中圖分類號:S664.1 文獻標志碼:A 文章編號:1009-9980(2025)08-1773-13
Abstract: 【Objective】 Continuous cropping has a noticeable inhibitory efect on many crops,resulting in autotoxicity. There are few reports on whether walnut (Juglans regia L.) cultivation experiences continuous cropping obstacles.The study aimed to clarify the growth performance and mineral nutrient characteristics of walnut seedlings in continuously cropped soil, as well as the impact of intercropping walnut with scutellaria on its growth and soil properties in order to provide references for allviating continuous cropping obstacles in walnuts and optimizing intercropping models.【Methods】 This study employed a pot experiment using soil from a walnut grove where the walnut had been cultivated for 17 years (walnut soil) and soil from the same forest where the walnut had never been cultivated (regular soil) as the substrate.Four treatments were established: walnut soil-walnut sole cropping (HD),regular soil-walnut sole cropping (PD), walnut soil-walnut-scutellaria (Scutellaria baicalensis) intercropping (HJ),and regular soil-walnut-scutelaria intercropping (PJ). 【Results】 (1) Before planting, there were potassium, magnesium, copper, ammonium nitrogen, and pH value.However, the calcium,available phosphorus,quick-acting potassium, and electrical conductivity in the walnut soil were significantly lower than those in the regular soil, while the manganese content and organic matter content in the walnut soil were significantly higher than those in the regular soil.The correlation analysis showed that the available phosphorus in the soil was significantly and positively correlated with the relative chlorophyll content of the walnut leaves,and significantly and negatively correlated with the manganese content in the walnut roots.The quick-acting potassium in the soil was significantly and positively correlated with the number of branches of the walnut trees and extremely significantly and positively correlated with the leaf area, with an r value of 0.997 4. The manganese content in the walnut roots was significantly and negatively correlated with the plant height and ground diameter, and extremely significantly and negatively correlated with the relative chlorophyllcontent of the leaves. It would be possible that the imbalance of available elements and the accumulation of manganese might be limiting factors for the growth of walnut under continuous planting. (2) Under the walnut soil treatment, the height, ground diameter, biomass,leaf area,number of branches,and relative chlorophyllcontent of the walnut seedlings were all significantly lower than those under the regular soil treatment, the walnut soil would reduce the walnut's ability to accumulate nitrogen, phosphorus,potassium,and calcium. The continuous planting caused lower level of the potassium content in the walnut leaves than the regular soil. The correlation analysis showed that the potassium content in the walnut leaves was significantly and positively correlated with the and plant height, ground diameter,leaf area,and quick-acting potassium,and extremely significantly positively correlated with the number of branches, with an r value of 0.995 6.The continuous cropping led to an imbalance in the available potassium in the walnut soil, which reduced the leaf absorption of potassum,thus limiting the development of the walnut. After four months of planting, the total nitrogen,total phosphorus,calcium,and organic matter content in the regular soil were lower than those in walnut soil, while the available phosphorus and quick-acting potassum content were significantly higher. (3) The intercropping walnut with Scutellaria baicalensis had a certain promoting effect on the walnut sedling growth. The intercropping significantly increased the nitrogen,phosphorus, and calcium content and accumulation in the walnut roots,while reducing the accumulation of the magnesium, copper, and manganese. It also significantly increased the levels of the available phosphorus, organic mater, and alkaline phosphatase activity in the soil. The soil alkaline phosphatase activity was extremely significantly and positively correlated with the nitrogen and phosphorus content in the walnut roots,indicating that the increase in the soil alkaline phosphatase activity under intercropping also enhanced the walnut roots’ ability to absorb nitrogen and phosphorus. The intercropping also improved the activity of the sucrase, which was significantly and positively correlated with the calcium content in the walnut roots, indirectly affecting the calcium absorption by the roots.The improvement of the soil enzyme activity promoted the accumulation of nitrogen, phosphorus,and calcium in the walnut roots and reduced the manganese and copper content in the walnut seedlings and roots.【Conclusion】 In the soil where the walnut had been continuously planted for 17 years,the growth and nutrient absorption of the walnut seedlings were inhibited,as evidenced by the significant reductions in the plant height, trunk diameter, biomass,leaf area, and branch number. The continuous planting resulted in a decrease in the available phosphorus,available potassum,and electrical conductivity in the soil,and increase in the manganese content. This significantly affected the potassium absorption capacity of the walnut leaves, leading to an increase in manganese accumulation and calcium content in the leaves. The intercropping significantly enhanced the levels of the available phosphorus,organic matter,soil pH,and alkaline phosphatase activity in the soil, improving the nitrogen, phosphorus,and calcium content and enrichment in the walnut roots, while reducing manganese content in the walnuts and copper content in the roots. Therefore, the intercropping management may provide a more favorable soil environment for the healthy growth and nutrient absorption of the walnut seedlings.The study would offer a practical reference for the intercropping model of walnuts and S. baicalensis.
