999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

轉錄因子PbeNAC83正調控蘋果和梨腐爛病抗性

2025-09-05 00:00:00豆志琦蔡敏蕊杜成龍胡歡歡左存武
果樹學報 2025年8期

中圖分類號:S661.1 S661.2 文獻標志碼:A 文章編號:1009-9980(2025)08-1687-13

Abstract:【Objective】Valsacanker,causedbyValsapyri( (Vp) ,isahighlydestructivetrunkdisease of pear trees, causing significant economic losses to the global pear industry. Characterized by a long incubation period,high pathogenicity,and rapid spread, this pathogen mainly invades the phloem of pear trees through wounds or stomata.It disrupts the transportation of water and nutrients,leading to the withering of trees,decline in yield,deterioration offruit quality,the deathof entire plants,and even the destruction of orchards.Existing prevention and control methods still have problems.Therefore, resistance breeding has become an effective solution to the problems.It is urgent to screen for major diseaseresistant genes and study their mechanisms. When the immune system of plants is activated upon pathogen infection during their growth and development, cellular transcriptional reprogramming occurs to regulate the expression of defense-related genes. As a vital plant-specific transcription factor family, NAC factors are significantly involved in this process.Previous studies have shown that NAC transcription factors are involved in a wide range of plant physiological processes and responses to various environmental stresses.They have achieved remarkable results in enhancing plant stress resistance. However, reports on the identification and analysis of NAC transcription factors in pears are scarce.This study aims to identify NAC transcription factors related to Valsa canker resistance, providing a theoretical basis for molecular breding for disease resistance.【Methods】Based on transcriptome data, we screened mains of PbeNAC83 were further identified using the online tools SMART. Predicting cis-acting elements using the online tool PlantCARE. Additionally, the phylogenetic relationship between PbeNAC83 and other plant homologous genes was analyzed by multiple sequence alignment and phylogenetic tree construction. To identify the potential roles of PbeNAC83 in resistance to Valsa canker, we treated the suspension cells of Duli-G03 with 20%VPM and analyzed them using qRT-PCR to detect the expression pattern of PbeNAC83 to signals from the Valsa canker pathogens. Subsequently, the CDS of PbeNAC83 was amplified and inserted into the pFGC5941 expresson vector. The resulting recombinant plasmid was then introduced into Agrobacterium tumefaciens GV3101 using the freeze-thaw method. This approach was employed to elucidate the role of PbeNAC83 in conferring resistance to Valsa canker. To elucidate the role of PbeNAC83 in combating Valsa canker, we conducted transient expression experiments in the fruits of Huangguan pears (Pyrus bretschneideri) and Yanfu 3 apples (Malus ×domestica),and stable expression in the suspension cells of“Duli-Go3\". Moreover, we carried out infection tests on the fruits and suspension cells using Valsa pyri (Vp) . The difference in PbeNAC83 overexpression in resistance to Valsa canker was studied.The Multifunctional Microplate Reader was used to assay its cellular activity after treatment with VpM . The expression levels of immune response-related genes, including those involved in patern-triggered immunity (PTI), jasmonic acid (JA) signaling, phytoalexin production, and reactive oxygen species (ROS) pathways, were examined by qRT-PCR following the overexpression of this gene.【Results】 The expression analysis results indicated that that the P. betulifolia transcription factor PbeNAC83( (hr9.g47397 ) was significantly up-regulated in response to theinductionby ValsapyriMetabolites( (VpM) .Bioinformatics analysis indicated that PbeNAC83belongs to the NAC family of transcription factors,and contains a typical NAM domain. In addition, the promoter region is rich in elements related to methyl jasmonate (MeJA),abscisic acid (ABA) signaling pathways,anaerobic induction,as well as other elements associated with plant disease resistance.Evolutionary analysis indicates that PbeNAC83 exhibits the highest homology with""-v1.1-pbr of P. bretschneideri.Upon treatment with 20% (20 VPM ,theFPKM valueofPbeNAC83exhibiteda rapid increase.As determined by qRT-PCR,the expression level of PbeNAC83 increased from 19.51 at O h to 211.2,150.12,and121.32 after1,3,and 6 h of treatment,respectively.Transient expression of PbeNAC83 in Huangguan pears and Yanfu3 apples significantly reduced the spreading rate of Valsa pyri (2號 (Vp) . Further qRT-PCR assays confirmed that the target gene was overexpressed as we expected on the infiltrate site of fruits. PbeNAC83 was transfected into the DuliG03 suspension cells,and three welgrown overexpression cell lines were obtained. Functional analysis demonstrated that PbeNAC83-OE cells were more resistant to Vp"and VpM compared to the control. After inoculation with VP", the spread rate of Valsa canker disease was significantly inhibited. Compared with the control, the PbeNAC83- OEl cell line had at spread rate decreased by up to 57.9% 67.6% ,and 73.1% at 48, 60 and 72h respectively. Upon treatment with VpM ,the activity levels in the PbeNAC83-overexpressing cell lines were elevated compared to those in the wild-type cells. Gene expresson analysis revealed that key genes related to reactive oxygen species (ROS) and phytoalexin signaling pathways were significantly induced in thePbeNAC83 overexpression cellines.【Conclusion】To summarize, PbeNAC83 is a typical NAC transcription factor associated with resistance to Valsa canker in pears, which is significantly upregulated under VpM induction, and its overexpression positively regulates the resistance of apples, pears, and DuliG03 suspension cels to Valsa canker. ROS and phytohormone signaling pathways mainly participate in the immune response regulated by PbeNAC83.These results are of great significance for a deeper understanding of the mechanisms of Valsa canker disease resistance in pears. It will help to develop new disease resistance strategies,improve the disease resistance of pear tres,and promote the sustainable development of the pear industry.

