中圖分類號:S663.2 文獻標志碼:A 文章編號:1009-9980(2025)08-1897-08
Abstract: 【Objective】Molecular breeding technology enables targeted improvement and innovation in blueberry germplasm, accelerating the development of superior blueberry varieties. The current genetic transformation system for blueberries faces limitations, including complex steps,time-consuming processes,and reliance on tissue culture systems.The Regenerative Activity-dependent in Planta Injection Delivery (RAPID) method enables the generation of stable transgenic plants without the need for tissue culture,offering broader applicability. Inspired by the RAPID method, we established anAgrobacterium rhizogenes transformation system for blueberry (Vaccinium corymbosum) stem segments. 【Methods】 The stem segments from current-year green shoots of field-grown Lanmei 1 blueberry plants were used as explants. A. rhizogenes strain K599, carrying a green fluorescent protein (GFP) overexpression plasmid, was employed for transformation. The bacterial suspension was aspirated and injected into the bud points and both cut ends of the explants using a 1mL sterile syringe.At the same time, the screening experiments were conducted to optimize the concentration of the bacterial suspension and the combination of two additives (acetosyringone, AS; surfactant L-77, S L-77). The infected explants were transplanted into substrate soil and subjected to dark cultivation for 4 days.After 45 days,GFP fluorescence signals in the infected plantlets were observed under 488nm blue light using a stereo fluorescence microscope. The potential positive transgenic plants were screened based on GFP expression. Subsequently,DNA was extracted from newly emerged lateral buds exhibiting green fluorescence signals,and GFP gene fragments were cloned by polymerase chain reaction (PCR) to identify the integration of the target gene into the blueberry genome.【Results】 The survival rate of explants increased by approximately 10% when the concentration of A .rhizogeneswas OD600=1.0 and1.5,comparedwith that of OD600= 0.5. Concurrently, when OD600=1.0 , the induction rate of GFP-positive shoots increased by approximately 8% compared with the induction rates observed at OD600=0.5 and 1.5. Therefore,the optimal bacterial suspension concentration for the genetic transformation system was determined to be OD600= 1.0.The different additive combinations (
AS, no S L-77; $\textcircled { 2 } 2 0 0 \ \textcircled { \mathrm { \textmu m o l } } \cdot \mathrm { L } ^ { - 1 }$ AS, no SL 77;
AS, 0.05% S L-77; ④200μmol?L-1 AS, 0.05% S L-77) were added to the bacterial suspension, and the explants were infected by injection. The results showed that the survival rate of the explants was the highest in combination ① ,reaching 87.5% ,while the GFP-positive shoot induction rate was only 10.0% ; and the survival rate of explants was the lowest in combination ② at 80.00% , while the GFP-positive shoot induction rate was 30.00% , indicating that within the experimental dosage range, increasing the concentration of AS would improve the transformation eficiency but reduced the explant survival rates. In addition, the survival rate of the explants was 82.50% in combination ③ while the GFP-positive shoot induction rate was 40.00% ; and the survival rate of the explants was 80.00% in combination ④ ,while the GFP-positive shoot induction rate was 42.50% ,indicatingthat the addition of surfactants would significantly enhance the transformation eficiency, outperforming the effects of increasing AS concentration alone. It is noteworthy that the improvement in transformation efficiency by adding 0.05% S L-77 diminished, as the AS concentration increased. The additive combination for the genetic transformation system was determined to be 200μmol?L-1AS with 0.05% S L-77. It was observed by cuting and cultivating the infected explants that the lateral buds began to sprout from the top of the stem segment 15 days later. By 45 days, nearly all surviving cuttings had sprouted, with no adventitious roots emerging around the bud sites. The calls formation was observed at the cut ends of some cutings.The hairy roots mainly emerged from the basal ends of the stem segments, with rooting occurring at a slower rate compared with the lateral bud sprouting. It was found by observing the cuttings under an excitation light source of 488nm that GFP fluorescence signals were expressed on both the newly formed lateral buds and hairy roots. And the GFP signal emited by the leaves was relatively weak.The DNA of potential positive lateral buds was extracted and the transformation was verified by PCR. The results showed that the 1 positive rate of fluorescence screening was 30% . 【Conclusion】A simple,rapid,and economical genetic transformation system for stem segments of Lanmei 1 blueberry, mediated by A. rhizogenes K599,was established in this study. The optimal conditions for the genetic transformation system are as follows: an Agrobacterium suspension with OD600=1.0 is used, supplemented with a combination of 200μmol?L-1 AS and 0.05% S L-77 as additives,and the bud points and both ends of the green stem segments are infected via injection,followed by dark cultivation for 4 days. The fluorescence screening could be conducted approximately 45 days after cultivation. The achieved highest transformation efficiency was 29.75% . This genetic transformation system for blueberries seems to be capable of transforming blueberry varieties with no establishment of a tissue culture system, and should provide technical support for functional gene research and elite cultivar breeding in blueberries.
