中圖分類號:S666.3 文獻標志碼:A 文章編號:1009-9980(2025)08-1835-16
摘要:【目的】明確引起琯溪蜜柚炭疽病的刺盤孢屬種類及其致病力差異,為該病害的有效防控提供科學依據。【方法】采集福建省平和縣13個鄉鎮琯溪蜜柚炭疽病典型病樣進行組織分離,利用形態學和分子生物學等方法對分離菌株進行種類鑒定及致病性研究。【結果】共獲得350株刺盤孢屬真菌,從中選取培養性狀有較大差異的58株刺盤孢屬真菌進行形態學觀察和多基因(ITS、ACT、TUB2、GAPDH及GS)系統發育分析,結果表明,其分屬于膠胞炭疽菌復合種下的膠孢炭疽菌(Colletotrichum gloeosporioides)和果生炭疽菌(C.fructicola)、博寧炭疽菌復合種下的喀斯特炭疽菌(C.karsti)、平頭炭疽菌復合種下的平頭炭疽菌(C.truncatum)、C.magmum復合種下的短孢炭疽菌(C.brevisporum)以及C.orchidearum復合種下的蘭花炭疽菌(C.clivicola)。采用葉片和枝條有傷接種孢子懸浮液法,結果表明,除蘭花炭疽菌(C.clivicola)外的其他5種刺盤孢屬真菌都可使琯溪蜜柚葉片和枝條致病,但致病力存在明顯差異。病原菌菌絲生長速率、附著胞形成率與致病力相關性分析發現,相關系數分別為0.3733和0.3641,表明菌絲生長速率及附著胞形成率與致病力之間均呈弱相關性。【結論】琯溪蜜柚炭疽病的病原菌有膠孢炭疽菌、果生炭疽菌、喀斯特炭疽菌、短孢炭疽菌、平頭炭疽菌(C.truncatum),其中膠孢炭疽菌(C.gloeosporioides)為病原優勢種,果生炭疽菌、喀斯特炭疽菌、短孢炭疽菌和平頭炭疽菌是新病原,證實了福建省琯溪蜜柚炭疽病病原菌具有多樣性。不同病原菌的菌絲生長速率及附著胞形成率與致病力均呈弱相關性。
Abstract: 【Objective】 Guanximiyou pomelo (Citrus grandis) is a famous and popular Citrus species for its sweet and excellent nutrients native to Pinghe county ofFujian province, China. In Guanximiyou pomelo,anthracnose caused by Colletotrichum spp. is a serious disease limiting its production. In 2018, the disease seriously affected over 60% of Guanximiyou pomelo trees in an orchard in Pinghe county. The Guanximiyou pomelo anthracnose mainly damages leaves, twigs and fruits. In the edge, tip or middle of damaged leaves develop brown spots,which form a“V”shape then withering and falling off after the diseased leaves die.The damaged twigs show spots from the petiole and the base of axillary bud to the bottom of twigs. On fruit, symptoms appear as green, irregular and sunken lesions in the young stage, that turn to brown rot and then falling offin mature stage. This study aimed to clarify the species of Colletotrichum spp. asociated with Guanximiyou pomelo anthracnose and determine the pathogenic characteristics of the pathogens, so as to provide a beter acknowledge for the diversity of the pathogen species and scientific basis for the prevention and control of the disease in Fujian province.【Methods】 in Pinghe county, Fujian province.The leaves,twigs and fruit with symptoms were collcted from the pomelo trees and were used as disease samples. The Colletotrichum spp. were isolated by the plant tissue isolation method. 4×4mm diseased tissues were surface-sterilized with 70% ethanol for 30s 0.1% mercuric chloride for 60s. ,washed three times in sterile water and dried on sterilized filter paper, then placed onto potato dextrose agar (PDA) plates and incubated under 28°C in the dark. The single mycelium was used for purifying strains, and pure cultures were stored in PDA at 4°C .The colony characteristics,conidia morphology and appressorium for representative strains of the identified Colletotrichum spp. were recorded. The Colletotrichum spp. genomic DNA was extracted using a fungus genomic DNA extraction kit, which was identified through partial rDNA-ITS (ITS),actin (ACT), beta-tubulin (TUB2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH),and glutamine synthetase (GS) region sequence. Phylogenetic tree based on the combined ITS-ACT-TUB2-GAPDH-GS sequences was constructed by maximum like-lihood method with MEGA 7.0. The conidia suspension of 58 representative Colletotrichum spp. were used in the pathogenicity tests to inoculate twigs and leaves of Guanximiyou pomelo according to Koch's postulate. Correlation analysis of mycelial growth rate, appressorium formation rate and pathogenicity were determined by Pearson method.【Results】A total of 350 strains with the similar morphology to Coletotrichum spp.were isolated from the collected samples infected by the Guanximiyou pomelo anthracnose disease. C. gloeosporioides species complexes, C. boninense species complexes,C. truncatum species complexes, C. magnum species complexes and C .orchidearum species complexes were identified based on morphological characteristics and ITS sequencing. Colony observation showed that there were significant diffrences in aerial and substrate mycelia's color among the five Colletotrichum species complexes. C. gloeosporioides species complexes, C. boninense species complexes, C. truncatum species complexes, C. magnum species complexes and C ,orchidearum species complexes had thirteen,thirty,one, nine,five diffrent colony characteristics,respectively. Conidia of C. truncatum, and C? ,orchidearum species complexes were significant different from the other three Colletotrichum species complexes. Conidia of C .orchidearum species complexes was curve and rounded at both ends, which was sickle and acuminate at both ends by C . truncatum species complexes, and the other three Colltotrichum species complexes were cylindrical,rounded at both ends or top end rounded, base end raised.To classify the taxonomic status of the Colletotrichum spp.,the multi-genes (ITS,ACT, TUB2, GAPDH and GS ) were used to build phylogenetic tree of 58 Colletotrichum isolates with different colony characteristics. Among the 58 Colltotrichum isolates, one was identified to be C gloeosporioides,twelve were C. fructicola, thirty were C. karstii, nine were C brevisporum, five were C. cliviicola and one was C. truncatum. Pathogenicity tests revealed that the above five Colletotrichum spp. induced lesions on both twigs and leaves of Guanximiyou pomelo, with C. clivicola being the sole non-pathogenic exception.The strains isolated from infected sites were identical to the strains inoculated. The pathogenicity of C gloeosporioides was slightly stronger than C. fructicola,but significantly stronger than the other three species. BZMYTJ20 demonstrated significantly stronger pathogenicity than JFMYTJ53, while DXMYTJ5 had no pathogenicity in leaf infection assays, although they all belonged to C. karstii.The mycelial growth rates of those pathogensranged from 6.27 to 13.53mm?d-1 C. gloeosporioides was the fastest, followed by C. fructicola, C. brevisporum and C truncatum, while C. karsti was the slowest. The appressorium formation rate of those pathogens ranged from 33.65% to 82.52% : C. gloeosporioides was the highest, followed by C. brevisporum, C. fructicola and C. karstii, and C . truncatum was the lowest. By analyzing the correlation between mycelium growth rate and appressorium formation rate and pathogenicity, the correlation coefficient r=0.373 3 and 0.364 1 ,soit was clear there were some positive corelation between mycelial growth rate,appressorium formation rate and pathogenicity.【Conclusion】Based on colony and morphological characteristics, phylogenetic analysis of the multiple genes (ITS,ACT,TUB2,GAPDH and GS )and pathogenicity, the pathogens of Guanximiyou pomelo anthracnose disease in Fujian were identified as 5 species, including C. gloeosporioides,C.fruticola,C.karstii, C.brevisporumand C. truncatum,amongwhich C? gloeosporioideswas the dominant.C. fruticola,C. karstii,C. brevisporum and C truncatum were first identified as the Guanximiyou pomelo anthracnose pathogen in Fujian province,which confirmed that the pathogens of Guanximiyou pomelo anthracnose tended to be diversified and diferentiated in Fujan province. There were great diferences in the growth rate of mycelium, appressorium formation rate and pathogenicity among different Colletotrichum species, and there was some positive correlation between mycelial growth rate,appressorium formation rate and pathogenicity. This study can provide theoretical data for the diversity research and sustainable prevention and control of Guanximiyou pomelo anthracnose in Fujan province.