Key Words: Apple and pear; Transcription factor; PbeNAC83; Valsa canker; Suspension cells; Immune responses

腐爛病是由腐生型黑腐皮殼屬真菌Valsamali(Vm) 和 V.pyri(Vp) 引起的植物病害,對中國乃至亞洲蘋果和梨的生產發展形成威脅[1-2]。腐爛病導致的樹體死亡、產量下降以及果實品質降低等問題,給果農和相關產業帶來巨大的經濟損失。病原菌通過因修剪、凍害、熱損傷等操作引起的傷口侵入樹體[]。發病期間,果樹的主枝上產生紅褐色的水浸狀病斑,病斑周圍組織松軟,伴有酒糟氣味,逐漸失水干縮,顏色轉為黑褐色,下陷形成潰瘍。后期病斑表面出現黑色小粒點,并在潮濕時會溢出橘黃色的絲狀物。當發病范圍環繞枝干一周時,導致整株枯萎、死亡甚至破壞整個果園。目前,主要利用物理、生物和化學等方法來預防及控制腐爛病的傳播4。然而,這些措施存在預防效果弱、運行成本高、環境污染風險高等問題5]。抗性育種作為一種環境友好且可持續的防治手段,廣受關注,但仍受到抗病機制研究不深入、單一和育種周期長的限制。目前研究人員致力于篩選具有抗性的種質資源,如杜梨因深根系、萌發性強、耐修剪且抗病能力好,成為抗腐爛病研究的重要材料。通過現代生物技術手段,雖然已在抗病相關的主效基因挖掘和鑒定方面取得了一定進展,但與龐大的基因資源相比,仍顯得不足。因此,迫切需要篩選出更多有助于抗病的主效基因,并系統地研究抗性機制,為腐爛病的抗性育種奠定基礎。

在植物的整個生長發育周期內,會受到多種生物的侵害。有害生物憑借獨特的感染機制,對植物的健康生長構成嚴重威脅。病害是農業生產及生態系統面臨的重大挑戰之一。在病原體感染時,植物免疫系統被激活,細胞會轉錄重編程以激活免疫途徑8。與此同時,植物也進化出復雜的調控機制用于對防御相關基因的轉錄過程加以調節。要實現基因表達的大規模轉錄重編程,需要轉錄因子(TF)之間的協同功能[]。由于轉錄因子在調控抗性基因中的關鍵作用,篩選新的抗性基因顯得尤為重要[°]。WRKY、bHLH、bZIP、C2H2和NAC等TF家族已被證實與植物免疫相關[-7]。NAC家族作為最大的植物特異性TF家族之一,參與各種生理過程和植物對環境脅迫的反應[18]。NAM、ATAF1/2、CUC1/2(NAC)轉錄因子于1996年首次被發現[。在典型的情況中,其N端存在一個高度保守的NAC結構域,包括約150個氨基酸殘基,而C端是變化的轉錄調控區(TAR)[20]。到目前為止,已在多種植物中進行了系統研究,涵蓋了從抗逆、抗病到生長發育等多個方面,包括擬南芥、煙草、水稻、玉米、大豆、番茄、蘋果、葡萄、黃花蒿等[21-25]。NAC轉錄因子在調節細胞增殖、果實成熟、應激反應和程序性細胞死亡等方面取得了一系列重要進展[26-30];在植物激素信號傳導方面也起著關鍵作用[3]。目前,NAC轉錄因子在梨中的鑒定與對腐爛病抗性關系的分析鮮見報道。

本研究基于前期甘肅農業大學果樹分子生物學實驗室在杜梨基因組范圍鑒定的轉錄因子NAC家族的基礎上,篩選了一個差異表達的NAC基因PbeNAC830 Chr9.g47397 并通過生物信息學分析、功能確認和表達分析進一步研究了該基因的功能。研究結果證實PbeNAC83通過ROS(Reactiveoxygenspecies)和植保素信號通路正向調節腐爛病抗性。

1 材料和方法

1.1 材料與處理

試驗于2024一2025年在甘肅農業大學園藝學院果樹分子生物學實驗室進行。黃冠梨和煙富3號蘋果均購自甘肅農業大學校內超市。杜梨懸浮細胞Duli-G03從幼嫩葉片中被誘導,并在MS液體培養基中繼代中[32]。梨腐爛病的病原菌株 VP"-P-002由甘肅農業大學果樹分子生物學實驗室誘導和分離獲得后,培養于馬鈴薯葡萄糖瓊脂培養基(PDA:potatodextroseagar)[33]中。繼代培養 72h 后,取直徑為5mm的腐爛病菌餅15個接種至 150mL 馬鈴薯葡萄糖液體培養基(PDB:potatodextrosebroth)中,繼續黑暗培養 72h ,間隔 12h 振蕩1次。 6000r?min-1"離心10min ,用 0.22μm 過濾器和 13mm PES注射器過濾上清液,得到含有 VP"次生代謝物( VpM :Valsapyri Me-tabolite)的培養液。用上述 VpM 處理預先培養的細胞后,在0、1、3和6h四個時間點收集樣品,低溫保存備用。PDA/PDB:馬鈴薯 200g ,加水,煮沸,除去上清液,PDA加入 20g 葡萄糖和 10g 瓊脂;PDB加入20g 葡萄糖,恒體積至1L,煮沸,蒸壓 121°C20min 。

1.2 試驗方法

1.2.1PbeNAC83基因的生物信息學分析PbeNAC83的編碼區CDS和蛋白序列從薔薇科物種基因組數據庫(GDR,https://www.rosaceae.org/)下載獲得。基因組信息利用美國國家生物技術信息中心(NC-BI,https://www.ncbi.nlm.nih.gov/)和擬南芥基因組數據庫(TAIR,http://www.arabidopsis.org)檢索獲得,使用DNAMAN Π[9.0[34]"軟件將PbeNAC83與多個物種進行氨基酸同源全長序列比對。在MEGA11軟件中通過鄰接法(Neighbor-joining)構建PbeNAC83及其他物種同源基因蛋白序列的系統進化樹。使用在線數據資源SMART(http://smart.embl-heidelberg.de/)對蛋白質的結構域進行預測,以e值≤1e作為閾值。通過PlantCARE數據庫(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)對PbeNAC83啟動子進行順式作用元件預測[3,并利用TBtools進行可視化[37]。

1.2.2表達模式分析“Duli-G03\"懸浮細胞用 20% 的 VpM 處理0、1、3和6h后的表達數據從本課題組之前的轉錄組數據中檢索獲得。RNA的提取使用RNAout試劑盒(71203-50天恩澤,北京),采用EvoM-MLV反轉錄試劑盒(AG11728AccurateBiotech-nology,湖南)去除基因組DNA,合成cDNA。使用Primer3 Input0.4.0 (http://bioinfo.ut.ee/primer3-0.4.0/)設計試驗所需引物。在QuantStudio G5"實時PCR系統(ThermoFisherScientfc,美國)進行實時熒光定量PCR(quantitativereal-timePCR,qRT-PCR),基因擴增引物及反應體系、程序均參考已發表的文獻[38],計算相對表達量采用 2-ΔΔCT"法。