Key words: Walnut; Continuous cropping obstacles; Scutellria baicalensis; Intercropping; Mineral nutrition; Soil chemical properties
核桃(JuglansregiaL.)是中國重要的干果樹種,適應(yīng)性強,種植面積大,在全球核桃生產(chǎn)中也占有重要地位。但是,因為一些品種如早實核桃的盛果期僅20a(年),所以中國大面積的核桃園已進入結(jié)果后期,面臨品種更新、老園改造等問題[3]。核桃作為典型的化感樹種[4],葉[5]、青皮、根系[等會抑制苜蓿、辣椒等植物的正常發(fā)育。核桃老園重建是否會存在連作障礙、連作障礙的機制和化解措施等問題均有待研究。
同一地塊上連續(xù)種植同類植物造成后栽的植株出現(xiàn)樹勢衰弱、生長受抑、果實產(chǎn)量下降、品質(zhì)劣化等一系列不良現(xiàn)象,即為連作障礙[8]。連作障礙是農(nóng)林業(yè)生產(chǎn)中普遍存在的問題,通常認為,它是由土壤理化性質(zhì)變化、養(yǎng)分失衡、病原體積累以及植物化感作用等多種因素的相互作用造成的。蘋果連作導(dǎo)致土壤有害真菌如鐮孢菌屬(Fusarium)等病原菌大量繁殖[];辣椒連作影響了土壤養(yǎng)分的平衡[;烤煙連作降低了土壤有機質(zhì)、全碳的含量和pH值[2];北沙參連作則導(dǎo)致土壤中全氮和有機質(zhì)含量增加,全磷和全鉀含量變化較小[13];在老齡核桃園,土壤中的酚酸及其混合溶液抑制了蘋果幼苗生長[14,桃、梨等果樹也存在較嚴重的連作障礙現(xiàn)象[15]。
農(nóng)林業(yè)生產(chǎn)中多通過輪作、間作等復(fù)合種植的方式克服連作障礙。不同作物根系間的相互作用能夠顯著改善土壤理化性質(zhì)[、調(diào)節(jié)根系分泌特性[18],并影響土壤微生物生理特性等,從而減輕連作障礙的危害。核桃與大豆或花生間作顯著提高核桃株高和干徑[2],與毛豌紫云英間作促進土壤微生物的氮循環(huán)和碳水化合物的代謝潛力[2,與茶樹間作能顯著提高土壤速效氮、速效磷、速效鉀、有機質(zhì)含量和蔗糖酶活性[22]。以上研究為核桃林地的土壤改良提供了重要參考。
黃芩(Scutellariabaicalensis)作為中國常用的藥材,具有抗病毒、抗菌、清熱解毒等多種藥理作用[2,市場需求量大,品質(zhì)要求高。林藥模式已成為生產(chǎn)高品質(zhì)藥材的重要方式。黃芩耐陰性較強,是中國三北地區(qū)林藥模式配置中的重要藥用植物。核桃林下間種黃芩在生產(chǎn)上已有實踐[24-5],但是間作黃芩能否成為化解核桃連作障礙問題的有效途徑值得進一步探索。
由此,筆者旨在通過對比核桃苗在連續(xù)栽植17a核桃的核桃園土壤和未栽植過核桃的普通土壤中的生長差異,分析是否存在連作障礙,并通過比較核桃單作與核桃黃芩間作模式下植株和土壤性質(zhì)的變化,探討連作障礙的成因及間作模式緩解連作障礙的潛力,為生產(chǎn)中克服連作障礙提供有益參考。
1 材料和方法
1.1 試驗材料
本研究所用的核桃苗為溫185實生苗,黃芩種子為河北種源,千粒質(zhì)量 1.59g 。于2023年4月在北京東郊的核桃科研基地 (116°56′E,40°4′N) ,采集已栽植17a核桃的林地土壤作為連作土壤(簡稱\"核桃土\"),以基地未種植過核桃的土壤作為對照(簡稱“普通土\")。每種土壤類型分別選取5個采樣點,距核桃樹主干 1.5~2.0m 范圍內(nèi),采集從地表至地下30cm 深度范圍內(nèi)的整個土層,采集后將各點土壤樣品過篩并充分混合。