Key words: Guanximiyou pomelo; Anthracnose; Colletotrichum spp.; Pathogenicity
琯溪蜜柚[Guanxi honeypomelo(Citrusgran-dis)是福建省重要的柑橘屬經濟作物,平和縣種植面積達 48333.33hm2 ,為中國琯溪蜜柚第一大種植縣。作為中國名特優柚類品種,蜜柚產業對福建省平和縣的經濟發展起著至關重要的作用[1-2]。琯溪蜜柚炭疽病是由刺盤孢屬(Colletotrichum spp.)真菌引起的一種重要病害,在平和縣琯溪蜜柚種植區普遍發生,病重果園發病率超過 60% ,主要危害葉片、枝梢、花及果實3]。葉片受害通常發生在葉緣、葉尖或主脈,產生褐色病斑,病部枯死后多呈“V\"字形,最后枯萎脫落;枝梢受害一般從葉柄、基部腋芽處開始產生病斑,隨后發展至枝條,枝條自上而下枯死;染病花蕾呈褐色腐爛狀,導致落花;果實受害初期出現暗綠色油漬狀不規則病斑,幼果易脫落,成熟果變褐腐爛并導致落果,還可在貯藏期發生,引起果實腐爛[4]。
據國內外報道,引起柑橘類作物炭疽病的病原種類有膠孢炭疽菌復合種、尖孢炭疽菌復合種、平頭炭疽菌復合種、博寧炭疽菌復合種、長真孢炭疽菌復合種、C.orchidearum復合種、C.magnum復合種和熱帶生炭疽菌(C.tropicicola)單系種等[5-7]。其中,膠孢炭疽菌復合種下的膠孢炭疽菌(C.gloeosporioides)是目前報道最多的種,在世界柑橘產區均可發生,為柑橘炭疽病的主要病原菌,對柑橘產業危害最大[8-10]。
刺盤孢屬真菌種類繁多,具有多個復合種群,復合群下有多個單系種,種間形態差異微小,單獨依據形態學特征對刺盤孢屬真菌進行分類鑒定存在較大的困難[1I-12];刺盤孢屬真菌的ITS序列保守性過強,對于多數近緣種構建的系統發育樹在關鍵進化節點支持率低,ITS在該屬的系統分類研究中同樣存在一些局限性[13]。近年來,以形態特征為基礎,結合致病性測定與多基因聯合聚類分析的多相法已被廣泛應用于柑橘炭疽病病原菌的分類研究[145]。Wang等采用形態特征觀察結合多基因系統發育分析和致病性測定,將華盛頓臍橙炭疽病病原菌鑒定為膠孢炭疽菌(C.gloeosporioides)、果生炭疽菌(C.fruc-ticola)、澳大利亞炭疽菌(C.australianum)喀斯特炭疽菌(C.karstii)和可可炭疽菌(C.theobromicola)。
筆者課題組前期研究發現,引起琯溪蜜柚炭疽病的病原菌為膠孢炭疽菌(C.gloeosporioides)],但目前尚未見關于該病的病原種類多樣性及致病力分析方面的研究報道。為明確琯溪蜜柚炭疽病的病原種類多樣性,筆者在本研究中采集琯溪蜜柚炭疽病典型病樣進行刺盤孢屬真菌分離、形態特征觀察及多基因系統發育分析,并對其進行致病性測定研究。研究結果可為深入研究琯溪蜜柚炭疽病的病原菌致病機制以及制定行之有效的防治措施提供理論依據。
1 材料和方法
1.1材料
2019年至2021年,在福建省平和縣13個鄉鎮的琯溪蜜柚炭疽病發生嚴重的果園進行系統調查,觀察蜜柚炭疽病在新梢抽發期及果實膨大期的田間癥狀特點。采集具有典型癥狀的發病樣品,將不同發病癥狀的樣品分別用塑封袋密封并于當天帶回實驗室及時分離。
1.2 方法
1.2.1菌株分離純化在新鮮病樣的病健交界處切取 4mm×4mm 大小的組織塊,依次用 70% 乙醇表面消毒 30s,0.1% 升汞消毒 60s ,無菌水漂洗3次,于無菌濾紙上晾干后,置于PDA平板上, 28°C 恒溫黑暗培養,待長出菌落后,挑取菌落邊緣單菌絲于新的PDA平板上進行純化。將純化后的菌株分別置于PDA斜面上 4°C 保存和濾紙片上 -20°C 保存備用。1.2.2培養性狀和形態特征觀察挑取各菌株的菌絲接種至PDA平板中央, 28°C 黑暗培養,每天記錄觀察菌落的生長情況并測量菌落直徑。待菌株長滿平板時將其表面劃傷誘導產孢,用接種針挑取分生孢子于滴有無菌水的載玻片上,在光學顯微鏡下觀察分生孢子的形態特征。取 60μL 分生孢子懸浮液滴于無菌凹槽載玻片上,置于 25°C 黑暗培養 12h A在光學顯微鏡下觀察附著胞形態特征,同時計算附著胞形成率。附著胞形成率 1%= 附著胞形成孢子數/調查總孢子數 ×100。
1.2.3多基因系統發育分析刮取PDA平板上28°C 培養7d的菌絲,用SK8259試劑盒提取供試菌株基因組DNA,用于PCR擴增的模板。采用引物ITS1/ITS4[、ACT- 512F/ACT- 783R[17] 、 Bt2a/Bt2b[18] 、GDF/GDR[和GSF1/GSR2[2]分別擴增菌株的內轉錄間隔區(ITS)序列及 β. -微管蛋白(TUB2)、肌動蛋白(ACT)、3-磷酸甘油醛脫氫酶(GAPDH)和谷氨酞胺合成酶(GS)基因的部分序列,具體引物信息見表1。PCR反應體系和擴增程序參考前人的研究方法[16-20]。將PCR擴增產物在 1% 的瓊脂糖凝膠上電泳,在紫外燈下,切取目的片段,使用凝膠純化試劑盒(AXYGEN)純化回收DNA片段。所有引物由生工生物工程(上海)股份有限公司合成,并完成測序。
在GenBank(https://www.ncbi.nlm.nih.gov/)數據庫使用BLAST搜索比對,下載與本研究中相似性較高的刺盤孢屬真菌序列作為參考(具體菌株編號及序列登錄號見表2)。使用DNAMAN9.0軟件對本研究中得到的基因序列與GenBank中下載的刺盤孢屬真菌序列進行多重比對和分析,必要時用MEGA7.0對序列進行手工校正。采用軟件PhyloSuitev1.2.2將所有比對好的ITS、ACT、TUB2、GAPDH和GS基因序列首尾串聯。采用最大似然法(Maxi-mumLikelihood,ML),使用MEGA7.0構建系統發育樹,用自展檢驗法以1000次重復計算分支支持率。