1.2.3載體構建設計上游引物F1(GAGGCGCGC-CATGGAAAATATTAGAGAAAACTATG,含AscI酶切位點)和下游引物R1(CACCTAGGCTAAATAT-TAATCGGCATGCTAACACTG,含AvrII酶切位點),克隆PbeNAC83全長序列,連接19T載體至DH5α ,選取陽性單克隆進行測序。選擇測序結果正確的單克隆進行擴繁,雙酶切后連接過表達載體pFGC-5941導入大腸桿菌DH5α。擴繁陽性菌落后提取質粒,取質粒利用凍融法轉入農桿菌感受態細胞GV3101,經PCR驗證后用于后續試驗。以pFGC-5941空載體為對照。

1.2.4NAC轉錄因子瞬時表達及病原菌接種將pFGC-5941空載體與攜帶目標基因的pFGC-5941-PbeNAC83農桿菌振蕩 12h 活化繁殖, 8000r?min-1"、離心 10min 收集農桿菌,調節菌液 OD600"為 0.4~0.6 .重懸于MES-KOH溶液, 4°C 靜置 3~4h 。用 75% 酒精擦拭清潔果實表皮,取 0.2mL 菌液緩慢注射至果實, 25°C 浸潤 72h 后,去除注射部位的邊緣果皮后接種腐爛病病原菌,用游標卡尺分別在接種后36、48、60、72h記錄病斑的縱橫直徑,病斑直徑 := (縱徑 + 橫徑)/2。病斑抑制率/%=[(對照組病斑直徑-處理組病斑直徑)/(對照組病斑直徑)] ×100 。以空載體作為對照。以上試驗設5次生物學重復。

1.2.5杜梨Duli-G03懸浮細胞的遺傳轉化對預先培養的Duli-G03懸浮細胞經過孔徑為40~200目的細胞過濾器后,在黑暗環境中以 110r?min-1"的轉速振蕩培養 72h 。在此期間,農桿菌經過活化后,重懸處理,調節其 OD600"值至約0.4。隨后,用農桿菌懸浮液侵染杜梨懸浮細胞,在黑暗條件下,靜置 5min 以促進細胞與農桿菌的接觸。去除多余農桿菌,將細胞轉移至MS培養基中繼續黑暗靜置培養。 48h 后,使用頭孢菌素處理以殺滅殘留的農桿菌,并將細胞轉移至含有抗生素的MS培養基中繼續培養。從生長良好的細胞團中篩選,并擴繁、轉化細胞系,利用PCR和qRT-PCR技術對轉化細胞系進行基因表達量檢測[39]。

1.2.6 NAC轉錄因子穩定表達及病原菌接種 Vp 抗性分析采用方法:將細胞團均勻接種于MS平板上再接種 VP"菌餅。在接種后的36、48、60和 72h ,使用游標卡尺測量病斑的縱橫徑。在接種72h后,使用 2mLMTT 染料對細胞染色,以觀察細胞活性[40]。所有結果均通過拍照記錄。 VpM 抗性分析采用方法:細胞團濃度 (φ) 為 20μL (密實體積) ?mL-1". 20% 濃度的 VpM 處理。于處理后1、3和 6h 取樣,用于細胞活性測定和基因表達量分析。

1.2.7基因表達分析依據田丹等4的方法,提取RNA用于qRT-PCR檢測。選取與免疫反應信號相關的基因進行表達量測定,涉及模式觸發免疫(PTI)、茉莉酸(JA)、植保素和活性氧(ROS)[42]。基因名稱和引物序列參照Sun等4的方法,具體信息見表1。基因的相對表達量采用 2-ΔΔCT"法計算[43-44]。

1.3 統計分析

通過MicrosoftExcel(2016)軟件進行數據的初步整理,采用t-test分析差異顯著性"(*Plt;0.05;**Plt; 0.01)。所有數據以平均值 ± 標準差的形式呈現。圖標繪制利用OriginPro9.0軟件實現。

表1qRT-PCR相關基因及引物信息

Table1 Genes and primer information associated to qRT-PCR

2 結果與分析

2.1 PbeNAC83生物信息學分析

將 Chr9.g47397 蛋白序列提交至擬南芥基因組網站,發現其與NAC83(AT5G13180.1)序列高度同源,因此將其命名為PbeNAC83。為了更深入地了解進化關系,將其與10個物種中的13個同源基因構建了系統發育樹,結果表明,PbeNAC83與白梨中的rna48275-v1.1-pbr基因的同源性最高(圖1-A),表明他們可能具有相似的功能。進一步的結構域分析揭示,PbeNAC83蛋白具有典型的NAM結構域(圖1-B),屬于NAC轉錄因子家族成員,具備調控基因表達的潛能。此外,對PbeNAC83啟動子區域的順式作用元件預測分析顯示,該區域富含與MeJA(茉莉酸甲酯)、ABA(脫落酸)信號通路、厭氧誘導相關的元件,以及與植物抗病相關的其他元件(圖1-C),表明PbeNAC83可能參與多種激素信號的調控。綜上,PbeNAC83為典型的NAC轉錄因子,在進化上表現出保守性,并且可能響應多種激素和脅迫信號。

A.PbeNAC83的系統發育分析,包括擬南芥、毛果楊、黑樹莓、月季花、野草莓、桃、杏、白梨、山丁子、蘋果;B.PbeNAC83的保守結構域分析;C.PbeNAC83的順式作用元件預測。

2.2PbeNAC83表達模式分析

利用 20%VpM 處理野生型杜梨懸浮細胞后的轉錄組數據,獲得PbeNAC83基因的FPKM值(圖2)。在 20%VPM 處理1h后,PbeNAC83的FPKM值快速上升,由15.74上升至173.38(圖2-A)。進一步將杜梨的懸浮細胞用 20%VpM 處理后,通過qRT-PCR技術分析其在 1、3、6h 后PbeNAC83的表達量。結果顯示,處理后PbeNAC83的表達被立即激活,1h時由19.51上升至211.2,上調約為10.82倍(圖2-B)。以上結果表明,PbeNAC83基因能夠響應腐爛病信號,其表達水平的上調可能與植物抵御腐爛病的機制密切相關。