Key words: Vaccinium corymbosum ‘Lanmei Φ1′ ; Genetic transformation; Agrobacterium rhizogenes
藍莓(Blueberry)為杜鵑花科(Ericaceae)越橘屬(VacciniumL.)植物,原產于北美洲[]。藍莓保健價值高[2-3],但目前國內的主栽品種如優瑞卡(Eureka)、萊格西(Legacy)等均為從國外引進4。選育具有市場競爭力強的本土藍莓良種對中國藍莓產業發展具有重要意義。隨著現代分子生物學的發展,通過基因編輯技術可針對性地推動藍莓種質改良與創新,加快育種進程,分子育種結合雜交育種成為主要的育種方法5]。
高效穩定的藍莓遺傳轉化體系是發掘藍莓關鍵基因、研究藍莓優良性狀、進行藍莓精確育種的重要研究手段。農桿菌介導的遺傳轉化是應用最廣的植物遺傳轉化方法之一,其轉化原理為攜帶Ti質粒的根癌農桿菌或攜帶Ri質粒的發根農桿菌可以在侵染植物后將質粒中的T-DNA片段整合到植物基因組中,從而誘導得到轉基因植株[7-8]。在農桿菌介導的遺傳轉化體系中,菌液濃度是影響轉化效率的主要因素之一,不同種類植物耐受的菌液濃度不同,菌液濃度過低則轉化效率低,濃度過高時易損害植物細胞。現有的藍莓遺傳轉化方法主要是以葉片為外植體的根癌農桿菌轉化法[1°-2],操作相對繁瑣耗時,也需要相應的組織培養體系,且不定芽轉化率較低。Mei等[3]提出的以莖段等器官為外植體的注射轉化法(RAPID)是通過直接將菌液注入植株相應部位,可實現馬鈴薯、甘薯等植物的快速轉化,同時提出表面活性劑是注射法轉化的重要變量。與根癌農桿菌轉化法相比,發根農桿菌轉化法具有操作簡單、成本低等優點,也可以誘導轉化單細胞產生獨立的毛狀根,避免出現嵌合體問題。柑橘[14]、蘋果[15]、閩楠[等植物均已建立了毛狀根轉化體系,也有研究實現了完整植株的轉化,但發根農桿菌在藍莓的遺傳轉化中少有應用。上述研究為藍莓莖段的體外快速轉化提供了應用實例。
南高叢藍莓品種藍美1號(Vacciniumcorymbo-sum‘Lanmei1')是中國國家級林木良種(編號:國R-ETS-VC-006-2018),遺傳背景復雜[18-19],具有耐熱性強[20]、氮素利用效率高[21]、適應性強、豐產性好[22]、果實花青素含量高[23等優點,其基因資源的開發利用對中國藍莓種質創新具有重要意義。在本研究中,筆者以藍美1號的綠枝莖段作為外植體,采用注射法,通過不同菌液濃度和添加劑的組合對最佳轉化條件進行篩選,以期建立由發根農桿菌K599介導的藍莓遺傳轉化體系,為后續藍莓的基因功能研究和高效良種選育提供一定的技術支持。
1 材料和方法
1.1材料
1.1.1植物材料試驗材料來源于江蘇省中國科學院植物研究所藍莓試驗苗圃的藍美1號地栽植株。選取當年生的直徑 3~5mm 、半木質化的綠枝,去除頂端幼嫩莖段,修剪成長為 6~8cm 、帶2個以上腋芽、去除葉片的插條作為外植體,保濕待用。
1.1.2農桿菌的獲得發根農桿菌(Agrobacteriumrhizogenes)菌株為K599,帶有表達卡那霉素(Kana-mycin)抗性基因、潮霉素(Hygromycin)抗性基因以及綠色熒光蛋白報告基因(GreenFluorescentProtein,GFP)的pMDC83質粒。該甘油菌受贈于農業大學農學院。
1.2農桿菌活化與侵染液制備
從 -20°C 冰箱中取出發根農桿菌K599甘油菌液,在含有 50mg?L-1 卡那霉素的LB固體培養基上劃線活化, 28°C 暗培養1~2d。挑取單菌落加入含有 50mg?L-1 卡那霉素的LB液體培養基中, 28°C 、120r?min-1 過夜培養。以每 100mL 培養基加入 1mL 菌液的比例復搖菌液, 28°C,120r?min?1 過夜培養至菌液顏色為果粒橙色。將菌液 6500r?min-1,10min 離心后倒去上清液,沉淀菌體加入含AS(乙酰丁香酮,Acetosyringone)的重懸液 (WPM+100μmol?L-1 AS, pH5.3) 吸打混勻,調整 OD600 值至1.0,黑暗條件下 28°C,120r?min?1 活化 2h 后進行注射。