表1基因引物名稱及序列
Table1 Gene primer name and sequence

1.2.4致病性測定及致病力評估根據柯赫氏法則將分離獲得的刺盤孢屬真菌進行致病性測定,采用孢子懸浮液刺傷接種離體葉片和枝條、活體葉片。以健康無傷、成熟度好、大小相近的琯溪蜜柚嫩葉和枝條以及健康幼苗為接種材料,洗去表面灰塵后用75% 乙醇表面消毒,無菌水沖洗3次,自然風干。用無菌昆蟲針( Φ=0.5mm, 刺傷嫩葉和枝條表面(深度約 1mm ),向傷口表面噴灑孢子懸浮液(濃度為 1× 106 孢子 ?mL-1. ),每個菌株接種葉片9枚,枝條9個,3次重復,以接種無菌水為對照。待懸浮液自然風干后將離體葉片和枝條置于塑料盒中,放入 25°C,12h/12h 光暗交替、相對濕度 90% 的人工氣候箱保濕培養,蜜柚苗接種后置于溫室大棚。期間觀察并記錄發病情況,發病后從病斑上再分離、純化菌株。采用十字交叉法測量病斑直徑,根據不同分離株的病斑大小,評估致病力。
1.2.5病原菌菌絲生長速率、附著胞形成率與致病性相關性分析利用Excel對菌絲生長速率、附著胞形成率與致病力相關性進行分析, 0lt;|r|?0.3 ,無相關性; 0.3lt;|r|lt;0.8 ,弱相關性; |r|≥0.8 ,強相關性。
2 結果與分析
2.1刺盤孢屬真菌分離純化
從平和縣13個鄉鎮(小溪鎮、山格鎮、文峰鎮、南勝鎮、坂仔鎮、安厚鎮、大溪鎮、霞寨鎮、五寨鄉、九峰鎮、蘆溪鎮、國強鄉、長樂鄉)的18個蜜柚果園和3個蜜柚苗圃中共采集256份具有炭疽病典型癥狀的樣品(葉片165份、果實48份和枝梢43份)。通過組織分離共獲得367株分離物,經對培養性狀和形態特征觀察后初步分析鑒定,共有350株刺盤孢屬真菌。根據分離菌株的形態特征和ITS序列分析主要有5類復合種,其中220株為膠孢炭疽菌復合種、76株為博寧炭疽菌復合種、29株為C.magnum復合種、15株為C.orchidearum復合種,10株為平頭炭疽菌復合種,其分離頻率分別為 62.86%.21.71%.8.29% 、4.29% 和 2.86% 。
表2本研究用于系統發育分析的菌株序列信息
Table2Listof isolates of Colletotrichumspecies used forphylogenetic analyses in this study

注:本研究所獲得菌株加粗表示。 Note:The isolatesobtained in thisstudyare expressed in bold.
表2 (續) Table2(Continued)

2.2刺盤孢屬真菌形態特征鑒定
膠胞炭疽菌復合種:其中有128株在PDA培養基上的培養性狀、分生孢子均一樣。代表菌株JF-MYTJ34菌落為深灰色,氣生菌絲發達(圖1-A1),背面明顯可見扇形的角邊區,中間橘黃色,邊緣深灰色(圖1-B1)。培養10d左右可產生磚紅色分生孢子堆,分生孢子單胞,無色,圓柱形,兩端鈍圓,有1~2個油球,大小為(12.0~18.8) μm×(4.0~6.2) (204號 μm (圖1-C1);附著胞單生或散生,深褐色,近圓形或不規則形,邊緣整齊,大小為(8.0~16.5) μm×(4.0~8.5)μm (圖1-D1)。另外92株在PDA培養基上的培養性狀存在差異,菌落顏色為灰白色至灰色等12種不同的培養特征。代表菌株AHMYTJ2在PDA培養基上生長迅速,菌落灰白色,邊緣整齊光滑,氣生菌絲發達、絨毛狀(圖1-A2),背面淺灰色至淺橄欖灰色(圖1-B2)。分生孢子堆橙紅色,分生孢子光滑,無色,有油球,單胞,圓柱狀、棍棒狀,兩端鈍圓,基部偶有平截,大小為 (13.0~17.0)μm×(4.0~6.0)μm( (圖1-C2);附著胞單生或散生,淺褐色,橢圓形、棒狀或不規則狀,邊緣完整,大小為(4.0~17.0) μm×(3.0~8.0)μm (圖1-D2)。
博寧炭疽菌復合種:76株菌的培養性狀差異較大,有30種不同的培養性狀。代表菌株BZMYTJ20在PDA培養基上生長較慢,菌落乳白色,氣生菌絲稀疏,絨毛狀或卷毛狀(圖1-A3),背面淺褐色(圖1-B3)。分生孢子堆橙色,分生孢子透明,無隔膜,圓柱狀,頂部鈍圓,基部臍狀突起,大小為 (12.0~17.0)μm× (5.5~7.5) μm (圖1-C3);附著胞單生或散生,淺棕色至深褐色,形狀多樣,多數為不規則型,邊緣完整,大小為 (8.6~11.0)μm×(6.0~8.5)μm( (圖1-D3)。
C.magmum復合種:各菌株間培養性狀存在較大差異,有9種不同的培養特征。代表菌株XX-A1~A6.代表菌株在PDA培養基上培養10d的正面菌落狀態;B1~B6.代表菌株在PDA培養基上培養10d的反面菌落狀態;C1~C6.代表菌株的分生孢子;D1~D6.代表菌株的附著胞;1.JFMYTJ34;2.AHMYTJ2;3.BZMYTJ20;4.XXMYTJ1;5.DXMYTJ3;6.GQMYTJ24。標尺=20μm 。
圖1刺盤孢屬真菌代表菌株的培養性狀及形態特征

A1-A6.Frontvesofdcuufrepesetatietras;BBacsfdurefepreatiers;C-d iaofrepresentatiesrs;D-D6.Appresoiuofepreseaietras;1JFM34;2.AH2;3.2;4.XX;5DXMYTJ3;6.GQMYTJ24.Scale =20μm
Fig.1Colonyand morphological characteristics of representativestrains belonging to six Colletotrichumspp.