圖2PbeNAC83對腐爛病信號的表達分析

A.PbeNAC83響應腐爛病信號的表達分析:用 20% ValsapyriMetabolite (VpM) 處理Pyrusbetulifolia懸浮細胞后通過RNA-seq獲得的基 因FPKM值;B.qRT-PCR。FPKM:每千個堿基的轉錄每百萬映射讀取的 fragments。數據為平均值 (±SD) ) ,n=3,*P*"*Plt;0.05"**Plt;0.01 。下同。

2.3PbeNAC83正調控梨和蘋果果實對 up"的抗性

為了探究基因是否在抗腐爛病中發揮作用,將PbeNAC83瞬時表達于黃冠梨和煙富3號蘋果中,分析其對腐爛病的抗性(圖3)。結果顯示,PbeNAC83過表達的果實病斑直徑小于空載體(圖3-A),表明該基因可能增強了果實對腐爛病的抵抗力。隨著接種部位逐漸發病,進一步測量在36、48、60和72h的病斑直徑,分析對照和過表達果實上病斑大小的變化(圖3-B),結果表明,過表達PbeNAC83可顯著降低梨腐爛病菌( VP) 在黃冠梨和煙富3號蘋果果實上的病斑直徑,病斑抑制率分別為 10.3% 和 14.9% 。qRT-PCR檢測顯示,與空載體對照相比,PbeNAC83在注射部位的表達水平顯著上調(圖3-C)。以上結果表明,PbeNAC83的過表達正調控梨和蘋果果實對腐爛病的抗性。

2.4PbeNAC83的過表達增強了Duli-G03懸浮細胞對 uP"的抗性

為了進一步證明PbeNAC83對腐爛病的調控作用,利用農桿菌介導的遺傳轉化法將PbeNAC83轉入Duli-G03,篩選出生長良好的過表達細胞系:PbeNAC83-OE1、PbeNAC83-OE2和PbeNAC83-OE3(圖4)。將3個過表達細胞系分別鋪板并接種 VP"后,腐爛病的擴散速率受到顯著抑制(圖4-A)。處理至 72h 的PbeNAC83-OE1細胞系的病斑直徑較對照減少了 73.1% (圖4-B)。qRT-PCR檢測顯示,與對照相比,過表達細胞系中PbeNAC83基因的表達水平顯著上調(圖4-C)。以上結果進一步表明,PbeNAC83的過表達顯著增強了Duli-G03懸浮細胞對腐爛病感染的抗性。

2.5PbeNAC83過表達增強了Duli-G03懸浮細胞對腐爛病菌代謝物的抗性

采用MTT法對細胞活性跟蹤檢測,研究野生型(WT)和PbeNAC83過表達細胞系對腐爛病菌代謝物 VpM) 的耐受性(圖5。結果顯示,與野生型相比,PbeNAC83過表達細胞系(PbeNAC83-OE1)在20%VpM 處理后的1、3和6h,細胞活性均顯著高于野生型。這一結果表明,PbeNAC83的過表達顯著增強了Duli-G03懸浮細胞對腐爛病菌代謝物的耐受性。

A.拍攝于果實接種腐爛病72h 的病變表現。pFGC-5941為空載體對照,pFGC-5941-PbeNAC83過表達。P是黃冠梨,A 是煙富3號蘋果;B.果實病斑大小測量數據;C.果實中PbeNAC83的表達量測定。

圖3PbeNAC83在蘋果和梨果實中的瞬時表達分析

Fig.3Transient expressionanalysisofPbeNAC83 inappleand pearfruits

2.6 PbeNAC83的免疫機制分析

為了研究PbeNAC83激活的信號通路,筆者檢測了與植物免疫相關的關鍵基因的表達,包括PTI、JA、植保素和ROS信號通路基因(圖6)。在 VpM 處理后,與野生型相比,PbeNAC83-OE1細胞中,PTI和JA相關基因WRKY22和PR1b的表達水平上調(圖6-A、B)。此外,植保素相關基因WRKY33在處理 3h 后的表達量上調至對照的2.26倍,ROS相關基因RBOHD的表達量上調至對照的1.96倍(圖6-C、D)。以上結果表明PbeNAC83的過表達可能激活了ROS和植保素信號通路來抵抗腐爛病。

3討論

轉錄因子通過與靶基因啟動子區域的順式作用元件特異性地結合,從而調控基因的轉錄。一般來說,典型的轉錄因子結構域包含4個主要功能:即DNA結合區(DNA-bindingdomain,DBD)、轉錄調控區(transcriptionregulation domain,TRD)、寡聚化位點區(oligomerizationsite,OS)以及核定位信號區(nuclear localization signal,NLS)[45]。NAC(NAM、ATAF和CUC)作為植物中最大的轉錄因子(TF)家族之一,在擬南芥和水稻中包含100多個成員[46-47]。本研究通過進化分析比較了杜梨與其他物種中的NAC轉錄因子,發現PbeNAC83與擬南芥ANAC83具有較近的親緣關系,推測二者可能具有相似的功能。另外,通過對PbeNAC83啟動子區域進行順式20% VpM處理后不同時間點Duli-G03與PbeNAC83轉基因細胞系細胞的活性分析。

A.接種 Vp72h 后,野生型細胞(WT)和3個過表達轉基因細胞系(PbeNAC83-OE1、2、3)在培養皿上的發病情況。活細胞鑒定:MTT染為紫色;B.細胞接種 Vp 后,各時間點下的病斑大小測量數據;C.以Actin作參照,轉基因株系中PbeNAC83的表達水平。表達量是相對于WT的,其值設為1。

圖4PbeNAC83過表達增強了Duli-G03懸浮細胞對腐爛病菌的抗性

圖5過表達PbeNAC83過表達增強了Duli-G03懸浮細胞對腐爛病菌代謝物的耐受性 Fig.5The overexpression of PbeNAC83 enhanced the tolerance of Duli-Go3 suspension cells to VpM

作用元件分析,發現其表達調控可能受到多種激素協同作用,其中赤霉素與脫落酸可能在誘導PbeNAC83基因表達過程中發揮關鍵作用。此外,啟動子區域還包含與植物抗逆相關的元件,推測PbeNAC83可能在植物的逆境響應中扮演重要角色。基于轉錄數據和熒光定量PCR分析表明杜梨PbeNAC83基因在腐爛病菌處理后顯著上調。

圖6PbeNAC83激活多個免疫反應相關基因的表達

Fig.6 PbeNAC83 activates the expression of multiple immune response related genes

