD,ZHAO Y R,YANG J,HEYY,LIG C,MAWR,HUANG XL,SU J. Transcription factor PyHY5 binds to the promoters of PyWD40 and PyMYB10 and regulates its expression in red pear‘Yunhongli No.1'[J].Plant Physiology and Biochemistry,2020,154:665-674.

[75]ANJP,WANG XF,ZHANG X W,BI SQ,YOU C X,HAO Y J.MdBBX22 regulates UV-B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for26S proteasome-mediated degradation[J].Plant Biotechnology Journal,2019,17(12):2231-233.

[76]宋楊,劉紅弟,王海波,張紅軍,劉鳳之.越橘VcNAC072克隆 及其促進花青素積累的功能分析[J].中國農(nóng)業(yè)科學,2019,52 (3):503-511. SONG Yang,LIU Hongdi,WANG Haibo, ZHANG Hongjun, LIUFengzhi.Molecular cloning and functional characterization of VcNACo72 reveals its involvement in anthocyanin accumulation in blueberry[J]. Scientia Agricultura Sinica,2019,52(3): 503-511.

[77]SUNQG,JIANG SH,ZHANG TL,XU HF,F(xiàn)ANG H C, ZHANGJ,SUMY,WANGYC,ZHANGZY,WANGN, CHENX S.Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9andMdMYB11[J].PlantScience,2019,289:110286.

[78]LIUWJ,MEI Z X,YUL,GUTT,LI ZQ,ZOUQ,ZHANG S H,F(xiàn)ANGHC,WANGYC,ZHANGZY,CHENXS,WANG N.The ABA-induced NAC transcription factor MdNAC1 interacts with a bZIP-type transcription factor to promote anthocyan2023,10(5):uhad049.

[79]LIC,WUJ,HUKD,WEI SW,SUN HY,HULY,HAN Z, YAO G F,ZHANG H. PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red- skinned pears[J]. Horticulture Research,2020, 7:37.

[80]HUJF,F(xiàn)ANG HC,WANG J,YUE X X,SUMY,MAO Z L, ZOU Q,JIANG HY,GUO Z W,YU L,F(xiàn)ENG T,LUL,PENG Z G,ZHANG Z Y,WANG N,CHEN X S. Ultraviolet B- induced MdWRKY72 expression promotes anthocyanin synthesis in apple[J].Plant Science,2020,292:110377.

[81]MO R L,HAN GM,ZHU Z X,ESSEMINE J,DONG Z X,LIY, DENG W,QU MN,ZHANG C,YU C. The ethylene response factorERF5regulatesanthocyanin biosynthesisin‘Zijin’mulberry fruits by interacting with MYBA and F3H genes[J]. International Journal ofMolecular Sciences,2022,23(14):7615.

[82]NIJB,PREMATHILAKE AT,GAO Y H,YUWJ,TAO R Y, TENGYW,BAI SL.Ethylene-activated PpERF105 induces the expression of the repressor-type R2R3-MYB gene PpMYB140 to inhibit anthocyanin biosynthesis in red pear fruit[J].The Plant Jourmal,2021,105(1):167-181.

[83]WANGCK,HAN PL,ZHAO YW,YUJQ,YOUCX,HU D G,HAO Y J. Genome-wide analysis of auxin response factor (ARF)genesand functional identification ofMdARF2 reveals the involvement in the regulation of anthocyanin accumulation inapple[J].New Zealand Journal ofCropandHorticultural Science,2021,49(2/3):78-91.

[84]YI S N,MAO J X,ZHANG XY,LI X M,ZHANG Z H,LI H. FveARF2 negativelyregulates fruit ripeningand qualityinstrawberry[J].Frontiers in Plant Science,2022,13:1023739.

[85]WANG Y C,MAO Z L,JIANG HY,ZHANG Z Y,WANG N, CHEN X S.Brassinolide inhibits flavonoid biosynthesis and redflesh coloration via the MdBEH2.2-MdMYB60 complex in apple[J].Journal of Experimental Botany,2021,72(18):6382-6399.

[86]JIN Z L,WANG W N,NAN Q,LIU J W,JUY L,F(xiàn)ANG Y L. VvNAC17,a grape NAC transcription factor,regulates plant response to drought-tolerance and anthocyanin synthesis[J].Plant Physiology and Biochemistry,2025,219:109379.