1.3藍莓莖段的遺傳轉化
1.3.1不同菌液濃度對轉化效率的影響根據前期預試驗結果,藍美1號葉盤法轉化的最適菌液濃度為 OD600 值0.5左右。本試驗選用的藍莓綠枝木質化程度較高,推測其適用更高的菌液濃度,因此設置K599侵染液的菌液濃度( ΔOD600 值)梯度為0.5、1.0、1.5。
使用 1mL 無菌注射器將侵染液注入插條兩端和腋芽芽點,具體操作如下:將針頭斜向刺入芽點基部或距離切口 0.3~0.6cm 的莖段,保持針頭淺插并且長度約 1mm 的針尖已完全沒入植株的狀態,緩慢勻速地向每個注射點注射 0.2~0.3mL 侵染液。注射時一手以鑷子固定莖段,另一手注射的同時輕壓針管防止脫落,注射結束后沿針口方向抽出針頭。每個處理接種26個外植體(圖1)。
1.3.2不同添加劑組合對轉化效率的影響K599侵染液 OD600 值為1.0,設置添加AS與表面活性劑SL-77(SurfactantL-77)的組合試驗。重懸液中分別添加:①100μmol?L-1A S,不添加SL-77;
AS,不添加 SL-77;③100μmol?L-1AS ,添加 0.05% SL-77;④200μmol?L-1AS ,添加 0.05% SL-77;共4個處理。使用 1mL 無菌注射器將侵染液注入插條兩端和腋芽芽點,具體操作同1.3.1,每個處理接種40個外植體。
1.3.3藍莓莖段的扦插培養插條經侵染后,底部浸泡 5000mg?L-1 IBA溶液9~10s,扦插在基質土中暗培養4d后轉為光照培養,育苗盤全程蓋有保濕透明的塑料罩。暗培養后的第一周每日噴施1000倍多菌靈溶液防霉,生根前對莖段定期噴水保濕,在25°C,16h 光照 /8h 黑暗的條件下培養。培養45d左右插條生根發芽后進行熒光篩選。
1.3.4轉基因植株的鑒定為鑒定藍莓遺傳轉化株系的有效性,使用體視熒光顯微鏡(ZeissSteREO Discovery.V8,蔡司,德國)在 488nm 藍光下觀察侵染植株的熒光表達情況,以野生型植株的自發熒光作為陰性對照,篩選出表達GFP信號的新生側芽和根系并拍照。為鑒定目的基因是否整合到藍莓基因組中,進一步提取擬陽性扦插苗的側枝莖葉,在液氮冷凍條件下研磨成粉,使用植物基因組DNA提取試劑盒(FastCleanPlantGenomicDNAKit,康為世紀CWBIO,CW05715)提取DNA,具體步驟參照試劑盒說明書。設計引物Kgfp-F:5'-GAAGTTCGAGGGC-GACA-3',Kgfp-R:5'-CGTTGGGGTCTTTGCTTA-3',擴增條帶長度 302bp ,引物由安徽通用生物股份有限公司合成。使用高保真酶(康為世紀CWBIO,CW2969)通過PCR克隆GFP基因片段,反應體系0 20μL) 為 2× Super Pfx Master Mix(Dye) 10.0μL 、Forward Primer 0.8μL 、Reverse Primer 0.8μL 、
;采用二步法反應程序,具體設定為:
, $( 9 8 \ ^ { \circ } \mathrm { C } \ 1 0 \ \mathrm { s } , 6 6 \ ^ { \circ } \mathrm { C } \ 3 0 \ \mathrm { s } ; 3 5 \$ 個循環), 72°C1min 。反應結束后,通過 1% 瓊脂糖凝膠電泳檢測PCR產物,有目的條帶的即為陽性,a b d
a.插條制備;b.侵染;c.扦插;d.篩選GFP 陽性植株;e.取材鑒定。d-e圖中亮綠色部分表示GFP 陽性新生組織。a.Cutingprepiob.eiote;dooiptspffIdhareas indicate newly formed GFP-positive tissues.