NAC轉錄因子由廣泛分布在各種高等植物物種中的眾多成員組成,在植物的生長發育、器官建成、激素調控以及非生物脅迫響應過程中,發揮著至關重要的作用[48]。NAC在病原體的免疫反應中起著至關重要的作用[4。研究表明,許多NAC基因作為植物對寄生型、半寄生型或腐生型病原體免疫的正或負調節因子,調節超敏反應和ROS信號通路或作為病原體效應子的毒力靶標[5]。在擬南芥中,至少有7種NAC蛋白ATAF1、ATAF2、ANAC019、ANAC055、ANAC072、NTL9/CBNAC(鈣調素結合NAC蛋白)和ANAC042/JUB1(JUNGBRUNNEN1)參與調節植物對腐生型真菌病原體的免疫,包括灰霉病菌(Botrytiscinerea)、油菜鏈格孢菌(Alternariabrassicicola)和尖孢鐮刀菌(Fusariumoxyspo-rum)[51-53]。此外,在水稻的最新研究中發現NAC的過表達,如OsNAC066、OsNAC096、OsNAC6和 Os NAClII[54-57]",增強了對稻瘟病的抗性。本文結合VpM 處理懸浮細胞后差異基因的表達分析,篩選了NAC轉錄因子家族的1個基因進行克隆以及進一步的功能驗證。結果表明,在果實和細胞過表達PbeNAC83顯著降低了病斑的擴散速率,表明PbeNAC83正調控腐爛病抗性。未來可通過基因過表達,在抗病的基礎上深入研究其他方面,為梨的抗性育種提供理論指導。

HR(HypersensitiveResponse)誘導的細胞死亡可以防止或延緩病原體的進一步擴張,從而減輕對植物細胞的損傷。此過程中,這種效應通常伴隨著ROS的爆發和積累。PbeNAC83通過調控ROS和植保素的合成,顯著增強植物抗病性。具體而言,PbeNAC83可能通過激活ROS通路關鍵基因RBO-HD的表達,促使細胞壁加固和活性氧爆發,直接抑制病原菌侵染與擴散。植保素作為一類低分子質量次生代謝物,在植物遭受病原菌侵染時被誘導合成,具備抗菌特性,在植物防范病原菌入侵進程中扮演關鍵角色。在健康植物中,植保素的含量通常很低,但細菌、真菌和卵菌等病原菌的入侵會顯著誘導其合成[58]。研究發現,在接種梨腐爛病病菌后,PbeNAC83過表達細胞中WRKY33基因的表達被顯著誘導。推測PbeNAC83的過表達通過激活植保素合成,增強植物對腐爛病的抗性,其獨特的調控機制為抗病育種提供了新思路。其他抗病NAC轉錄因子如TaNAC1調控細胞壁和ROS;HvNAC6調控水楊酸和茉莉酸[;OsNAC4調節細胞死亡[];Os-NAC60調節ROS積累和朕抵質沉積[。筆者的研究結果表明,PbeNAC83可能作為ROS和植保素的關鍵調節因子,可以整合兩個信號通路,協同調控抗病反應,實現高效抗病。

4結論

本研究從杜梨中篩選鑒定獲得了一個響應腐爛病信號的NAC家族成員PbeNAC83。通過瞬時和穩定轉化進行功能分析,明確了PbeNAC83能夠正向調控對腐爛病的抗性。進一步研究發現,PbeNAC83的過表達可激活植物體內的植保素和活性氧信號通路相關基因的表達,進而抑制腐爛病菌的入侵。以上發現為腐爛病的抗病分子育種提供依據,還為生產實踐中有效防控腐爛病的發生提供新的思路和方法。通過識別關鍵抗病基因并研究機制,可加快抗病育種進程,為培育抗腐爛病新品種提供支持。

參考文獻References:

[1] MENGXL,YANGR,LIUAT,HUTL,WANGYN,CAOK Q,WANG ST.The influence of lower temperature induction of Valsamalion the infection ofapple trees[J].Plant Disease, 2021,105(10):2776-2780.

[2] FENGH,WANGCL,HEYT,TANGL,HANPL,LIANGJ against distinct pathogens by the two transcription modules via salicylic acid and jasmonic acid pathways[J].Developmental Cell,2024,59(12):1609-1622. e4.H,HUANGLL. Apple Valsa canker:Insights into pathogenesis and disease control[J].Phytopathology Research,2023,5(1):45.

[3] WANGST,HUTL,WANGYN,LUOY,MICHAILIDESTJ, CAO KQ. New understanding on infection processs of Valsa canker of apple in China[J]. European Journal of Plant Pathology,2016,146(3):531-540.

[4]邱德文.生物農藥的發展現狀與趨勢分析[J].中國生物防治 學報,2015,31(5):679-684. QIU Dewen. Analysis of the development situation and trends of biological pesticides in China[J]. Chinese Journal of Biological Control,2015,31(5):679-684.

[5] 王曉煥,潘彤彤,練森,王彩霞,李保華.環境因子對腐爛病菌 在蘋果枝條木質部內生長擴展的影響[J].中國農業科學, 2018,51(17):3291-3301. WANG Xiaohuan,PAN Tongtong,LIAN Sen, WANG Caixia, LI Baohua.Efects of environmental factors on the growth and extension of Valsa mali in the xylem of apple branches[J].Scientia Agricultura Sinica,2018,51(17):3291-3301.

[6] ABE K,KOTODA N,KATO H, SOEJIMA JI. Genetic studies on resistance to Valsa canker in apple: genetic variance and breeding values estimated fromintra-and inter-specific hybrid progeny populations[J]. Tree Genetics amp; Genomes,2011,7(2): 363-372.

[7] 孫娥.蘋果類受體激酶基因MdLecRK-S.4.3 調控腐爛病的功 能研究[D].蘭州:甘肅農業大學,2023. SUN E.Functional analysis of apple receptor like kinase gene MdLecRK-S.4.3 in regulating Valsa canker[D].Lanzhou:Gansu Agricultural University,2023.

[8] DUPLAN V,RIVAS S. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity[J]. Frontiers in Plant Science,2014,5:42.

[9] 張娜.小麥與葉銹菌互作過程中TaNAC35轉錄因子的特征 分析[D].保定:河北農業大學,2019. ZHANG Na. Characterization analysis of transcription Factor TaNAC35inthewheat-Puccinia triticina interaction[D].Baoding:Hebei Agricultural University,2019.

[10]ZHANG H,LV S K, WANG C Y,JI W Q. The role of transcription factor in wheat defense against pathogen and its prospect in breeding[J]. Journal of Plant Biology and Crop Research,2018, 1(1):1005.