[87]胡可,韓科廳,戴思蘭.環(huán)境因子調(diào)控植物花青素苷合成及呈 色的機理[J].植物學報,2010,45(3):307-317. HU Ke,HAN Keting,DAI Silan.Regulation of plant anthocyaninsynthesisand pigmentation by environmental factors[J].Chinese Bulletin of Botany,2010,45(3):307-317.

[88]ENARU B,DRETCANU G,POP TD,STANILA A,DIACONEASA Z. Anthocyanins:Factors affecting their stability and degradation[J]. Antioxidants,2021,10(12):1967.

[89]LIY,XU PB,CHENGQ,WU J,LIU ZC,LIAN HL.FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5-bHLH9 transcription complex in strawberry fruits[J].Plant amp; Cell Physiology,2020,61(4):826-837.

[90]XINGYF,SUNWJ,SUNYY,LIJL,ZHANGJ,WUT, SONGTT,YAOYC,TIANJ.MPK6-mediated HY5 phosphorylation regulates light-induced anthocyanin accumulation in apple fruit[J].Plant Biotechnology Journal,2023,21(2):283-301.

[91]LIUY Q,TANG L,WANG YP,ZHANG L X,XU SQ,WANG X,HEW,ZHANGY T,LIN Y X,WANGY,LI MY,WANG X R,ZHANG Y,LUO Y,CHEN Q,TANG HR. The blue light signal transduction module FaCRY1-FaCOP1-FaHY5 regulates anthocyanin accumulation in cultivated strawberry[J]. Frontiers inPlant Science,2023,14:1144273.

[92]HUANGD,YUANY,TANGZZ,HUANGY,KANGCY, DENG X X,XU Q. Retrotransposon promoter of Rubyl controls both light- and cold-induced accumulation of anthocyanins in blood orange[J]. Plant,Cell amp; Environment,2019,42(11): 3092-3104.

[93]CHEN M K,LIANG X L,YANG Y,WANG Y,WEI J,DUAN Y,PENG HX,DUAN Y,HUANG Y X,ZOUWT,LI HH. MpYABBY2 promotes ABA accumulation and influences MpMYB11/MpbHLH79 complex to regulate anthocyanin biosynthesis in Malus‘Pinkspire’fruits under cold stress[J].Postharvest Biologyand Technology,2025,222:113341.

[94]NAING A H,KIM C K. Abiotic stress-induced anthocyanins in plants:Their role in tolerance to abiotic stresses[J].Physiologia Plantarum,2021,172(3):1711-1723.

[95]FENG X H,BAI S N,ZHOU L X,SONG Y, JIA S J,GUO Q X,ZHANG CY. Integrated analysis of transcriptome and metabolome provides insights into flavonoid biosynthesis of blueberry leaves in response to drought stressJ]. International Journal of MolecularSciences,2024,25(20):11135.

[96]ANJP,ZHANG XW,LIUY J,WANG XF,YOU CX,HAO YJ.ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple[J]. Journal of Experimental Botany,2021,72(4):1460-1472.

[97]WANG X,TANGQ,CHIFM,LIUHD,ZHANG HJ,SONG Y. Sucrose non-fermenting1-related protein kinase VcSnRK2.3 promotes anthocyanin biosynthesis in association with VcMYB1 in blueberry[J].Frontiers in Plant Science,2023,14:1018874.

[98]AN JP,XURR,LIU X,ZHANG JC,WANG X F,YOU C X, HAOYJ.Jasmonate induces biosynthesis of anthocyanin and proanthocyanidin in apple by mediating the JAZ1-TRB1-MYB9 complex[J]. The Plant Journal,2021,106(5):1414-1430.

[99]WANG Y C,WANG N,XU HF,JIANG S H,F(xiàn)ANG HC,SU M Y,ZHANG Z Y,ZHANG T L,CHEN X S. Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple[J]. Horticulture Research,2018,5:59.

[100]NIJB,WANGSM,YUWJ,LIAOYF,PANC,ZHANGM M,TAORY,WEIJ,GAOYH,WANGDS,BAISL,TENG Y W.The ethylene-responsive transcription factor PpERF9 represses PpRAP2.4 and PpMYB114 via histone deacetylation to inhibit anthocyanin biosynthesis in pear[J].The Plant Cell, 2023,35(6):2271-2292.