MYTJ1在PDA培養基上菌落灰白色,氣生菌絲發達(圖1-A4),背面橘紅色伴有黑色小點(圖1-B4)。分生孢子橙紅色,圓柱形,兩端鈍圓,大小為( 13.0~ 19.0)μm×(4.0~5.5)μm( (圖1-C4);附著胞單生,棕色到深棕色,橢圓形、棒狀或不規則形,邊緣完整,大小為(7.0~15.5) μm×(5.0~8.0)μm (圖1-D4)。
C.orchidearum復合種:各菌株間培養性狀差異較大,有5種不同的培養特征。代表菌株DXMYTJ3在PDA培養基上生長較快,菌落顏色灰褐色至墨綠色,中間形成環狀輪紋圈,氣生菌絲發達(圖1-A5),背面深灰色至灰色(圖1-B5)。分生孢子無色,單胞,橢圓形、弧形,兩端鈍圓,中間偶有縊縮,大小為(13.0~19.0) μm×(4.0~7.0)μm( (圖1-C5);附著胞淺褐色至褐色,橢圓形或棒狀,邊緣偶有凸起,大小為(9.0~15.0)μm×(3.0~13.0)μm0 (圖1-D5)。
平頭炭疽菌復合種:10株在PDA培養基上的培養性狀、分生孢子均一樣。代表菌株GQMYTJ24在PDA培養基上生長較慢,菌落卡其色至橙黃色,氣生菌絲不發達(圖1-A6),背面香黃色至桔黃色(圖1-B6)。分生孢子鐮刀型,光滑,無色,單胞,兩端尖,中間有1個油球,大小為 (20.0~27.0)μm×(2.0~4.0)μm (圖1-C6);附著胞淺褐色,橢圓形或卵圓形,邊緣完整,大小為 (7.0~18.0)μm×(5.0~11.0)μm (圖1-D6)。
2.3刺盤孢屬真菌多基因系統發育分析
從膠孢炭疽菌復合種、博寧炭疽菌復合種、C.magnum復合種、C.orchidearum復合種和平頭炭疽菌復合種中各選取13株、30株、9株、5株和1株培養性狀有較大差異的代表菌株共58株刺盤孢屬真菌進行多基因系統發育分析。分別提取DNA作為模板,擴增其ITS、ACT、TUB2、GAPDH和GS序列并測序,得到大小分別為500、250、500、300和 1000bp 左右的特異性片段。將5個基因按順序首尾相連(ITS-ACT-TUB2-GAPDH-GS),以菌株Curvularialunata為外類群,采用MEGA7.0構建系統發育樹。結果表明(圖2),58株刺盤孢屬真菌在系統發育樹上聚類為6個不同的分支,其中菌株JFMYTJ34與膠孢炭疽菌(C.gloeosporioides)單獨聚類為一個小分支,GQMYTJ26等12株與果生炭疽菌(C.fructic-ola)聚類為一個分支;BZMYTJ20等30株與喀斯特炭疽菌(C.karstii)聚類為一個大分支;XXMYTJ1等9個菌株聚類為短孢炭疽菌(C.brevisporum),AH-MYTJ9等5株聚類為蘭花炭疽菌(C.cliviicola),菌株GQMYTJ24與平頭炭疽菌(C.truncatum)聚類為一個分支。結合培養性狀和分生孢子形態特征結果,從平和縣琯溪蜜柚炭疽病樣品中分離獲得的刺盤孢屬真菌分屬于6個種,分別為膠孢炭疽菌(C.gloeosporioides)、果生炭疽菌(C.fructicola)、喀斯特炭疽菌(C.karstii)、短孢炭疽菌(C.brevisporum)、蘭花炭疽菌(C.cliviicola)和平頭炭疽菌(C.trunca-tum)。
2.4致病性測定
選取培養性狀有較大差異的58株刺盤孢屬真菌菌株(同多基因系統發育分析),采用孢子懸浮液刺傷接種離體的葉片和枝條。致病性測定結果表明,不同菌株對健康蜜柚葉片和枝條的致病情況不同(表3),其中膠孢炭疽菌(C.gloeosporioides)JF-MYTJ34及12株果生炭疽菌(C.fructicola)接種后病原菌迅速侵入有傷口的蜜柚組織,7d后達到發病高峰期,葉片病斑呈淺灰褐色至深褐色、近圓形,略微凹陷(圖3-K~M),枝條病斑呈淡褐色至深褐色,橢圓形至梭形,稍微下陷,病健交界分明(圖3-B~D),癥狀表現與田間植株癥狀一致。9株喀斯特炭疽菌(C.karstii)接種3d后開始出現水漬癥狀病斑,9d后達到發病高峰期,葉片病斑呈灰白色橢圓形,稍凸起(圖3-N~O),枝條病斑呈淺褐色稍下陷(圖3-E~F)。9株短孢炭疽菌(C.brevisporum)接種3d后開始出現青褐色水漬小斑,隨后病斑迅速擴大,9d后葉片病斑可穿透背面使葉片變軟(圖3-P~Q),枝條病斑逐漸發展至整個枝條并使其腐爛(圖3-G~H)。平頭炭疽菌(C.truncatum)GQMYTJ24接種5d后開始出現青色水漬小斑,病斑逐漸擴大,向下凹陷,10d后枝條上的病斑都出現干枯癥狀(圖3-I,R)。21株喀斯特炭疽菌(C.karstii)、5株蘭花炭疽菌(C.cliviicola)及對照不發病。
從5種致病的刺盤孢屬真菌中各選取一株致病性最強的代表菌株進行健康蜜柚盆栽幼苗葉片有傷接種,結果表明,這些代表菌株均能使葉片產生干枯的病斑,發病率為 100% 。接種3d后葉片開始出現輕微癥狀,與田間發病初期癥狀一致,7d后癥狀加重,葉片病斑面積擴大,不同種的刺盤孢屬真菌產生的病斑大小差異明顯,與田間發病中、后期癥狀一致(圖4)。
對以上離體接種和盆栽接種發病的組織取樣進行病原菌再分離,得到的病原菌經形態學和分子生物學鑒定,結果與接種的病原菌菌株完全一致。結果表明,膠孢炭疽菌(C.gloeosporioides)、果生炭疽菌(C.fructicola)、喀斯特炭疽菌(C.karstii)、短孢炭疽菌(C.brevisporum)和平頭炭疽菌(C.truncatum)5種刺盤孢屬真菌均是引起福建琯溪蜜柚炭疽病的病原菌。
圖258株刺盤孢屬真菌基于ITS、ACT、TUB2、GADPH、GS序列的多基因系統發育樹ig.2Phylogenetictreeof 58Coletotrichum species basedon thecombinedITS-ACT-TUB2-GAPDH-GS

2.5病原菌菌絲生長速率、附著胞形成率及致病力分析