另外使用上海勤翔凝膠成像系統(GeneSens2100,勤翔,中國)拍照。
1.4數據統計與分析
使用Excel統計和計算外植體的存活率與GFP芽誘導率,根據GFP芽誘導率與PCR檢測結果計算轉化率。計算公式如下:存活率 A0= 存活外植體數量/外植體總數量 ×100 ;誘導率 /%= 產生GFP芽的外植體數量/外植體總數量 ×100 ;轉化率
PCR結果陽性的DNA樣品數量/提取的DNA樣品總數量 × 誘導率。使用AdobeIllustrator2023作圖。
2 結果與分析
2.1不同菌液濃度對藍莓轉化效率的影響
通過注射法轉化藍美1號綠枝莖段,篩選轉化最適的K599菌液濃度(
值)。結果(表1)表明:當菌液 OD600 值從0.5到1.0時,外植體存活率提高;
表1菌液濃度對藍美1號莖段轉化效率的影響Table1Efects ofbacterial solutionconcentrationon transformation efficiency ofLanmei1 stems

當菌液 OD600 值從1.0到1.5時,外植體存活率相同,均為 96.15% 。隨著菌液濃度的提高,外植體新芽的GFP芽誘導率先升后降。因此,菌液 OD600 值為1.0時侵染效果最佳,外植體存活率為 96.15% ,GFP芽誘導率為 42.31% 。
2.2不同添加劑組合對藍莓轉化效率的影響
通過注射法轉化藍美1號綠枝莖段,在K599農桿菌的重懸液中進行添加AS或SL-77。結果(表2)表明:重懸液中添加AS或SL-77均會降低外植體存活率,同時均能提高GFP芽誘導率。在重懸液中同時添加 200μmol?L-1 AS與 0.05% SL-77時侵染效果最佳,外植體存活率為 80.00% ,GFP芽誘導率為42.50% 。
表2添加劑組合對藍美1號莖段轉化效率的影響
Table2Effects of additivecombinationon transformationefficiencyofLanmei1stems

2.3轉基因植株的篩選與鑒定
對藍美1號遺傳轉化株系進行熒光檢測(激發波長 488nm) ,觀察到側芽或毛狀根表達為綠色熒光信號的株系(圖2),對以上株系進行篩選和統計。為鑒定目的基因是否整合到藍莓基因組中,隨機抽選20株擬陽性植株的GFP芽提取DNA,通過PCR克隆GFP基因片段進行驗證(圖2-G),結果測得14株轉化植株,假陽性率為 30% 。結合遺傳轉化株系的最高GFP芽誘導率為 42.50% ,注射法侵染藍美1號綠枝莖段的轉化率最高可達 29.75% 0
3討論
藍莓遺傳轉化體系主要以葉片為外植體,且基于組織培養技術進行,操作相對繁瑣耗時。本研究直接將發根農桿菌菌液注射到藍莓莖段中進行侵染,最高轉化率為 29.75% ,不僅優于已發表藍莓葉盤法遺傳轉化體系的不定芽轉化率[10-2],并且更加簡單、快速、經濟。同時,注射法也可以用于轉化未建立組培快繁體系的藍莓品種,適用范圍更廣泛。