1.2試驗設(shè)計
本研究于北京市海淀區(qū)三傾園試驗苗圃( 116° 19′E,40°01′N) 進行。核桃、黃芩種子萌發(fā)后選取長勢一致的幼苗,6月底栽植于 30cm×36cm 育苗盆中。設(shè)置4個處理:核桃土-核桃單作(HD)、普通土-核桃單作(PD)、核桃土-核桃-黃芩間作(HJ)、普通土-核桃-黃芩間作(PJ)。單作處理為每個盆1株核桃苗;間作處理為每個盆1株核桃苗和4株黃芩苗。
每個處理設(shè)置30盆,每10盆為1個重復(fù)。栽植后每月進行一次株高和地徑測量(共4次),丁生長季末(11月)采集核桃的根、莖、葉樣本,以及每盆土樣。
1.3測定方法
使用千分之一天平測量生物量;使用葉面積掃描儀(CID-203,America)測量葉面積;使用葉綠素儀(SPAD-502Plus,Japan)測定葉綠素相對含量;土壤理化性質(zhì)、養(yǎng)分含量及植物礦質(zhì)元素的測定采用鮑士旦[的土壤農(nóng)化分析法。采用電位法測定土壤pH;采用電極法測定電導(dǎo)率(EC);樣品消解后使用AA3型連續(xù)流動分析儀(SEALAnalytical,German)測定全氮(TN)、全磷(TP)含量。采用原子吸收分光光度法測定全鉀(TK)、鈣(Ca)、鎂 (Mg )、銅(Cu)、錳(Mn)含量;采用靛酚藍比色法測定銨態(tài)氮 ?NH4+ -N)含量;采用鉬銻抗比色法測定有效磷(AP)含量;采用火焰光度計法測定速效鉀(AK)含量;采用重鉻酸鉀容量法測定土壤有機質(zhì)(SOM)含量;土壤中脫氫酶(S-DHA)、脲酶(S-UE)、蔗糖酶(S-SC)和堿性磷酸酶(S-ALP)活性均使用北京盒子生工科技有限公司提供的酶活檢測試劑盒進行測定。采用公式計算富集系數(shù):
富集系數(shù)
植物礦質(zhì)元素含量/相應(yīng)土壤中礦質(zhì)元素含量。
1.4數(shù)據(jù)采集與處理
使用MicrosoftExcel整理數(shù)據(jù),使用SPSS23.0軟件進行單因素方差分析(One-wayANOVA),兩組單獨樣本組用t檢驗。不同的小寫字母表示不同處理之間存在顯著差異 (Plt;0.05) 。圖形繪制則使用Origin24以及R4.2.2版本軟件完成。圖中數(shù)據(jù)均標記為平均值(mean) ∣± 標準誤差 (sx)
2 結(jié)果與分析
2.1栽植前的核桃土與普通土化學性質(zhì)差異
如圖1所示,在未種植前,兩種土壤的全氮、全磷、全鉀、鎂、銅、銨態(tài)氮含量及pH值差異均不顯著。核桃土壤的鈣、有效磷、速效鉀含量以及電導(dǎo)率均顯著低于普通土壤,分別降低了 19.45%?17.07% !21.13% 和 14.26% 。核桃土壤中的錳含量和有機質(zhì)含量顯著高于普通土壤,分別增加了 3.89%,16.44% 。
圖1初始核桃土和初始普通土化學性質(zhì)差異性比較
Fig.1Comparison of the chemical properties between walnut soil and ordinary soil

2.2土壤類型和栽植方式對核桃苗生長的影響