5種致病的刺盤孢屬真菌菌絲生長速率在 6.07~ 13.53mm?d-1 之間(表3),其中膠孢炭疽菌(C.gloeo-sporioides)的平均生長速率最快,為 13.53mm?d-1":果生炭疽菌(C.fructicola)次之,平均生長速率為11.28mm?d-1";短孢炭疽菌(C.brevisporum)和平頭炭疽菌( C. truncatum)居中,平均生長速率分別為9.76mm?d-1"和 8.33mm?d-1";喀斯特炭疽菌(C.karstii)的平均生長速率最慢,平均生長速率為 7.81mm?d-1nbsp;。5種刺盤孢屬真菌的附著胞形成率在 33.65%~ 82.52% 之間(表3),其中膠孢炭疽菌( C. gloeosporioides)最高,為 82.52% ;其次是短孢炭疽菌(C.brevis-porum),平均附著胞形成率為 74.74% ;果生炭疽菌(C.fructicola)和喀斯特炭疽菌( C. karstii)居中,分別為 56.57% 和 56.23% ;平頭炭疽菌(C.truncatum)最低,為 33.65% 。
表3琯溪蜜柚炭疽病病原菌菌絲生長速率、附著胞形成率及葉片病斑長度
lable3Mycelial growthrateandappressorium formationrateofpathogens,lesionlengthsofGuanximiyoupomelo leav

注:同列不同大寫字母表示不同菌株在0.01水平差異極顯著,不同小寫字母表示不同菌株在0.05水平差異顯著。Note:Dieialieeltotsttsmalllettersindicate significant differencesat the O.O5level.

A、J.接種清水的對照;B、K.接種膠胞炭疽菌JFMYTJ34的枝條和葉片;C、L.接種果生炭疽菌 AHMYTJ2的枝條和葉片;D、M.接種果生炭疽菌 NSMYTJ4 的枝條和葉片;E、N.接種喀斯特炭疽菌 BZMYTJ20的枝條和葉片;F、O.接種喀斯特炭疽菌 WZMYTJ34 的枝條和葉片;G、P.接種短孢炭疽菌 XXMYJ1 的枝條和葉片;H、Q.接種短孢炭疽菌 WFMYTJ14 的枝條和葉片;I、R.接種平頭炭疽菌 GQMYTJ24的枝條和葉片。
圖35種刺盤孢屬真菌代表菌株接種離體琯溪蜜柚枝條和葉片產生的癥狀

A,J.Controaedios;Cdii C.fructicola AHMYTJ2;D,M.Inoculated twigsand leaves with C. fructicola NSMYTJ4;E,N. Inoculated twigs and leaveswith C.karstii BZMYTJ20;F,O.ocatedtidaveihCarti;Goulatedtigsdlavsihevispo; oculatedtwigsandleaveswithC.brevisporumWFMYTJ14;I,R.InoculatedtwigsandleaveswithC.truncatumGQMYTJ24.
Fig.3Symptoms of Guanximiyou pomelo twigs and leaves inoculated with five Colletotrichum spp
圖45種刺盤孢屬真菌代表菌株接種盆栽琯溪蜜柚葉片產生的癥狀

A.接種清水的對照;B.膠胞炭疽菌JFMYTJ34;C.果生炭疽菌AHMYTJ2;D.喀斯特炭疽菌 BZMYTJ20;E.短孢炭疽菌XXMYJ1;F.平頭 炭疽菌GQMYTJ24。 A.ControlsinoculatedwithwaterB.gloeosporiidesJFJ34;C.C.fructicolAH;D.C.arstiBZM;E.Crevisp XXMYJ1;F.C.truncatumGQMYTJ24.
調查分析5種致病的刺盤孢屬真菌接種琯溪蜜柚葉片10d后的病害嚴重程度及病斑長度(表3)。結果表明,不同種的刺盤孢屬真菌致病力存在明顯差異,膠孢炭疽菌( C. gloeosporioides)的致病力最強,接種葉片的平均病斑長度為 18.30mm ;其次是果生炭疽菌(C.fructicola),平均病斑長度為 16.35mm 短孢炭疽菌(C.brevisporum)的致病力居中,平均病斑長度為 11.58mm ;平頭炭疽菌(C.truncatum)的致病力較弱,平均病斑長度為 4.83mm 。喀斯特炭疽菌(C.karstii)不同菌株之間的致病力存在較大差異,菌株BZMYTJ20接種葉片的平均病斑長度為17.37mm ,菌株JFMYTJ53接種葉片的平均病斑長度僅為 3.77mm ,而DXMYTJ5、XXMYTJ21和BZ-MYTJ56等菌株接種葉片后不發病。
2.6病原菌菌絲生長速率、附著胞形成率與致病力相關性分析
對5種致病的刺盤孢屬真菌菌絲生長速率與致病力進行相關性分析(圖5),結果表明,其相關系數r 為 0.3733,0.3lt;|r|lt;0.8 ,表明菌絲生長速率與致病力之間呈弱相關性。對5種致病的刺盤孢屬真菌附著胞形成率與致病力進行相關性分析(圖6),結果表明,其相關系數 r 為
,表明附著胞形成率與致病力之間呈弱相關性。
圖55種刺盤孢屬真菌菌株菌絲生長速率與致病力相關性分析

圖65種刺盤孢屬真菌菌株附著胞形成率與致病力相關性分析

3討論
炭疽病是琯溪蜜柚的主要病害之一,可在整個生育期造成嚴重危害,極大地影響了琯溪蜜柚產業的健康發展。刺盤孢屬真菌作為柑橘炭疽病的主要病原菌,種類繁多[2],據報道,國內外關于柑橘刺盤孢屬真菌的記錄有100余種,其中超過10種是柑橘炭疽病的病原菌[22]。中國2017年報道琯溪蜜柚炭疽病病原菌為膠孢炭疽菌(C.gloeosporioides)],之后一直未見其他刺盤孢屬真菌侵染琯溪蜜柚的報道。筆者課題組于2019年在福建省平和縣琯溪蜜柚種植區發現該病的田間癥狀具有多樣性,通過形態學特征觀察和多基因系統發育分析,將琯溪蜜柚相關刺盤孢屬真菌鑒定為5類刺盤孢復合種下的6種單系種,揭示了琯溪蜜柚刺盤孢屬真菌種類的多樣性。Peng等[23]在云南和貴州柑橘主產區分離到的柑橘相關刺盤孢屬真菌,鑒定為膠胞炭疽菌復合種下的膠胞炭疽菌(C.gloeosporioides)和果生炭疽菌(C.fructicola)、博寧炭疽菌復合種下的博寧炭疽菌(C.boninense)和喀斯特炭疽菌(C.karstii)、C.mag-num復合種下的短孢炭疽菌(C.brevisporum)、尖孢炭疽菌復合種的西蒙氏炭疽菌(C.simmondsii)和 C. murrayae,與本研究結果不盡相同。