發根農桿菌能夠誘導植物傷口產生大量毛狀根[24,但本研究中經注射侵染的藍莓莖段的芽點及上端切口處未見毛狀根的發生,這可能說明發根農桿菌對毛狀根的誘導與其侵入的植株部位相關。菌液濃度是影響植物遺傳轉化效率的關鍵因素,越橘屬植物遺傳轉化體系采用的菌液 OD600 值多在 0.4~ 0.8[11,25] ,并且外植體多取自組培植株。考慮到藍莓綠枝木質化程度較高,且菌斑涂抹法這類農桿菌濃度高、侵染時間短的侵染方式已在蘋果[15]、豌豆等[2]植株的轉化上獲得較好效果,本研究選擇菌液 OD600 值 0.5~1.5 的濃度范圍進行篩選試驗。結果顯示,OD600 值為1.0時外植體的轉化效率最高,表明外植體耐受的菌液濃度與自身生理狀態相關。本研究中外植體取自相對粗壯的地栽植株綠枝,這可能導致最適菌液濃度可以相應增加。農桿菌對莖段的誘導效果隨菌液濃度的增加先升后降,筆者發現農桿菌菌液經重懸活化制成侵染液后, OD600 值為1.5的侵染液底部出現少量白色死亡菌團,表明農桿菌活性在該菌液濃度下受到抑制,這可能導致菌液 OD600 值 1.0~1.5 間轉化效率降低。Mei等[3]在“RAPID法”的研究中發現化學添加劑AS與表面活性劑SL-77的組合可以顯著提高甘薯莖段的轉化效率。AS可誘發農桿菌質粒DNA上Vir區基因的活化和表達,促使農桿菌的T-DNA向宿主細胞核轉移,被廣泛用于植物的遺傳轉化[2;表面活性劑能顯著降低液體-固體間的表面張力,增強菌液對外植體的浸潤效果,在擬南芥的浸花轉化法上早有應用[28]。本研究將該添加劑組合用于藍莓莖段的遺傳轉化,結果發現當重懸液含"
"S時,再添加 0.05% S L-77后誘導率提高了 30% ,轉化效率得到明顯提高,與Mei等[13]的結果一致;同時,當重懸液含 200μmol?L-1"AS時,添加 0.05% SL-77后誘導率僅提高了 12.5% ,這可能說明表面活性劑的效果與該添加劑組合的配比相關。兩輪注射法侵染試驗存在2個月時差,在同一侵染條件下,前者的GFP芽誘導率為 42.31% ,而后者為 10.00% ,表明外植體的生理狀態對轉化效率影響較大。在地區,南高叢藍莓植株的枝條生長在春季夏初和秋季有兩次高峰期,可選在一年內的5月下旬至9月下旬取半木質化綠枝進行侵染試驗,探究最佳取材期,進一步優化藍莓遺傳轉化體系[1,29]。
A-F為體視熒光顯微鏡下拍攝的熒光照片(激發光波長 488nm ),a-f為對應A-F的明場照片。A.野生型植株葉片;B.野生型植株根系;C.未表達 GFP 的陰性葉片;D.未表達GFP 的陰性毛狀根;E.表達GFP 的陽性葉片;F.表達GFP 的陽性毛狀根。標尺 =1000μm 。G.轉化株系的分子鑒定:M為DNAMarkerDL2000,1為空白對照,2為野生型植株的陰性對照,3為農桿菌液的陽性對照,4-10為轉化植株 DNA 的PCR產物。
A-Fare fluorescence photos taken bya stereo fluorescence microscope (excitation wavelength 488nm ),anda-farebrightfieldphotoscorrespondingtoA-FA.idatdeatos;aieo;DieoioE leaves;F.GFP-positive hairy roots.1 Bar=1000μm G.Molecular identification of transgenic lines:M represents DNA Marker DL2ooo,1 represents blankotrol transgenic plant DNA.