圖2-A可知,栽植后第1個月組間株高、地徑差異均不顯著;后續(xù)3次測量,普通土的核桃株高和地徑均顯著高于核桃土,具體而言,PD株高和地徑分別顯著高出HD處理 34.52%,39.87%,30.02% 和 11.91% 、19.83% ! 9.16% ;PJ高出HJ處理 41.07%,41.00% 、33.28% 和 19.37%,20.42%,17.78% 。栽植后第2個月PJ株高、地徑顯著高于PD處理 7.68%.6.18% 。如圖2-B~D顯示,PD核桃總生物量和地下生物量較HD處理增加了 19.58%.26.49% ;PJ較HJ處理增加了30.49%,41.41% 。PD、PJ核桃葉面積分別比HD、HJ顯著增加了 21.11% 和 12.73% ,分枝數(shù)顯著增加了24.34%.23.50% 。葉綠素相對含量在各處理間均無顯著差異。圖3展示了栽植4個月后的核桃苗,核桃土處理下核桃苗植株較小,但間作下長勢相對較好。
2.3土壤類型和栽植方式對核桃苗礦質(zhì)營養(yǎng)的影響
兩種土壤和單、間作栽植方式對核桃礦質(zhì)含量影響存在差異。兩組間作處理HJ、PJ根部氮含量均較單作HD、PD分別顯著高出 43.60%.28.11% ,磷含量顯著高出 42.05%.31.80% (圖4-A、B)。PD、PJ葉的鉀含量分別顯著高于HD、HJ處理 34.14% 、28.07% ;HD、PD根的鉀含量較HJ、PJ顯著提高15.89%?11.38% 。HJ根部鈣含量顯著高出HD、PD、PJ處理 25.43%.28.91%.27.12% ;HD、HJ葉的鈣含量分別高于PD、PJ處理 24.03% F 6.28% (圖4-D)。HD、PD根和莖的鎂含量分別高于HJ、PJ處理18.94%?10.18% 和 10.70%.12.07% (圖4-E)。HD、PD根部的銅含量分別顯著高出HJ、PJ處理 19.57% 、16.21% (圖4-F)。HD、HJ根、莖的錳含量分別高于PD、PJ處理 22.56%,3.74% 30.84%,22.92% ,HD葉的錳含量顯著高于PD處理 22.92% HD 、PD根、莖的錳含量分別高于HJ、PJ處理 9.06%,6.47% 18.78%.25.10% (圖4-G)。
圖2四種處理對核桃苗生長的影響
Fig.2The effects of the four treatments on the growth ofwalnut seedlings

圖3核桃苗在四種處理下栽植4個月后的生長狀況

圖4四種處理下核桃苗根、莖、葉礦質(zhì)元素的含量
Fig.4Mineral elementcontent in theroots,stems,and leavesof walnut seedlings under the four treatments

由圖5可知,兩組普通土處理PD、PJ對氮、磷、鉀的富集分別顯著高丁兩組核桃土HD、HJ處理28.24%~31.71%~18.77%≈344.70%?78.54%~10.51%≈31%≈18.24% 0 PJ處理對鈣的富集顯著高丁HJ處理 12.17% 。HJ處 理對銅的富集顯著高丁PJ處理 9.37% 。HD、HJ對 錳的富集顯著高丁PD、PJ處理 25.59%.32.31%"氮、磷、鈣在間作下富集系數(shù)得到顯著提升,其中PJ富集系數(shù)最高,分別顯著高于PD處理 55.45% F74.87% ! 25.91% ,HJ顯著高于HD處理 42.19% /20.04%.13.79% 。鉀、鎂、銅、錳在單作下富集系數(shù)更高,表現(xiàn)為PD顯著高于PJ處理 13.51% (鉀),HD、PD顯著高于HJ、PJ處理 6.09% ! 23.23% (鎂),14.59%,25.15% (銅); 9.31%.17.50% (錳)。
圖5四種處理對核桃礦質(zhì)元素富集系數(shù)的影響Fig.5The effects of four treatments on the enrichment factor of mineral elements in walnuts