柑橘炭疽病可由多種刺盤孢屬真菌復合侵染,國內已報道的柑橘炭疽病病原種類有膠孢炭疽菌(C.gloeosporioides)、果生炭疽菌(C.fructicola)、博寧炭疽菌(C.boninense)、喀斯特炭疽菌(C.karstii)、短孢炭疽菌(C.brevisporum)、平頭炭疽菌(C.trun-catum)、熱帶生炭疽菌(C.tropicicola)、暹羅炭疽菌(C.siamense)、普洛柏炭疽菌(C.plurivorum)和江西炭疽菌(C.jiangxiense)等,其中膠孢炭疽菌(C.gloeosporioides)是主要的病原菌[2425]。國外已報道的柑橘炭疽病病原種類有膠孢炭疽菌(C.gloeospo-rioides)、果生炭疽菌(C.fructicola)、澳大利亞孢炭疽菌(C.australianum)、喀斯特炭疽菌(C.karstii)、尖孢炭疽菌(C.acutatum)、荷花炭疽菌(C.nympha-eae)、C.catinaense、C.limonicola、C.helleniense和可可炭疽菌(C.theobromicola)等[21.26]。Huang等5從福建琯溪蜜柚無癥狀的葉片中分離獲得膠孢炭疽菌(C.gloeosporioides)和喀斯特炭疽菌(C.karstii),然而未對這些菌株進行致病性測定,尚不確定其是否對琯溪蜜柚致病。本研究結果發現有5種刺盤孢屬真菌可引起琯溪蜜柚炭疽病,與國內外研究結果相一致,證實琯溪蜜柚炭疽病病原種類具有多樣性。筆者在本研究中通過盆栽、田間活體接種試驗,表明不同的病原在田間所造成的癥狀存在明顯差異,琯溪蜜柚炭疽病不同的田間癥狀與病原種類的多樣性息息相關,因此,進行準確的病原種類鑒定可為該病的田間癥狀診斷和有效防控提供重要的信息,促進蜜柚產業健康發展。
形態學觀察結果表明,5種琯溪蜜柚炭疽病病原菌在PDA培養基上的培養性狀存在差異,菌落生長速度快慢不一,不同菌株之間附著胞產生速度及形成率差異也較大。膠胞炭疽菌(C.gloeosporioi-des)培養性狀穩定,各個菌株培養性狀基本一致,菌絲生長速率最快,而喀斯特炭疽菌(C.karstii)培養性狀極其不穩定,分離的菌株中培養性狀各異,菌絲生長速率最慢;短孢炭疽菌(C.brevisporum)產生附著胞的速度最快且形成率最高,平頭炭疽菌(C.trunca-tum)產生附著胞的速度最慢且形成率最低。琯溪蜜柚炭疽病菌的形態特征存在較大差異,表明該菌具有豐富的生理生化特性,其在侵染寄主時會引起致病力的差異,菌株的培養性狀、菌絲生長速率和附著胞產生速度及形成率可能對刺盤孢屬真菌的致病力起重要作用[27-28]。本研究致病力測定結果發現,5種病原菌的致病力存在較大差異,不同種刺盤孢屬真菌及同種的不同菌株對琯溪蜜柚存在明顯的致病力分化現象,膠胞炭疽菌(C.gloeosporioides)致病力最強,喀斯特炭疽菌(C.karstii)的平均致病力最弱,與Guarnaccia等[21]對歐洲柑橘炭疽病病原菌致病力測定的結果一致。然而Mayorquin等[2]對美國加利福尼亞小柑橘炭疽病的病原菌進行致病力研究發現,喀斯特炭疽菌(C.karstii)是該病的主要致病菌,其致病力明顯強于膠胞炭疽菌(C.gloeosporioides),這進一步證實了不同產區柑橘炭疽病病原菌的致病力存在較大差異。筆者在本研究中還發現喀斯特炭疽菌(C.karstii)不同菌株之間的致病力存在較大差異,有的菌株致病力較強,有的較弱,有的不致病,Mario等[3研究表明,3株不同的喀斯特炭疽菌(C.karstii)分離株對甜橙葉片同樣表現出明顯的致病力差異,其中1株的致病力顯著高于其他2株,但并未發現不致病的菌株,可能與選取的代表菌株數量較少有關。對5種病原菌的菌絲生長速率和致病力進行相關性分析,發現二者有一定程度的正相關關系,表明病原菌在侵染寄主的過程中菌絲生長速率越快,致病力可能越大,危害性越強。5種病原菌的附著胞形成率和致病力相關性分析證實二者呈弱相關性,表明病原菌在侵染寄主的過程中附著胞形成率與致病力相關。致病力差異還與其他多種因素相關,刺盤孢屬真菌的果膠裂解酶活性及致病相關基因如MAP激酶基因 Cgl -SLT2、漆酶基因Lac1等對其致病力起著重要的調控作用[31-32]。因此,琯溪蜜柚炭疽病病原菌致病力差異的分子機制還有待進行深入全面的研究。
刺盤孢屬真菌寄主范圍廣泛,同一種刺盤孢屬真菌可同時侵染多種植物,造成嚴重的病害。來源于意大利柑橘的膠孢炭疽菌(C.gloeosporioides)可以侵染柑橘、忙果、辣椒、草莓、番石榴和木瓜等作物,引起炭疽病[14,33];Prihastuti等[34]發現果生炭疽菌(C.fructicola)可以引起咖啡發生炭疽病,隨后其他研究表明該菌也可以侵染柑橘、李、桃、梨和弼猴桃等植物,發生炭疽病[];;短孢炭疽菌(C.brevisporum)最初來源于彩葉鳳梨炭疽病病葉,同時該菌可以侵染柑橘、南瓜、辣椒等經濟作物,引起炭疽病[36-37];喀斯特炭疽菌(C.karstii)可引起柑橘、山茶、咖啡、番茄等作物發生炭疽病病害[3];平頭炭疽菌(C.trunca-tum)是大豆、柑橘、番木瓜等作物炭疽病的病原菌[39-40]。因此,有必要進一步對上述琯溪蜜柚炭疽病刺盤孢屬真菌進行其他作物的致病性測定,明確來源于琯溪蜜柚的刺盤孢屬真菌是否會侵染其他作物,以便在果園管理中防范交互感染。
4結論
引起福建省平和縣琯溪蜜柚炭疽病的病原菌有膠孢炭疽菌(C.gloeosporioides)、果生炭疽菌(C.fructicola)、喀斯特炭疽菌(C.karstii)、短孢炭疽菌(C.brevisporum)和平頭炭疽菌(C.truncatum),其中膠孢炭疽菌(C.gloeosporioides)為優勢病原菌,果生炭疽菌(C.fructicola)、喀斯特炭疽菌(C.karstii)、短孢炭疽菌(C.brevisporum)和平頭炭疽菌(C.trun-catum)是琯溪蜜柚炭疽病的新病原。5種琯溪蜜柚炭疽病病原菌的菌絲生長速率及附著胞形成率與致病力均呈弱相關性。
參考文獻References:
[1] 賴寶春,姚錦愛.蜜柚間座殼黑點病菌(Diaporthecitri)LAMP可 視化檢測技術的建立[J].福建農業學報,2022,37(11):1470-1475. LAIBaochun,YAOJin’ai.EstablishmentofaLAMPassay for rapiddetectingDiaporthe citri on pomelo[J].Fujian Journal of Agricultural Sciences,2022,37(11):1470-1475.