圖2轉基因植株的篩選與鑒定
Fig.2Screeningandidentificationoftransgenicplants

在構建藍莓遺傳轉化體系的試驗中,筆者分別選用了藍美1號地栽植株綠枝和組培苗莖段(數據未發表)作為外植體進行轉化試驗。與本研究相比,藍美1號組培苗莖段在進行注射侵染后存活率極低,可能1mL注射器針頭造成的創傷對組培苗莖段影響較大,外植體易萎蔫死亡,從而導致轉化試驗的失敗;同時,組培苗莖段能依據切-浸-芽轉化體系[1]實現轉化,說明同種藍莓莖段在不同生理狀態適用的遺傳轉化條件不盡相同。
4結論
本研究以藍美1號綠枝莖段作為外植體構建了簡單快速的發根農桿菌K599介導的藍莓遺傳轉化體系,獲得了轉化植株。本研究所得遺傳轉化體系的轉化方法為:選取直徑 3~5mm 的當年生半木質化綠枝,去頂并剪成 6~8cm 、帶2個以上芽點、去除葉片的插條,使用菌液 OD600 為1.0、添加 200μmol?L-1 AS與 0.05%SL-77 的K599侵染液注射插條芽點及兩端切口進行侵染,暗培養4d。最快可在45d獲得陽性轉化植株,最高轉化率為 29.75% 。
參考文獻References:
[1] 顧姻,賀善安.藍漿果與蔓越桔[M].北京:中國農業出版社, 2001:1-9. GUYin,HE Shanan.Blueberry and cranberry[M].Beijing:China Agriculture Press,2001:1-9.
[2] 潘美華,程哲灝.藍莓的營養成分及其保健功能的研究進 展[J].食品安全導刊,2022(22):107-109. PAN Meihua,CHENG Zhehao.Research progress on nutritional components and health functionof blueberry[J]. China Food SafetyMagazine,2022(22):107-109.
[3] DILEK B,MELTEMO. Quercetin suppresses cell proliferation using the apoptosis pathways in MCF-7 and MDA-MB-231 human breast carcinoma cells in monolayer and spheroid model cultures[J]. South African Journal of Botany,2023,162:259- 270.
[4] 劉慶忠,崔冬冬,朱東姿.世界及中國藍莓產業現狀[J].落葉 果樹,2024,56(4):1-7. LIU Qingzhong,CUI Dongdong,ZHU Dongzi. Current situation of blueberry industry in the world and China[J]. Deciduous Fruits,2024,56(4):1-7.
[5] 公旭彤,杜乾慧,劉桂婷,盧雅妮,李雨彤,宋清秋,呂梓茜,王 楠,張文基,王賀新,趙麗娜,劉國玲,徐國輝.近30年世界藍 莓新品種資源及育種趨勢分析[J].植物遺傳資源學報,2025, 26(2):218-236. GONG Xutong,DU Qianhui,LIU Guiting,LU Yani,LI Yutong, SONG Qingqiu,LU Zixi, WANG Nan, ZHANG Wenji, WANG Hexin,ZHAO Lina,LIU Guoling,XU Guohui. Analysis of new blueberry varieties and breeding trends in the world in recent 30 years[J]. Journal of Plant Genetic Resources,2025,26(2):218- 236.
[6] SU WB,XU M Y,RADANI Y,YANG L M. Technological development and application of plant genetic transformation[J]. International Journal of Molecular Sciences,2023,24(13):10646.
[7] PACURAR D I, THORDAL-CHRISTENSEN H,PACURAR M L,PAMFILD,BOTEZ C,BELLINIC.Agrobacterium tumefaciens :Fromcrown gall tumors to genetic transformation[J].Physiologicaland Molecular Plant Pathology,2011,76(2):76-81.
[8] 王燕燕,王丹,崔馨文,于放.植物毛狀根應用的研究[J].食品 與發酵工業,2023,49(21):293-302. WANGYanyan,WANGDan,CUIXinwen,YUFang.Advances on the application of hairy roots in plants[J].Food and Fermentation Industries,2023,49(21):293-302.
[9] 孫華軍,李國瑞,陳永勝,黃鳳蘭,李躍,邢超,趙永,陳曉鳳,包 長春,張智勇.農桿菌介導的植物遺傳轉化影響因素研究進 展[J].安徽農業科學,2015,43(24):26-27. SUN Huajun,LI Guorui,CHEN Yongsheng, HUANG Fenglan, LI Yue,XING Chao,ZHAO Yong,CHEN Xiaofeng,BAO Changchun,ZHANG Zhiyong.Research progress on influencing factors of Agrobacterium-mediated plant genetic transformation[J]. Journal ofAnhui Agricultural Sciences,2015,43(24):26-27.
[10]SONG G Q,SINK KC.Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.)[J]. Plant Cell Reports,2004,23(7):475-484.