[101] LIHL,LIU ZY,WANGXN,HANYP,YOUCX,ANJP. E3 ubiquitin ligases SINA4 and SINAll regulate anthocyanin biosynthesis by targeting the IAA29-ARF5-1-ERF3 module in apple[J].Plant,Cellamp; Environment,2023,46(12):3902-3918.

[102] YULJ,SUNYY,ZHANGX,CHENMC,WUT,ZHANG J, XING Y F,TIANJ, YAO YC.ROS1 promotes low temperaingthe promoter of anthocyanin-associated genes[J].Horticulture Research,2022,9:uhac007.

[103] ZHU Y C, ZHANG B,ALLAN A C,KUI L W, ZHAO Y, WANGK,CHENKS,XUCJ.DNAdemethylationisinvolved in the regulation of temperature-dependent anthocyanin accumulation in peach[J]. The Plant Journal,2020,102(5):965-976.

[104]MAHY,YANGT,LIY,ZHANGJ,WUT,SONGTT,YAOY C,TIAN J. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage lightinduced anthocyanin accumulation in apple fruit[J].The Plant Cell,2021,33(10):3309-3330.

[105] TANG Y J,QU Z P,LEI J J,HE RQ,ADELSON D L,ZHU Y L,YANG Z B,WANG D. The long noncoding RNA FRILAIR regulatesstrawberry fruit ripening by functioningasanoncanonical target mimic[J].PLoS Genetics,2021,17(3):e1009461.

[106] ZHAOY,SUNJL,CHERONOS,ANJP,ALLANAC,HANY P.Colorful hues:Insight into the mechanisms of anthocyanin pigmentationin fruit[J].PlantPhysiology,2023,192(3):1718-1732.

[107] ZHANG B,YANG HJ,QUD,ZHU Z Z,YANG Y Z,ZHAO Z Y.The MdBBX22- miR858-MdMYB9/11/12 module regulates proanthocyanidin biosynthesis in apple peel[J].Plant Biotechnology Journal,2022,20(9):1683-1700.

[108]LIUHN,SHUQ,KUILW,ALLANAC,ESPLEYRV,SUJ, PEIMS,WUJ.ThePyPIF5-PymiR156a-PySPL9-PyMYB114/ MYB10 module regulates light-induced anthocyanin biosynthesis in red pear[J]. Molecular Horticulture,2021,1(1):14.

[109] LIU XJ,AN XH,LIU X,HUD G,WANG XF,YOU C X, HAO Y J. MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple[J]. Journal of Experimental Botany,2017,68(11):2977- 2990.

[110] AN JP,LIU Y J,ZHANG X W,BI S Q,WANG X F,YOU C X, HAOYJ.Dynamic regulationof anthocyaninbiosynthesisat differentlight intensitiesbytheBT2-TCP46-MYB1 module inapple[J]. Journal of Experimental Botany,2020,71(10):3094-3109.

[111] BJORN L O,PAPAGEORGIOU G C,BLANKENSHIP R E, GOVINDJEE.A viewpoint:Why chlorophyll a[J]. Photosynthesis Research,2009,99(2):85-98.

[112]SUNDN,WUSL,LIXH,GEBS,ZHOUCX,YANXJ,RUAN R,CHENG PF. The structure,functions and potential medicinal effects of chlorophylls derived from microalgae[J].Marine Drugs,2024,22(2):65.

[113] PROCTOR M S,SUTHERLAND G A,CANNIFFE D P, HITCHCOCK A. The terminal enzymes of (bacterio) chlorophyll biosynthesis[J]. Royal Society Open Science,2022,9(5): 211903.

[114] MARTINS T,BARROS AN,ROSA E,ANTUNESL. Enhancing health benefits through chlorophylls and chlorophyll- rich agro- food:A comprehensive review[J].Molecules,2023,28 (14):5344.

[115] HUB,LAI B,WANGD,LI JQ,CHENLH,QINYQ,WANG H C,QIN Y H, HU G B, ZHAO J T. Three LcABFs are involved in the regulation of chlorophylldegradation and anthocyanin biosynthesis during fruit ripening in Litchi chinensis[J]. Plant and Cell Physiology,2019,60(2):448-461.