[2]陶晶霞,王玉雯,李曉娜,張利軍,張建翔,張華,廖文強,姜玉 英,吳良泉,李延,郭九信.琯溪蜜柚地上部新生器官生物量 和鈣鎂養分累積特征[J].果樹學報,2024,41(1):101-112. TAOJingxia,WANG Yuwen,LI Xiaona,ZHANGLijun, ZHANG Jianxiang,ZHANG Hua,LIAO Wenqiang,JIANG Yuying,WULiangquan,LI Yan,GUO Jiuxin.Accumulation dynamics of biomass,Ca and Mg nutrient in the aboveground newborn organs of Guanximiyou pomelo tree[J]. Journal of Fruit Science,2024,41(1):101-112.
[3]賴寶春,姚錦愛.福建蜜柚炭疽病菌的生物學特性及高效防 治藥劑篩選[J].福建農業學報,2022,37(6):789-793. LAI Baochun,YAO Jin'ai.Biological characteristics of Colletotrichum gloeosporioides and fungicides for disease control on honeypomelo in Fujian[J].Fujian Journal of Agricultural Sciences,2022,37(6):789-793.
[4] 賴寶春,吳順章,鄭春明,王家瑞.琯溪蜜柚炭疽病病原鑒定[J]. 果樹學報,2017,34(9):1178-1184. LAI Baochun,WU Shunzhang,ZHENG Chunming,WANG Jiarui.Identification of pathogen causing Guanxi honey pomelo anthracnose in Pinghe county of Fujian province[J]. Journal of Fruit Science,2017,34(9):1178-1184.
[5]HUANGF,CHENGQ,HOU X,FUYS,CAI L,HYDE KD, LIHY.Colletotrichum species associated with cultivated citrus inChina[J].Fungal Diversity,2013,61(1):61-74.
[6] 劉歡歡.四川省柑橘炭疽病病原鑒定和遺傳多樣性分析[D]. 雅安:四川農業大學,2020. LIU Huanhuan. Colletotrichum species and genetic diversity of cultivated citrusin Sichuan province[D].Ya’an:Sichuan Agricultural University,2020.
[7] WANGW X,DE SILVA D D,MOSLEMI A, EDWARDSJ, ADES P K,CROUS PW,TAYLOR PWJ. Colletotrichum species causing anthracnose of citrus in Australia[J]. Journal of Fungi,2021,7(1):47.
[8] LIMA WG,SPOSITO MB,AMORIM L,GONCALVES FP, DEFILHOPAM. Colletotrichum gloeosporioides,a new causal agent of citruspost-bloom fruit drop[J].European Journal of Plant Pathology,2011,131(1):157-165.
[9] AIELLOD,CARRIERIR,GUARNACCIAV,VITALEA,LAHOZ E,POLIZZI G. Characterization and pathogenicity of Colletotrichum gloeosporioidesand C karsti causing preharvest disease on citrus sinensis in Italy[J].Journal of Phytopathology, 2015,163(3):168-177.
[10] RAMOS A P,TALHINHAS P, SREENIVASAPRASAD S, OLIVEIRA H. Characterization of Colletotrichum gloeosporioides,asthemain causal agentofCitrusanthracnose,and C karstii asspeciespreferentiallyassociated with lemontwigdieback in Portugal[J]. Phytoparasitica,2016,44(4):549-561.
[11]DAMM U, SATO T,ALIZADEH A,GROENEWALD J Z, CROUS PW. The Colletotrichum dracaenophilum,C.magnum and C.orchidearum species complexes[J].Studies in Mycology, 2019,92:1-46.
[12]李少卡,趙亞,王祥和,胡福初,陳哲,范鴻雁.海南荔枝炭疽病 病原菌鑒定及遺傳多樣性分析[J].農業生物技術學報,2021, 29(4):673-687. LIShaoka,ZHAOYa,WANGXianghe,HUFuchu,CHEN Zhe, FANHongyan.Identification and genetic diversityanalysisof LitchichinensisColletotrichumspp.inHainan[J].JournalofAgricultural Biotechnology,2021,29(4):673-687.
[13]MORIWAKI J,TSUKIBOSHI T,SATO T. Grouping of Colletotrichum species in Japan based on rDNA sequences[J]. Journal of General Plant Pathology,2002,68(4):307-320.
[14]WEIRB S,JOHNSTON PR,DAMMU. The Colletotrichum gloeosporioides species complex[J]. Studies inMycology,2012, 73:115-180.
[15] DAMM U,CANNON P F, WOUDENBERG J H C,CROUS P W.TheColletotrichum acutatum speciescomplex[J]. Studies in Mycology,2012,73:37-113.
[16]WHITE TJ,BRUNS T,LEE S,TAYLOR J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]//NNIS M A,GELFAND D H,SNINSKYJJ, WHITE T J.PCR Protocols:A Guide to Methods and Applications.Amsterdam:Academic Press,1990:315-322.
[17]CARBONE I,KOHN L M.A method for designing primer sets for speciation studies in filamentous ascomycetes[J].Mycologia, 1999,91(3):553-556.
[18]GLASS N L,DONALDSON G C. Development of primer sets designed foruse with the PCR to amplify conserved genes from filamentous ascomycetes[J].Applied and Environmental Microbiology,1995,61(4):1323-1330.
[19]GUERBERJC,LIUB,CORRELLJC,JOHNSTON PR. Characterization of diversity in Colletotrichum acutatum sensu lato by stquence aHaIysis UI twU gene IuOns,HDNA anu HuOn ΛrLr s, and mating compatibility[J].Mycologia,2003,95(5):872-895.
[20] STEPHENSON S A,GREEN JR,MANNERS J M,MACLEAN D J. Cloning and characterisation of glutamine synthetasefromColletotrichumgloeosporioidesanddemonstrationof elevated expression during pathogenesis on Stylosanthes guianensis[J]. Current Genetics,1997,31(5):447-454.