[11]RENCX,CHEN SY,HEYH,XUYP,YANGJ,CAI X Z. Fine-tuning of the dual-role transcription factor WRKY8 via differential phosphorylation for robust broad-spectrum plant immunity[J]. Plant Communications,2024,5(12):101072.

[12]ZHANGQL,WANGJB,LIYY,TUNGJ,DENGYT,BAKERB,DINESH-KUMARSP,LIF.Conserved transcription factors NRZ1 and NRM1 regulate NLR receptor-mediated immunity[J].PlantPhysiology,2024,195(1):832-849.

[13]ZHUXY,ZHAOYD,SHI CM,XUGJ,WANGNN,ZUO S M,NINGYS,KANGHX,LIUWD,WANGRY,YANSY, WANG G L, WANG X L. Antagonistic control of rice immunity

[14]LIWT,ZHU ZW,CHERN M,YINJJ,YANGC,RANL, CHENGMP,HEM,WANGK,WANGJ,ZHOUXG,ZHUX B,CHEN Z X,WANG JC,ZHAO W,MA B T,QIN P,CHEN W L,WANG Y P, LIU J L, WANG W M,WU X J, LI P, WANGJR,ZHUL H,LI SG,CHENXW.A natural allele of a transcription factor in rice confers broad-spectrum blast resistance[J].Cell,2017,170(1):114-126.e15.

[15] MAO G H,MENG X Z,LIU Y D,ZHENG Z Y,CHEN Z X, ZHANG S Q. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis[J].The Plant Cell,2011,23(4):1639-1653.

[16]HUYSMANS M, BUONO R A,SKORZINSKI N,RADIO M C, DE WINTER F, PARIZOT B, MERTENS J, KARIMI M, FENDRYCH M,NOWACK M K.NAC transcription factors ANAC087 and ANAC046 control distinct aspects of programmed cell death in the Arabidopsiscolumella and lateral root cap[J]. The Plant Cell,2018,30(9):2197-2213.

[17] WANG N,FAN X,HE MY,HU ZY,TANG CL,ZHANG S, LIN D X,GAN PF,WANG JF,HUANG XL,GAO C X, KANG Z S,WANG XJ. Transcriptional represson of TaNOX10 by TaWRKY19 compromises ROS generation and enhances wheat susceptibility to stripe rust[J]. The Plant Cell, 2022,34(5):1784-1803.

[18]XU B,OHTANI M, YAMAGUCHI M,TOYOOKA K,WAKAZAKI M, SATO M,KUBO M, NAKANO Y, SANO R, HIWATASHI Y,MURATA T, KURATA T, YONEDA A, KATO K, HASEBE M, DEMURA T. Contribution of NAC transcription factors to plant adaptation to land[J]. Science,2014,343 (6178):1505-1508.

[19]SOUER E,VAN HOUWELINGEN A,KLOOS D,MOL J, KOESR.TheNo apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell,1996,85(2):159- 170.

[20]AIDA M, ISHIDA T,FUKAKI H,FUJISAWA H,TASAKA M. Genes involved in organ separation inArabidopsis:An analysis ofthecup-shapedcotyledonmutant[J].ThePlantCell,1997,9 (6):841-857.

[21]NURUZZAMAN M,MANIMEKALAI R,SHARONI A M,SATOH K, KONDOH H, OOKA H, KIKUCHI S. Genome- wide analysis of NAC transcription factor family in rice[J].Gene, 2010,465(1/2):30-44.

[22]OOKAH,SATOHK,DOI K,NAGATAT,OTOMO Y,MURAKAMI K,MATSUBARAK,OSATON,JUNKW,CARNINCI P,HAYASHIZAKI Y, SUZUKI K, KOJIMA K, TAKAHARA Y, YAMAMOTO K, KIKUCHI S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J].DNA Research,2003,10(6):239-247.

[23]KIKUCHI K,UEGUCHI-TANAKA M,YOSHIDA K T,NAGATO Y,MATSUSOKA M, HIRANO HY.Molecular analysis of the NAC gene family in rice[J]. Molecular and General Genetics MGG,2000,262(6):1047-1051.

[24] SU HY,ZHANG S Z,YUAN X W,CHEN C T,WANG X F, HAO Y J. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1 2-CUC2 transcription factor family in apple[J].Plant Physiology and Biochemistry,2013, 71:11-21.

[25] WANG N,ZHENG Y, XIN H P,FANG L C,LI S H. Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera[J].PlantCellReports,2013,32(1):61-75.

[26]HENDELMAN A,STAV R,ZEMACH H,ARAZI T. The tomato NAC transcription factor SINAM2 isinvolved in flowerboundary morphogenesis[J].Journal of Experimental Botany, 2013,64(18):5497-5507.

[27]ZHANG Q J,LI T,ZHANG L J,DONG W X,WANG A D. Expresion analysis of NAC genes during the growth and ripening of apples[J]. Horticultural Science,2018,45(1):1-10.

[28]LI W H,LI H W,WEI Y F,HAN JX,WANG Y,LI X G, ZHANG L H, HAN D G. Overexpresson of a Fragaria vesca NAM ATAFand CUC(NAC) transcription factor gene (FvNAC29) increases salt and cold tolerance in Arabidopsis thaliana[J]. International Journal of Molecular Sciences,2024, 25(7):4088.

[29] XU W B,GUO Q H, LIU P,DAI S,WU C G, YANG G D, HUANG JG,ZHANG S Z,SONG JM,ZHENG CC,YAN K. A long non-coding RNA functions as a competitive endogenous RNA to modulate TaNACo18 by acting as a decoy for taemiR6206[J]. Plant Molecular Biology,2024,114(3):36.

[30]LIU Y M,YOU HG,LI HP,ZHANG CJ,GUO H,HUANG X L,ZHANGQ,ZHANGXY,MAC,WANGYJ,LITD,JIW Q,KANG Z S,ZHANG H. TaNAC1 boosts powdery mildew resistance byphosphorylation-dependent regulationof TaSecla and TaCAMTA4 via PP2Ac/CDPK20[J].New Phytologist, 2024,244(2):635-653.

[31]BIAN Z Y,GAO H H, WANG C Y. NAC transcription factors as positive or negative regulators during ongoing battle between pathogens and our food crops[J].International Journal of Molecular Sciences,2021,22(1):81.