2.4土壤類型和栽植方式對土壤養(yǎng)分和酶活性的影響
2.4.1土壤類型和栽植方式對土壤養(yǎng)分的影響種植4個月后PD、PJ土壤全氮、全磷、鈣、有機質(zhì)含量較HD、HJ分別降低 29.17%.33.75%.15.55%.20.03%; (2049.16%×1.28%×33.93%×11.78%( 圖6-A、B)。PD、PJ王壤錳含量較HD、HJ提高了 3.88%.14.11% ,有效磷和速效鉀分別顯著高出HD、HJ的 47.45%.60.07% 和44.95%,33.47% ,銨態(tài)氮在各處理間無顯著差異(圖6-C)。間作處理HJ、PJ全氮含量較單作HD、PD分別降低 23.96%.45.42% 。HJ、PJ有機質(zhì)和有效磷含量較單作處理HD、PD提升了 8.98%, 17.49% 和28.78%.45.89%,pF 值較HD、PD提高了 1.26% 、1.07% ,電導(dǎo)率在各處理間無顯著差異(圖6-D)。
總體來說,種植后的普通土壤全氮、全磷、鈣和有機質(zhì)含量較核桃土壤低,錳含量提升。間作處理增加了土壤中有效磷和有機質(zhì)含量,提升了 pH 值。
圖6四種處理對土壤化學性質(zhì)的影響
Fig.6 Effects of the four treatments onsoil chemical properties

2.4.2土壤類型和栽植方式對土壤酶活性的影響如圖7所示,PJ土壤脫氫酶活性較PD顯著提高了35.85% ;HJ土壤脲酶活性最高,較HD、PD和PJ分別顯著高山 31.40%.7.56% 和 38.52% ,同時PD較PJ高山 33.49% 。HJ的土壤蔗糖酶活性亦為最高,較 HD FPD和PJ處理分別顯著提高 31.66% 1 39.78% 和41.32% 。HJ、PJ表現(xiàn)山較高的土壤堿性磷酸酶活性,較HD、PD顯著高出 41.10%.31.92%
圖7四種處理對土壤脫氫酶、脲酶、蔗糖酶、堿性磷酸酶活性的影響

2.5核桃苗形態(tài)、生理指標與土壤因子的相關(guān)性分析
圖8-A顯示,土壤有效磷與葉綠素相對含量呈顯著正相關(guān),與根中錳含量呈顯著負相關(guān)。土壤速效鉀與分枝數(shù)呈顯著正相關(guān),與葉面積呈極顯著正相關(guān), r 為0.9974。根部的錳含量與株高、地徑呈顯著負相關(guān),與葉綠素相對含量存在極顯著負相關(guān)關(guān)系。土壤堿性磷酸酶活性與根中的氮、磷含量呈極顯著正相關(guān), r 分別為 0.9957.0.9999 。土壤蔗糖酶活性與根的鈣含量呈顯著正相關(guān)。圖8-B顯示,速效鉀與莖的錳含量呈顯著負相關(guān),土壤脫氫酶活性與莖的磷含量呈顯著正相關(guān)。圖8-C顯示,核桃葉的鉀含量與株高、地徑、葉面積、速效鉀呈顯著正相 關(guān),與分枝數(shù)呈極顯著正相關(guān), r 為0.9956。土壤有 機質(zhì)含量與葉的鎂含量呈顯著正相關(guān)。土壤蔗糖酶 活性與葉的銅含量呈顯著正相關(guān)。
圖8核桃苗形態(tài)、生理指標與土壤因子相關(guān)性分析

圖8分別為核桃生長指標、土壤性質(zhì)與根(A)、茶(B)、葉(C)礦質(zhì)元素含量的相關(guān)性分析。H.株高;D.地徑;W.生物量;AW.地上生物量;BW.地下生物量;F.分枝數(shù);S.葉面積;SPAD.葉綠素相對含量;根N.根的氮含量;莖N.蒸的氮含量;葉N.核葉中氮含量;以此類推。***、***分別代表不同指標在 Plt;0.05.Plt;0.01,Plt;0.001 水平顯著相關(guān)。