[21] GUARNACCIA V,GROENEWALD J Z, POLIZZI G,CROUS PW.High species diversity in Colletotrichum associated with citrusdiseasesinEurope[J].Persoonia,2017,39:32-50.
[22]田宇曦,閔勇,陳凌,劉曉艷.柑橘炭疽病分類鑒定和防治研 究進展[J].中南農業科技,2023(12):230-232. TIANYuxi,MINYong,CHENLing,LIUXiaoyan.Research progress on classification,identification,and control of citrus anthracnose[J]. South-Central Agricultural Science and Technology,2023(12):230-232.
[23]PENGLJ,YANG YL,KEVIN DH,BAHKALIAH,LIU ZY. Colletotrichum species on citrus eaves in Guizhou and Yunnan provinces,China[J].Cryptogamie,Mycologie,2012,33(3):267-283.
[24]CHENG B P,HUANG Y H,PENG A T,LING J F,SONG X B,CHEN X.First report of leaf and fruit spot of Citrus reticulataBlancocv.NianJucausedbyColletotrichumtruncatumin China[J]. Plant Disease,2014,98(3): 422.
[25]謝桃明.四川主栽柑橘品種葉片潛伏炭疽菌研究[D].雅安:四 川農業大學,2019. XIE Taoming. Study on the latent Colletotrichum in the main citrusleavesin Sichuan province[D].Ya'an:Sichuan Agricultural University,2019.
[26]SHIVAS R G,TAN Y P,EDWARDS J,DINH Q,MAXWELL A,ANDJICV,LIBERATOJR,ANDERSONC,BEASLEYD R,BRANSGROVEK,COATESLM,COWANK,DANIELR, DEAN JR,LOMAVATU M F,MERCADO-ESCUETA D, MITCHELLRW,THANGAVELR,TRAN-NGUYENLTT, WEIR B S. Colletotrichum species in Australia[J]. Australasian Plant Pathology,2016,45(5):447-464.
[27]王葵娣,王文華,鄭服叢.炭疽菌附著胞的研究進展[J].中國 農學通報,2007,23(1):265-270. WANG Kuidi, WANG Wenhua, ZHENG Fucong. Advance research on appressorium of Colletotrichum[J]. Chinese Agricultural Science Bulletin,2007,23(1):265-270.
[28]李菲菲,龍超安.柑橘炭疽病菌的分離、鑒定及在果實上的潛 伏侵染特性[J].果樹學報,2015,32(1):108-114. LIFeifei,LONGChao’an. Isolation,identificationand latent infection characteristics of citrus anthracnose pathogens[J]. Journal ofFruit Science,2015,32(1):108-114.
[29]MAYORQUINJS,NOURIMT,PEACOCKBB,TROUILLASFP,DOUHANGW,KALLSENC,ESKALEN A. Identification,pathogenicity,and spore trapping of Colletotrichum karsti ssociated with twig and shot dieback in California[J]. Plant Disease,2019,103(7):1464-1473.
[30]RIOLO M, ALOI F,PANE A, CARA M,CACCIOLA S O. Twig and shoot dieback of citrus,a new disease caused by Colletotrichumspecies[J].Cells,2021,10(2):449.
[31]韋運謝,劉曉妹,張賀,張欣,漆艷香,謝藝賢,陸英,曹申文, 蒲金基.忙果炭疽病菌漆酶基因lac1的克隆與序列特征分 析[J].果樹學報,2013,30(2):202-206. WEI Yunxie,LIU Xiaomei,ZHANG He,ZHANG Xin,QI Yanxiang,XIE Yixian,LU Ying,CAO Shenwen,PU Jinji. Cloning and sequence analysis of laccase gene lac1 from Colletotrichum gloeosporioides on mango[J]. Journal of Fruit Science, 2013,30(2):202-206.
[32]YONGHY,BAKARFDA,ILLIAS R M,MAHADINM,MURAD A MA.Cgl-SLT2 is required for appressorium formation,sporulationandpathogenicityin Colletotrichum gloeosporioides[J]. Brazilian Journal ofMicrobiology,2014,44(4):1241-1250.
[33]SANDERS G M,KORSTEN L. Comparison of cross inoculation potential of South African avocado and mango isolates of Colletotrichum gloeosporioides[J].Microbiological Research, 2003,158(2):143-150.
[34]PRIHASTUTI H,CAI L,CHEN H,MCKENZIE E H C,HYDE K D. Characterization of Colletotrichum species associated with coffee berries in Northern Thailand[J]. Fungal Diversity,2009, 39:89-109.
[35]元政良,徐芳菲,王先洪,傅敏,王利平,洪霓,王國平.福建李 葉斑病病原菌種類鑒定及致病性研究[J].果樹學報,2023,40 (11):2423-2434. QI Zhengliang,XU Fangfei, WANG Xianhong,FU Min, WANG Liping,HONG Ni, WANG Guoping. Identification and pathogenicity of pathogenic speciesof plum leaf spot disease inFujian[J]. Journal of Fruit Science,2023,40(11):2423-2434.
[36]張琳,彭琳,邵郅偉,付長然,高潔,劉麗萍.南瓜炭疽病菌 Colletotrichum brevisporum 生物學特性及藥劑防治[J].植物保護, 2021,47(4):59-65. ZHANGLin,PENGLin,SHAO Zhiwei,FU Changran,GAO Jie,LIU Liping. Biological characteristics and indoor fungicide screening of Colletotrichum brevisporum causing pumpkin anthracnose[J]. Plant Protection,2021,47(4):59-65.
[37]DE ALMEIDA L B,MATOS K S,ASSIS L AG,HANADA R E,DA SILVA G F. First report of anthracnose of Capsicum chinenseinBrazilcausedbyColletotrichumbrevisporum[J].Plant Disease,2017,101(6):1035.
[38]DAMM U,CANNON P F,WOUDENBERG JH C, JOHNSTON P R, WEIR B S,TAN Y P,SHIVAS R G,CROUS P W. TheColletotrichum boninense species complex[J]. Studiesin Mycology,2012,73:1-36.
[39]RAMOS A M, TADIC L F,CINTO I,CARMONA M, GALLY M.Molecular characterization of Colletotrichum species causing soybean anthracnose in Argentina[J].Mycotaxon,2013,123 (1):457-465.
[40]張玉杰,孫文秀,唐利華,黃穗萍,莫賤友,郭堂勛,陳小林,黃 輝曄,李其利.廣西番木瓜炭疽病的病原菌鑒定[J].植物病理 學報,2023,53(3):518-521. ZHANG Yujie,SUN Wenxiu,TANG Lihua, HUANG Suiping, MO Jianyou, GUO Tangxun,CHEN Xiaolin, HUANG Huiye, LI Qili.Identification of the pathogen of Papaya anthracnose in Guangxi[J].Acta Phytopathologica Sinica,2023,53(3):518-521.