[116]LUYX,SHENXC,LIYC,XUYN,CHENYH,CHENYS, HUXL,LIXL,SUNXP,GONG JL.Regulationof chlorophyll and carotenoid metabolismin citrus fruit[J].Horticultural Plant Journal,2025,11(3):951-962.

[117] 張巧麗,陳笛,宋艷萍,朱鴻亮,羅云波,曲桂芹.番茄果實葉 綠素代謝轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)研究進展[J].園藝學報,2023,50(9): 2031-2047. ZHANG Qiaoli, CHEN Di,SONG Yanping, ZHU Hongliang, LUOYunbo,QUGuiqin.Review on transcriptional regulation ofchlorophyll metabolismnetwork in tomato fruits[J].Acta Horticulturae Sinica,2023,50(9):2031-2047.

[118]王偉,徐躍進,萬正杰.黃瓜葉綠素降解關(guān)鍵酶基因PPH和 PAO cDNA片段的克隆與表達初步分析[J].園藝學報,2011, 38(6):1104-1110. WANG Wei,XU Yuejin, WAN Zhengjie. Cloning and expression analysis of key genes PPHand PAO for chlorophyll degradation in cucumber[J].Acta Horticulturae Sinica,2011,38(6): 1104-1110.

[119]LIGW,CHENDY,TANGXF,LIUY S.Heterologous expression of kiwifruit (Actinidia chinensis) GOLDEN2-LIKE homolog elevates chloroplast level and nutritional quality in tomato (Solanum lycopersicum)[J].Planta,2018,247(6):1351-1362.

[120] CHENM,LIUX,JIANG SH,WENBB,YANGC,XIAO W, FU X L,LI D M,CHEN X D,GAO D S,LI L. Transcriptomic and functional analyses reveal that PpGLKl regulates chloroplast development in peach (Prunuspersica)[J].Frontiersin Plant Science,2018,9:34.

[121] ANXH,TIANY,CHENYH,LIEM,LI M,CHENG CG. Functional identification of apple MdGLK1 which regulates chlorophyll biosynthesis in Arabidopsis[J].Journal ofPlant Growth Regulation,2019,38(3): 778-787.

[122] XIONG B,CHEN H Z,MA Q Q,YAO JF,WANG JL,WU W J,LIAO L,WANG X,ZHANG MF,HE S Y,HE J X,SUN G C,WANG Z H. Genome-wide analysis of the GLK gene family and its expression at different leaf ages in the Citrus cultivar Kanpei[J]. Plants,2024,13(7):936.

[123] AMPOMAH- DWAMENA C, THRIMAWITHANA A H, DEJNOPRAT S,LEWIS D,ESPLEY R V,ALLAN A C.A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation[J].New Phytologist,2019,221(1):309-325.

[124]WEIW,YANGYY,LAKSHMANANP,KUANGJF,LUWJ, PANGXQ,CHENJY,SHANW.Proteasomal degradationof MaMYB60 mediated by the E3 ligase MaBAH1 causes high temperature-induced repression of chlorophyll catabolism and green ripening in banana[J]. The Plant Cell,2023,35(5):1408-1428.

[125]WANG F,WANG JW,SUN LJ,SONG X S. The molecular cloning and functional characterization of ChNAC1,a NAC transcription factor in Cerasus humilis[J].Plant Growth egulation,2019,89(3):331-343.

[126] ZOU SC,ZHUO M G,ABBASF,HU GB,WANGHC, HUANG X M.Transcription factor LcNACo02 coregulates chloPlantPhysiology,2023,192(3):1913-1927.

[127] WANG HL,LIUQ,DENG SF,CHENJL,HAN J, ZHU R, ZENG K F,DENG L L. Transcription factor CcbHLH66 regulates mandarin fruit coloration via modulating the expression of chlorophyll degradation related genes CcRCCR and CcNYC[J]. Postharvest Biology and Technology,2024,218:113188.

[128]LIUQ,DENGSF,LIUL,WANGHL,YUANLY,YAOSX, ZENG K F,DENG L L. The chlorophyll and carotenoid metabolisminpostharvest mandarin fruitpeelsisco-regulated by transcription factor CcbHLH35[J].Postharvest Biology and Technology,2024,216:113030.