[32] ZHAOD,TIANYZ,YUHQ,MAOX,WANGC,DUOH, SUN E,ZUO C W. Establishment of the“Valsa pyri metabolites (VpM)-suspension cell”-based system to study the response of pears to VpM[J].Physiological and Molecular Plant Pathology, 2022,120:101850.

[33]ZUO C W,MAO J,CHEN Z J,CHU MY,DUO H,CHEN B H. RNAsequencing analysis provides new insights into dynamic molecular responses to Valsa mali pathogenicity in apple ‘ChangfuNo.2'[J].TreeGeneticsamp;Genomes,2018,14(5):75.

[34]SOLOVYEV V,KOSAREV P,SELEDSOVI,VOROBYEV D. Automatic annotation of eukaryotic genes,pseudogenes and promoters[J]. Genome Biology,2006,7(1):S10.

[36]TAMURAK,STECHERG,KUMARS.MEGA11:Molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution,2021,38(7):3022-3027.

[36] LESCOT M,DEHAIS P, THIJS G,MARCHAL K,MOREAU Y,VANDEPEERY,ROUZEP,ROMBAUTSS.PlantCARE, adatabase of plant cis-acting regulatory elementsandaportal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002,30(1):325-327.

[37] CHEN C J,CHEN H, ZHANG Y, THOMAS H R,FRANK M H,HEYH,XIA R. TBtools: An integrative toolkit developed forinteractiveanalysesof big biological data[J]:Molecular Plant,2020,13(8):1194-1202.

[38]鄭艷.MdMDS1調控腐爛病抗性的功能研究[D].蘭州:甘肅 農業大學,2024. ZHENG Yan. Functional analysis of MdMDS1 in regulating valsa canker resistance[D]. Lanzhou: Gansu Agricultural University,2024.

[39] MAO X, WANG C,LV QQ,TIAN Y Z, WANG D D,CHEN B H,MAOJ,LIWF,CHUMY,ZUO CW. Cyclic nucleotide gated channel genes (CNGCs) in Rosaceae: Genome-wide annotation,evolution and the roles on Valsa canker resistance[J]. Plant Cell Reports,2021,40(12):2369-2382.

[40]SUNE,YUHQ,CHENZJ,CAIMR,MAOX,LIYY,ZUO C W.Enhanced Valsa canker resistance conferred by expression ofMdLecRK-S.4.3 in Pyrus betulifolia is largely suppressed by PbePUB36[J].Journal of Experimental Botany,2023,74(14): 3998-4013.

[41]田丹,朵虎,劉河,呂前前,左存武.蘋果L-LEC-RLK 基因家 族鑒定及響應病原真菌信號的表達分析[J].園藝學報,2019, 46(3):421-432. TIAN Dan,DUO Hu,LIU He,LU Qianqian,ZUO Cunwu. Genome wide identification and expression patterns in response to signals from fungal pathogens ofL-LEC-RLK gene family in apple[J].Acta Horticulturae Sinica,2019,46(3):41-432.

[42]孫娥,閆文萍,余宏強,趙丹,朵虎,左存武.蘋果和梨抗病相 關基因的誘導與表達分析[J].西北植物學報,2022,42(9): 1468-1476. SUN E,YAN Wenping,YU Hongqiang,ZHAO Dan,DUO Hu, ZUO Cunwu. Induction and expression analysis of the disease resistance related genes in apple and pear[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(9):1468-1476.

[43]余宏強.薔薇科植物模式識別受體鑒定及杜梨抗腐爛病成員 篩選[D].蘭州:甘肅農業大學,2023. YU Hongqiang.Identificationof paterm recognition receptors inRosaceaeand screeningof membersofPyrusbetulifolia for resistance to valsa canker[D].Lanzhou:Gansu Agricultural University,2023. pression data using real-time quantitative PCR and the 2-ΔΔCT"method[J].Methods,2001,25(4):402-408.

[45]潘炬忠,韋萍,朱德平,邵勝雪,陳珊珊,韋雅倩,高維維.水稻 轉錄因子OsERF104的克隆和功能研究[J].作物學報,2025: 1-15(2025-02- 07).https://link.cnki.net/urlid/11.1809. S.20250207.1715.006. PAN Juzhong,WEI Ping,ZHU Deping,SHAO Shengxue, CHEN Shanshan,WEI Yaqian,GAO Weiwei. Cloning and functional analysis ofOsERF104 transcription factorinrice[J].Acta Agronomica Sinica,2025:1-15(2025-02-07). https:/link.cnki. net/urlid/11.1809.S.20250207.1715.006.

[46]FANG Y J,YOU J,XIE K B,XIE WB,XIONG L Z. Systematic sequence analysis and identification of tissue-specific or stressresponsive genes of NAC transcription factor family in rie[J]. Molecular Genetics and Genomics,2008,280(6):547-563.

[47]HAN K,ZHAO Y,LIU J,TIAN Y,EL-KASSABY Y A,QI Y, KE M,SUN Y,LI Y. Genome-wide investigation and analysis ofNACtranscription factorfamilyinPopulustomentosaand expresionanalysis under salt stressJ].Plant Biology,2024,26(5): 764-776.

[48] NOMAN A,LIU ZQ,AQEEL M,ZAINAB M,KHAN MI, HUSSAINA,ASHRAFMF,LIX,WENG YH,HE SL. Basic leucine zipper domain transcription factors:The vanguards in plant immunity[J].Biotechnology Letters,2017,39(12): 1779- 1791.

[49]ZANETTI ME,RIPODAS C,NIEBEL A. Plant NF-Y transcription factors:Key players in plant-microbe interactions,root development and adaptation to stress[J].Biochimica et Biophysica Acta (BBA)- Gene Regulatory Mechanisms,2017,1860(5): 645-654.

[50]DONG B X,LIU Y,HUANG G, SONG A P,CHEN S M, JIANGJF,CHENFD,FANGWM.Plant NAC transcription factors in the battle against pathogens[J].BMC Plant Biology, 2024,24(1):958.

[51]BU QY,JIANG HL,LI C B,ZHAI Q Z,ZHANG J,WU X Y, SUNJQ,XIEQ,LICY.Roleof theArabidopsisthalianaNAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses[J]. Cell Research,2008, 18(7):756-767.

[52]WANG XE,BASNAYAKE B MV S,ZHANG HJ,LI G J,LI W,VIRKN,MENGISTET,SONGFM.TheArabidopsis ATAF1,a NAC transcription factor,is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens[J].Molecular Plant- Microbe Interactions,2009,22(10): 1227-1238.