[11] 劉嘉欣.農桿菌介導的不同藍莓品種遺傳轉化體系的建立[D]. 北京:北京林業大學,2018. LIU Jiaxin.Agrobacterium-mediated genetic transformationof different blueberry varieties[D].Beijing:Beijing Forestry University,2018.
[12]覃雪晶.幾個藍莓品種離體葉片再生及遺傳轉化體系的優化[D]. 北京:北京林業大學,2020. QIN Xuejing. Optimization of leaves regeneration and genetic transformationsystemofseveralblueberryvarieties[D].Beijing: Beijing Forestry University,2020.
[13]MEIG G,CHEN A, WANG YR,LI S Q,WU MY,HUY L,LIU X,HOU X L. A simple and efficient in planta transformation method based on the active regeneration capacity of plants[J]. Plant Communications,2024,5(4):100822.
[14] XIAO Y X,DUTT M,MA H J,XIAO C,TONG Z,WANG Z Q, HE XJ,SUN Z H,QIU W M. Establishment of an efficient root mediated genetic transformation method for gene function verificationin Citrus[J].ScientiaHorticulturae,2023,321:112298.
[15]周雪婷,武凱凱,崔藍芳,張坤璽,白團輝,史江莉,焦健,王苗 苗,劉昱,趙玉潔,萬然,郝鵬博,鄭先波.蘋果發根農桿菌介 導轉化體系構建與優化[J/OL].果樹學報,2024:1-14.(2024- 03-14). https://doi.org/10.13925/j.cnki.gsxb.20240046. ZHOU Xueting,WU Kaikai,CUI Lanfang,ZHANG Kunxi, BAI Tuanhui,SHI Jiangli, JIAO Jian,WANG Miaomiao,LIU Yu,ZHAO Yujie,WAN Ran,HAO Pengbo,ZHENG Xianbo. Construction and optimization of transformation system mediated by Agrobacterium rhizogenes in apple[J/OL]. Journal of Fruit Science,2024:1-14. (2024-03-14). https://doi.org/10.13925/j. cnki.gsxb.20240046.
[16]吳夢潔,洪家都,李芳燕,周生財,林二培,程龍軍.發根農桿 菌介導的閩楠遺傳轉化體系構建與優化[J].核農學報,2023, 37(8):1516-1522. WU Mengjie,HONG Jiadu,LI Fangyan, ZHOU Shengcai,LIN Erpei,CHENG Longjun. Construction and optimization of genetic transformation system mediated by Agrobacterium rhizogenes in Phoebe bournei[J]. Journal of Nuclear Agricultural Sciences,2023,37(8):1516-1522.
[17]CAO X S,XIE HT,SONG ML,LUJH,MA P,HUANG B Y, WANGMG,TIANYF,CHENF,PENG J,LANG ZB,LI G F,ZHUJK. Cut- dip - buding delivery system enables genetic modifications in plants without tissue culture[J].The Innovation,2023,4(1):100345.
[18]於虹,曾其龍,楊曙方,陳華江,賀善安.中國藍莓產業中品種 資源的選用取向與創新[J].浙江農業科學,2018,59(6):924- 927. YU Hong, ZENG Qilong,YANG Shufang,CHEN Huajiang, HE Shan'an. Study on germplasm resources selection and innovation of blueberry industries in China[J]. Journal of Zhejiang Agricultural Sciences,2018,59(6):924-927.
[19]王亮,韋繼光,葛春峰,於虹,姜燕琴,楊曙方,曾其龍,田亮 亮.基于SSR 標記分析藍莓品種‘藍美1號'自由授粉子代遺 傳多樣性及群體遺傳結構[J].植物資源與環境學報,2022,31 (3):35-43. WANG Liang,WEI Jiguang,GE Chunfeng,YU Hong, JIANG Yanqin,YANG Shufang,ZENG Qilong,TIAN Liangliang. Analysis on genetic diversity and population genetic structure of open-pollinated progenies of Vaccinium corymbosum‘Lanmei 1'based on SSR marker[J]. Journal of Plant Resources and Environment,2022,31(3):35-43.
[20] 韋繼光,曾其龍,姜燕琴,蔣佳峰,田亮亮,劉夢溪,於虹.南高 叢藍莓品種藍美1號的光合特性研究[J].中國果樹,2022(1): 62-67. WEI Jiguang, ZENG Qilong,JIANG Yanqin, JIANG Jiafeng, TIANLiangliang,LIU Mengxi,YU Hong. Photosynthetic characteristics of Vaccinium corymbosum cv.‘Lanmei1'[J]. China Fruits,2022(1):62-67.