[129]DONGHZ,CHENQM,DAIYQ,HUWJ,ZHANGSL, HUANG X S. Genome-wide identification of PbrbHLH family genes,and expression analysis in response to drought and cold stresses in pear (Pyrus bretschneideri)[J].BMCPlant Biology, 2021,21(1):86.

[130] ORENE,TZURI G,VEXLER L,DAFNA A,MEIR A, FAIGENBOIMA,KENIGSWALDM,PORTNOYV,SCHAFFER AA,LEVI A,BUCKLER E S,KATZIR N,BURGER J, TADMOR Y,GUR A. The multi-allelic APRR2 gene is associated with fruit pigment accumulation in melon and watermelon[J]. Journal of Experimental Botany,2019,70(15):3781-3794.

[131]HANZY,HUYN,LVYD,ROSEJKC,SUNYQ,SHENF, WANGY,ZHANGXZ,XUXF,WUT,HANZH.Natural variation underlies differences in ETHYLENE RESPONSE FACTOR17 activity in fruit peel degreening[J].Plant Physiology,2018,176(3):2292-2304.

[132] LI SJ,XIE XL,LIU SC,CHENKS,YIN XR.Auto-and mutual-regulation between two CitERFs contribute to ethylene-induced citrus fruit degreening[J].Food Chemistry,2019,299: 125163.

[133] LU SW,ZHANG M W,ZHUGEY X,F(xiàn)UWH,OUYANG Q X,WANGWR,RENYH,PEID,F(xiàn)ANGJG.VvERF17mediates chlorophyll degradation by transcriptional activation of chlorophyll catabolic genes in grape berry skin[J]. Environmental and Experimental Botany,2022,193:104678.

[134]CHENHC,SONGZY,WANGLH,LAIXH,CHENWX,LI X P,ZHU X Y. Auxin-responsive protein MaIAA17-like modulates fruit ripening and ripening disorders induced by cold stress in‘Fenjiao’banana[J].InternationalJournal ofBiologicalMacromolecules,2023,247:125750.

[135]FRANGEDAKIS E,YELINANE,BILLAKURTHI K,HUAL, SCHREIERT,DICKINSONPJ,TOMASELLI M,HASELOFF J,HIBBERD JM.MYB-related transcription factors control chloroplast biogenesis[J]. Cell,2024,187(18):4859-4876. e22.

[136] 卓茂根,王惠聰.NAC 轉(zhuǎn)錄因子在果實成熟中的調(diào)控作用[J]. 果樹學報,2023,40(7):1455-1470. ZHUO Maogen,WANG Huicong. The roles of NAC transcription factors in regulating fruit ripening[J].Journal of Fruit Science,2023,40(7):1455-1470.

[137] SONGZY,QINJJ,YAOYL,LAI XH,ZHENGW,CHENW X,ZHUXY,LIXP.Atranscriptomicanalysisunravelskey factors in the regulation of stay-green disorder in peel of banana fruit (Fenjiao) caused by treatment with 1-MCP[J]. Postharvest Biology and Technology,2020,168:111290.

[138] HUANG H,HE W D. Application of exogenous cytokinin regulatescytokinin oxidase and antioxidant activity to maintain chlorophyll pigment during ripening of banana fruit[J]. Food Bioscience,2023,55:102998.

[139]YUANZY,DENGLL,YINBF,YAOSX,ZENGKF.Effects of blue LED light irradiation on pigment metabolism of ethephon-degreened mandarin fruit[J]. Postharvest Biology and Technology,2017,134:45-54.

[140] MI H B, ZHOU X, YANG J,CHEN J X,LIU B. LED white light treatment delayspostharvest senescence of‘Zaosu’pear fruit with inhibited chlorophyll degradation[J].Horticulturae, 2024,10(1):32.

[141] ZHANGCL,WUYJ,LIUXR,ZHANGJY,LIX,LINL,YIN R H. Pivotal roles of ELONGATED HYPOCOTYL5 in regulationof plant development and fruit metabolism in tomato[J]. Plant Physiology,2022,189(2):527-540.

[142] HAN Y W,YANG JW,ZHANG N,GONG Y T,LIU M,QIAO R,JIAOXH,ZHUFJ,LIXX,SIHJ.Genome-wideidentification of phytochrome-interacting factor (PIF) gene family in potatoes and functional characterization of StPIF3 in regulating shade-avoidance syndrome[J].Agronomy,2024,14(4):873.