[53]HE X,ZHU LF,XU L,GUO WF,ZHANG XL. GhATAF1,a NACtranscription factor,confers abiotic and biotic stress responses by regulating phytohormonal signaling networks[J]. Plant CellReports,2016,35(10):2167-2179.

[54]LIUQ,YAN SJ,HUANG WJ,YANGJY,DONGJF, ZHANGSH,ZHAOJL,YANGTF,MAOXX,ZHUXY, LIUB.NAC transcription factor ONACo66 positively regulates disease resistance by suppressing the ABA signaling pathway in rice[J].PlantMolecularBiology,2018,98(4):289-302.

[55]WANGH,BIY,GAOYZ,YANYQ,YUANX,XIONGXH, WANGJ J,LIANGJY,LIDY,SONG FM.APathogen-Inducible rice NAC transcription factor ONACo96 contributes toimmunityagainstMagnaprotheoryzaeandXanthomonasoryzae pv. oryzae by direct binding to the promoters of OsRap2.6,OsWRKY62,and OsPAL1[J].FrontiersinPlantScience,2021,12: 802758.

[56]NAKASHIMA K,TRAN L P,VAN NGUYEN D,FUJITA M, MARUYAMAK,TODAKAD,ITOY,HAYASHIN,SHINOZAKIK,YAMAGUCHI- SHINOZAKIK.Functional analysis ofaNAC-type transcription factorOsNAC6 involved in abiotic and biotic stress- responsive gene expression in rice[J].The PlantJournal,2007,51(4):617-630.

[57]YOKOTANI N,TSUCHIDA- MAYAMA T,ICHIKAWA H, MITSUDAN,OHME-TAKAGIM,KAKUH,MINAMIE, NISHIZAWA Y. OsNAC111,a blast disease-responsive transcription factor in rice,positively regulates the expression of defense-related genes[J].MolecularPlant-Microbe Interactions, 2014,27(10):1027-1034.

[58]ZHOUJG,MUQ,WANGXY,ZHANGJ,YUHZ,HUANG TZ,HEYX,DAISJ,MENGXZ.Multilayered synergistic regulationof phytoalexin biosynthesisby ethylene,jasmonate, andMAPK signaling pathwaysin Arabidopsis[J].The Plant Cell,2022,34(8):3066-3087.

[59]WANGFT,LINRM,FENGJ,CHENWQ,QIUDW,XUS C.TaNAC1 actsas a negative regulator of stripe rust resistance in wheat,enhances susceptibility to Pseudomonas syringae,and promotes lateral root development in transgenic Arabidopsis thaliana[J].FrontiersinPlantScience,2015,6:108.

[60]DALMANK,WINDJJ,NEMESIO-GORRIZM,HAMMERBACHERA,LUNDEN K,EZCURRAI,ELFSTRANDM. Overexpression of PaNACo3,a stress induced NAC gene family transcription factor in Norway spruceleadsto reduced flavonol biosynthesisand aberrant embryo development[J].BMCPlant Biology,2017,17(1):6.

[61]KANEDAT,TAGAYR,TAKAIR,IWANOM,MATSUI H, TAKAYAMA S,ISOGAI A,CHEFS.The transcription factor OsNAC4 isakey positive regulator of plant hypersensitive cell death[J].TheEMBOJournal,2009,28(7):926-936.

[62] WANGZY,XIAYQ,LINSY,WANGYR,GUOBH,SONG XN,DINGSC,ZHENGLY,FENGRY,CHENSL,BAOY L,SHENGC,ZHANGX,WUJG,NIUDD,JINHL,ZHAO HW.Osa-miR164a targets OsNAC60 and negatively regulates riceimmunity against the blast fungusMagnaporthe oryzae[J] The Plant Journal,2018,95(4):584-597.

主站蜘蛛池模板: 亚洲美女AV免费一区| 98精品全国免费观看视频| 国产日韩精品一区在线不卡| 久久香蕉国产线看观看亚洲片| 在线观看国产一区二区三区99| 人妻丰满熟妇啪啪| 国产激情无码一区二区免费| 午夜a级毛片| 国产在线91在线电影| 国产高清国内精品福利| 国产成人夜色91| 最新日韩AV网址在线观看| 亚洲成人免费在线| 韩国自拍偷自拍亚洲精品| 国产在线精彩视频论坛| 久久国产精品国产自线拍| 久久美女精品| 久久久久久久久亚洲精品| 婷婷丁香在线观看| 亚洲浓毛av| 亚洲无码37.| 欧美成人精品高清在线下载| 日韩视频免费| 色婷婷视频在线| 91区国产福利在线观看午夜| 日韩在线观看网站| 午夜免费视频网站| 亚洲国产综合精品一区| 免费全部高H视频无码无遮掩| 91 九色视频丝袜| 日本午夜网站| 免费国产高清视频| 国产精品视频第一专区| 成人毛片在线播放| 99久久这里只精品麻豆| 国产精品任我爽爆在线播放6080 | 免费一看一级毛片| 国产成人精品亚洲77美色| 国产激爽大片高清在线观看| 国产精品深爱在线| 无码AV高清毛片中国一级毛片| 国产精鲁鲁网在线视频| 无码一区中文字幕| 亚洲不卡影院| 女高中生自慰污污网站| 国产97视频在线观看| 日韩在线视频网| 91一级片| 在线亚洲小视频| 国产欧美视频在线观看| 国产真实乱子伦视频播放| 香蕉视频在线精品| 国产日本一线在线观看免费| 激情在线网| aaa国产一级毛片| 精品国产自在现线看久久| 国产成人综合日韩精品无码首页| 亚洲成人www| 在线色国产| 成人毛片免费观看| 免费人成又黄又爽的视频网站| 国产亚洲视频在线观看| a毛片在线免费观看| 亚洲精品麻豆| 亚洲开心婷婷中文字幕| 亚欧美国产综合| 综合天天色| 日韩欧美中文字幕一本| 亚洲最新地址| 女人毛片a级大学毛片免费| 久久semm亚洲国产| 老司机精品久久| 最新日本中文字幕| 国产9191精品免费观看| 国产亚洲精品91| 美女视频黄频a免费高清不卡| 亚洲成a人片| 日本在线欧美在线| 伊人成色综合网| 亚洲AV无码乱码在线观看裸奔| 亚洲欧美在线综合一区二区三区| 亚洲AV成人一区二区三区AV|