Figure8o (C).H.Heighteter;soodoaseoosragbe rophyll content; Root N.Nitrogen in roots; StemN.Nitrogen in stems; Leaf N.Nitrogen in leaves; etc.*, ** *** represent different levels of significance in correlation: Plt;0.05,Plt;0.01 ,and Plt;0.001 ,respectively.

3討論
3.1連作成因以及對核桃苗的影響
在種植17a的連作核桃土壤中,核桃苗生長受到了抑制,表現(xiàn)為株高、地徑、生物量、葉面積、分枝數(shù)均低于普通土處理。連作造成了核桃土壤的有效磷、速效鉀含量降低。相關(guān)性分析顯示,土壤有效磷含量與葉綠素相對含量呈顯著正相關(guān),速效鉀含量與分枝數(shù)、葉面積及葉的鉀含量呈顯著正相關(guān),可見連作導(dǎo)致有效養(yǎng)分減少是核桃生長緩慢的原因之一。靈芝連作導(dǎo)致土壤速效磷和速效鉀含量顯著降低,引起連作障礙,與本研究結(jié)果一致[28。另外,未種植前核桃土壤中錳含量顯著高于普通土,可能是由于核桃根系長期分泌有機酸,提高了錳的移動性和有效性[29-30],造成核桃土處理下植株體內(nèi)錳含量的增加,而根部的錳含量與株高、地徑、葉綠素相對含量存在顯著負相關(guān)關(guān)系。幼苗階段對錳的敏感性較高,過量的錳直接對核桃造成傷害[3]。以上土壤有效態(tài)的失衡以及錳的毒害可能是造成核桃連作生長受限的關(guān)鍵因素。
核桃葉片鉀含量與株高、地徑、葉面積及分枝數(shù)均呈顯著正相關(guān),連作導(dǎo)致核桃土壤有效鉀的失衡,抑制了葉片對鉀的吸收,從而限制了核桃發(fā)育。有研究表明,缺鉀會導(dǎo)致核桃樹的根系和地上部分生長以及光合色素的合成受到明顯影響32。本試驗核桃連作對鉀元素影響最大,是導(dǎo)致生長發(fā)育受限的關(guān)鍵礦質(zhì)元素。另外,核桃土葉片的鈣含量呈現(xiàn)顯著高于普通土的現(xiàn)象,可能與鈣的運輸機制相關(guān)。推測普通土中的核桃苗生長較快,耗水多,導(dǎo)致葉片水勢差增大,增加了水分傳輸阻力,抑制了鈣向葉片的運輸[3-34]。
種植4個月后普通土壤的全氮、全磷、鈣、有機質(zhì)含量低于核桃土壤,而有效磷和速效鉀含量顯著提升。在普通土壤中,植株的生長條件更為優(yōu)越,核桃生長速度更快,提高了對氮、磷、鉀、鈣的富集量,在有限的土壤環(huán)境下,加快了養(yǎng)分的補充,從而釋放出磷、鉀有效態(tài)元素[35-36]。
3.2間作對土壤及核桃苗的改良
間作顯著提高了核桃根部的氮、磷、鈣富集量和氮、磷的含量,降低了核桃對鎂、銅、錳的富集量。鎂作為葉綠素的中心原子,為光合作用提供動力,促進生長[。相關(guān)性分析顯示,土壤蔗糖酶活性與葉片銅含量、根部鈣含量均呈顯著正相關(guān)。HJ土壤蔗糖酶活性顯著高于HD,表明間作處理可能通過提高蔗糖酶活性,進而提升植物葉片銅含量。大多數(shù)農(nóng)作物葉片中銅的含量在 20~30mg?kg-1l3 8]。在適宜范圍內(nèi)提高銅含量有助于提升葉綠素含量、光合速率及作物的產(chǎn)量[39]。