[143] STENBAEK A,JENSEN P E.Redox regulation of chlorophyll biosynthesis[J].Phytochemistry,2010,71(8/9):853-859.

[144] SONG Z Z,WANG X,LI MY,NINGY Z,SHI S P,YANG G R,ZHANG HX,TANG M L,PENG B. Isolation,heterologous expression,and functional determination of an iron regulated transporter(IRT) gene involvedin Fe2+ transport and tolerance to Fe2+ deficiency in Vitis vinifera[J].Plant Cell,Tissueand Organ Culture,2024,156(2):65.

[145] 周平,顏少賓,郭瑞,金光.桃鎂離子轉(zhuǎn)運蛋白MGT基因家族 鑒定與表達分析[J].園藝學報,2024,51(3):463-478. ZHOU Ping,YAN Shaobin,GUO Rui,JIN Guang.Identification and expressional analysis of MGT gene family in Prunus persica[J]. Acta Horticulturae Sinica,2024,51(3):463-478.

[146] SDIRI S,NAVARRO P,MONTERDE A, BENABDA J, SALVADOR A. New degreening treatments to improve the quality ofcitrus fruit combining different periodswith and without ethylene exposure[J]. Postharvest Biology and Technology,2012, 63(1):25-32.

[147] YIN X R, XIE XL,XIA X J,YU JQ,F(xiàn)ERGUSON I B, GIOVANNONI JJ,CHEN K S. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening[J]. The Plant Journal,2016,86(5):403-412.

[148]MITALOOW,OTSUKIT,OKADAR,OBITSUS,MASUDA K,HOJOY,MATSUURAT,MORIIC,ABED,ASICHEW O,AKAGI T,KUBO Y,USHIJIMA K. Low temperature modulates natural peel degreening in lemon fruit independently of endogenous ethylene[J]. Journal of Experimental Botany,2020,71 (16):4778-4796.

[149] FERNANDEZ-CANCELO P,GINE- BORDONABA J, TEIXIDO N,ALAMAR M C.An insight into the hormonal interplay regulating pigment changes and colour development in the peel of‘Granny Smith’,‘OPAL ’and‘Royal Gala’apples[J]. Journal of Plant Growth Regulation,2025,44(3): 1116-1132.

[150] SINGH S P,SAINI M K,SINGH J,PONGENER A,SIDHU G S.Preharvest application of abscisic acid promotes anthocyanins accumulation in pericarp of litchi fruit without adversely affecting postharvest quality[J].Postharvest Biology and Technology, 2014,96:14-22.

[151]MAG,ZHANGLC,KUDAKAR,INABAH,F(xiàn)URUYAT, KITAMURAM,KITAYAY,YAMAMOTOR,YAHATAM, MATSUMOTO H,KATO M. Exogenous application of ABA and NAA alleviates the delayed coloring caused by puffing inhibitor in citrus fruit[J]. Cells,2021,10(2):308.

[152] HU B,LI JQ,WANG D,WANG HC,QIN Y H, HU G B, ZHAO JT. Transcriptome profiling of Litchi chinensis pericarp in response to exogenous cytokinins and abscisic acid[J].Plant Growth Regulation,2018,84(3):437-450.

[153] QIU X,XU Y H,XIONG B,DAI L,HUANG S J,DONG T T, SUNGC,LIAO L,DENGQ X,WANG X,ZHU J,WANG Z H.Effects of exogenous methyl jasmonate on the synthesis of endogenous jasmonates and the regulation of photosynthesis in citrus[J].Physiologia Plantarum,2020,170(3):398-414.

[154] KEAWMANEE N,MA G,ZHANGL C,YAHATA M,MURAKAMI K, YAMAMOTO M, KOJIMA N, KATO M. Exogenous gibberellin induced regreening through the regulation of chlorophyll and carotenoid metabolism in Valencia oranges[J]. Plant Physiologyand Biochemistry,2022,173:14-24.

[155]LIUYH,PRIYADARSHANISVGN,CHIMR,YANMK, MOHAMMADI MA,ZHANG M, ZHOUQ,WANG LL,LUO T T,WAI M H,WANG X M,CAI HY,WANG HF,QIN Y. Epigenetic modification mechanisms of chloroplasts mutants in pineapple leaves during somatic regeneration[J].Horticultural Plant Journal,2023,9(3):509-522.