[21]宋佳蓉,劉夢溪,葛春峰,張鵬程,趙剛,於虹,曾其龍.不同藍 莓品種幼苗氮素利用效率和適宜施氮水平分析[J].植物資源 與環境學報,2024,33(3):58-68. SONG Jiarong,LIU Mengxi,GE Chunfeng,ZHANG Pengcheng, ZHAO Gang,YU Hong,ZENG Qilong. Analyses on nitrogen useefficiency and appropriate nitrogen application level for seedlings of different blueberry (Vaccinium spp.) cultivars[J]. Journal of Plant Resources and Environment,2024,33(3):58-68.
[22]藍美.鮮食與加工兼用型南高叢藍莓新品種藍美1號[J].農 村百事通,2016(3):25. LANMei.A new southern highbush blueberry variety‘Lanmei 1'for fresh food and processing[J]. Nongcun Baishitong,2016 (3):25.
[23]鄭嘉偉,王蘭嬌,李大婧,柴智,張曉曉,黃午陽.藍莓花青素生 物合成相關基因表達與分子進化分析[J].食品科學,2022,43 (2):184-191. ZHENG Jiawei,WANG Lanjiao,LI Dajing,CHAI Zhi, ZHANG Xiaoxiao,HUANG Wuyang. Expression and molecularevolution of genes related to anthocyanin biosynthesis in blueberries[J].Food Science,2022,43(2):184-191.
[24]張思佳,吳凡穎,李小姍,常明明,劉悅萍,楊海清.桃毛根轉化 體系的建立與優化[J].北京農學院學報,2024,39(3):63-68. ZHANG Sijia,WU Fanying,LI Xiaoshan,CHANG Mingming, LIU Yueping,YANG Haiqing.Establishment and optimization of peach hairy root transformation system[J]. Journal of Beijing University of Agriculture,2024,39(3):63-68.
[25]李晨,吳清楠,汪晴晴,張凌云,覃雪晶.烏飯樹再生及遺傳轉 化體系的建立[J].農業科學,2024(5):523-534. LI Chen,WU Qingnan,WANG Qingqing,ZHANG Lingyun, QIN Xuejing.The establishment of regeneration and genetic transformation system for Vaccinium bracteatum Thunb.[J]. Hans Journal of Agricultural Sciences,2024(5):523-534.
[26]馮志娟,劉娜,卜遠鵬,張古文,王斌,龔亞明.發根農桿菌介導 的菜用豌豆遺傳轉化體系構建[J].園藝學報,2024,51(10): 2439-2448. FENG Zhijuan,LIU Na,BU Yuanpeng,ZHANG Guwen, WANG Bin,GONG Yaming. Establishment of Agrobacterium rhizogenes-mediated genetic transformationsysteminvegetable pea[J].Acta Horticulturae Sinica,2024,51(10):2439-2448.
[27]鄧藝,曾炳山,趙思東,劉英,裘珍飛,李湘陽,王曙.乙酰丁香 酮在農桿菌介導的遺傳轉化中的作用機制及應用[J].安徽農 業科學,2010,38(5):2229-2232. DENG Yi, ZENG Bingshan,ZHAO Sidong,LIU Ying,QIU Zhenfei,LI Xiangyang,WANG Shu. Mechanism and application of acetosyringone in Agrobacterium-mediated transformation[J].Journal of Anhui Agricultural Sciences,201o,38(5): 2229-2232.
[28]VERMA S S,CHINNUSAMY V,BANSA K C. A simplified floral dip method for transformation of Brassica napus and B. carinata[J].Journal of Plant Biochemistry and Biotechnology,2008, 17(2):197-200.
[29]楊海燕,吳文龍,閭連飛,趙慧芳,李維林.3個南高叢藍莓品 種在的表現及栽培要點[J].南方園藝,2021,32(5):45-47. YANG Haiyan,WU Wenlong,LU Lianfei,ZHAO Huifang,LI Weilin. The performance and cultivation points of three southern highbush blueberry varieties in Nanjing[J]. Southern Horticulture.2021.32(5):45-47.