此外,蔗糖酶在有機物分解過程中發(fā)揮重要作用[40],釋放出更多的可用養(yǎng)分,進而間接影響根系對鈣的吸收。間作還顯著提升了土壤堿性磷酸酶活性,其與核桃根部的氮、磷含量呈極顯著正相關(guān),說明間作下土壤堿性磷酸酶活性增強,核桃根系對氮、磷的吸收能力也隨之提高。磷酸酶水解有機磷化合物,釋放植物可吸收的無機磷[4],這有助于提高根系的磷含量,進而促進其他營養(yǎng)元素的吸收和代謝。土壤蔗糖酶、磷酸酶活性的提升可能是間作處理下核桃根部氮、磷、鈣含量提高的重要原因。土壤脫氫酶反映了土壤中微生物的代謝活性[42],且土壤脫氫酶與莖中磷含量呈顯著正相關(guān)。PJ較PD脫氫酶活性顯著升高意味著該處理下的微生物活動更活躍,促進了土壤中磷的轉(zhuǎn)化和釋放進而提高了植物對磷的吸收能力。但PJ脲酶、蔗糖酶活性均低于PD,可能與PJ核桃苗較快成熟引起氮素需求降低有關(guān)。土壤蔗糖酶活性與脲酶活性變化相似,反映了微生物對氮素和纖維素分解的需求減少以維持土壤系統(tǒng)中C/N平衡[43]。間作下堿性磷酸酶活性得到了提高,可能是仍需滿足植物和微生物的正常需求,激發(fā)微生物的響應(yīng)來提高土壤磷酸酶活性。
間作還增加了土攘有效磷含量。間作下不同植物根系分泌物相互作用影響了根際微生物,活化了難溶性養(yǎng)分,改善磷釋放的條件[44]。如蠶豆根系分泌物引起根際酸化有助于活化土壤難溶性磷,從而促進玉米對磷的吸收[45]。間作下核桃根、莖的錳含量以及根部的銅含量均低于單作模式,這與玉米與豌豆間作4、玉米與景天屬植物間作的研究結(jié)果相似。土壤中部分微量元素可能被間作作物黃芩吸收,或間作中土壤微生物群落,尤其是細菌和真菌的種群結(jié)構(gòu)及數(shù)量發(fā)生變化,通過微生物吸附、沉淀或分解等代謝過程,降低土壤中的銅、錳元素含量[48],從而緩解重金屬可能帶來的毒害。
大量實例表明間作對土壤改良、作物生長有顯著的積極效應(yīng)。核桃與大豆、玉米間作增強了脲酶、蔗糖酶、堿性磷酸酶的活性[4]。薄殼山核桃與油茶間作提高了土壤pH以及水解性氮、有效磷和有機質(zhì)含量[5]。間作可促進促生菌、綠肥作物殘體的分解[51],增強玉米對鈣和磷的吸收能力[52]。核桃與大豆間作提升了對氮的吸收和轉(zhuǎn)移能力[53]。通過合理設(shè)計間作系統(tǒng)來改善土壤環(huán)境和影響礦質(zhì)吸收,減少土壤中有害元素的積累,是緩解連作障礙的有效方式。
4結(jié)論
核桃苗在核桃土連作下其株高、地徑、生物量、葉面積、分枝數(shù)受到了抑制。連作導(dǎo)致土壤有效磷、速效鉀含量降低,錳含量升高,抑制了核桃葉片對鉀的吸收,提高了錳含量,鉀是導(dǎo)致生長受限的關(guān)鍵礦質(zhì)元素。間作能提升土壤有效磷、有機質(zhì)含量及堿性磷酸酶活性,提高核桃根部的氮、磷含量和對氮、磷、鈣的富集量,降低核桃根、莖的錳及根部的銅含量。
參考文獻References:
[1] 王磊,曹亞龍,孟海軍,趙偉,張港港,韓軒軒,樊璐,盧戰(zhàn)平,董 兆斌,王根憲,吳國良.國內(nèi)外核桃品種選育研究進展[J].果 樹學報,2022,39(12):2406-2417. WANGLei,CAOYalong,MENGHaijun,ZHAOWei,ZHANG Ganggang,HAN Xuanxuan,F(xiàn)AN Lu,LU Zhanping,DONG Zhaobin,WANG Genxian,WU Guoliang.Research progress in walnut variety breeding at home and abroad[J].Journal of Fruit Science,2022,39(12):2406-2417.