[156] CHENG J F,NIU Q F, ZHANG B,CHEN K S, YANG R H, ZHU J K, ZHANG Y J, LANG Z B. Downregulation of RdDM during strawberry fruit ripening[J]. Genome Biology,2018,19 (1):212.

[157] LI S G,ZHANG JY,ZHANG L Q,F(xiàn)ANG XP,LUO J,AN H S, ZHANG X Y. Genome- wide identification and comprehensive analysis reveal potential roles of long non-coding RNAs in fruit development of southern highbush blueberry (Vaccinium corymbosum L.)[J].Frontiers in Plant Science,2022,13:1078085.

[158]LISX,SHAOZR,F(xiàn)UXL,XIAOW,LIL,CHENM,SUNM Y,LI D M,GAO D S. Identification and characterization of Prunus persica miRNAs in response to UVB radiation in greenhouse through high-throughput sequencing[J]. BMC Genomics, 2017,18(1):938.

[159] LUOQ,WEI W,YANGYY,WUCJ,CHENJY,LUWJ, KUANG JF,SHAN W. E3 ligase MaNIP1 degradation of NONYELLOW COLORING1 at high temperature inhibits banana degreening[J].Plant Physiology,2023,192(3):1969-1981.

[160] WEIY,JINJT,XUY X,LIUWT,YANG G X,BUHD,LI T, WANG AD.Ethylene-activated MdPUB24 mediates ubiquitination of MdBEL7 to promote chlorophyll degradation in apple fruit[J]. The Plant Journal,2021,108(1):169-182.

主站蜘蛛池模板: 免费全部高H视频无码无遮掩| 91亚洲国产视频| 久久精品嫩草研究院| 日韩欧美中文字幕一本| 欧美精品成人一区二区视频一| 色妞www精品视频一级下载| 台湾AV国片精品女同性| 日本三区视频| 爱做久久久久久| 国产性爱网站| 国产精品亚洲片在线va| 午夜毛片免费看| 国产欧美专区在线观看| 亚洲一级毛片在线观播放| 毛片免费观看视频| 国产精品九九视频| 在线中文字幕网| 老色鬼久久亚洲AV综合| 中文字幕av无码不卡免费| 国产激情在线视频| 福利在线一区| 国产精品女熟高潮视频| 亚洲精品第一在线观看视频| 欧美激情视频在线观看一区| 蝴蝶伊人久久中文娱乐网| 热久久综合这里只有精品电影| 久久久久青草大香线综合精品 | 国产乱子伦视频三区| 成人午夜在线播放| 99re视频在线| www精品久久| 成人免费黄色小视频| 啪啪免费视频一区二区| 欧美一级在线播放| 天天色综网| 激情国产精品一区| 5388国产亚洲欧美在线观看| 亚洲美女高潮久久久久久久| 亚洲中文无码av永久伊人| 亚洲人成在线精品| 9啪在线视频| 999国内精品久久免费视频| 亚洲天堂网2014| 精品人妻AV区| 欧美午夜视频在线| 婷婷中文在线| 亚洲人成网站18禁动漫无码| 国产成人久久综合一区| 亚洲欧美另类日本| 亚洲精品天堂在线观看| 最新国产在线| 香蕉久久国产超碰青草| 日韩区欧美区| 狼友av永久网站免费观看| 午夜国产大片免费观看| 欧美人人干| 一本大道东京热无码av| 色精品视频| 亚洲中文精品人人永久免费| 欧美.成人.综合在线| 欧美亚洲日韩中文| 999精品视频在线| 免费看美女自慰的网站| 夜夜高潮夜夜爽国产伦精品| 一级毛片在线播放免费| 久久久久久午夜精品| 国产成人1024精品| 99久久这里只精品麻豆| 日本欧美精品| AV天堂资源福利在线观看| 国产乱子伦精品视频| 黄色国产在线| 香蕉国产精品视频| 国产乱子伦精品视频| 都市激情亚洲综合久久| 国产亚洲精品无码专| 国产乱子伦精品视频| 999国内精品久久免费视频| 农村乱人伦一区二区| 91国内外精品自在线播放| 亚洲国产天堂在线观看| 97超爽成人免费视频在线播放|