[2] 李洋,張贊齊,溫玥,張綏林,陳永浩,齊建勛,張俊佩,侯智霞. 早實核桃堅果表型和內(nèi)在品質(zhì)的關(guān)聯(lián)分析及模型構(gòu)建[J].南 京林業(yè)大學學報(自然科學版),2025,49(1):119-127. LIYang,ZHANGYunqi,WENYue,ZHANG Suilin,CHEN Yonghao,QI Jianxun,ZHANG Junpei,HOU Zhixia. Correlation analysis and model construction of nut phenotype and kernelqualityof early-fruitingwalnuts (Juglansregia)[J].Journal of Nanjing Forestry University (Natural Sciences Edition), 2025,49(1):119-127.
[3] 趙登超,劉方春,曾憲泉,劉丙花,馬海林,辛兆年,侯立群.早 實核桃‘香玲'低產(chǎn)園更新改造技術(shù)[J].生物災(zāi)害科學,2020, 43(4):392-396. ZHAO Dengchao,LIUFangchun,ZENGXianquan,LIUBinghua, MAHailin,XIN Zhaonian,HOULiqun.Reconstruction technical regulations for low-yield orchardsof early fruitingwalnut‘Xiangling'[J].Biological Disaster Science,2020,43(4):392-396.
[4] 李勝繁.核桃化感作用研究及應(yīng)用進展[J].現(xiàn)代農(nóng)業(yè)科技, 2022(16):106-108. LIShengfan.Progress on studyand application of walnut allelopathy[J].Modern Agricultural Scienceand Technology,2022 (16):106-108.
[5] 何邦印,胡佳佳,裴婧宏,房美艷,李江文,果樹凋落葉浸提液 對多年生黑麥草和紫花苜蓿的化感效應(yīng)[J].西北植物學報, 2024,44(8):1295-1304. wen.Allelopathic effectsoflitter extracts from fruit treesonLo lium perenne and Medicago sativa[J].Acta Botanica Boreali-Occidentalia Sinica,2024,44(8):1295-1304.
[6] 趙玉雪,孫建昌,楊霞,朱佳敏,劉亞娜.核桃青皮不同浸提方 式對辣椒和番茄的化感作用研究[J].貴州林業(yè)科技,2018,46 (4):44-47. ZHAO Yuxue,SUN Jianchang,YANG Xia, ZHU Jiamin,LIU Yana.Study on allelopathy of different extraction methods of walnut green husk on chili and tomato[J].Guizhou Forestry Science and Technology,2018,46(4):44-47.
[7] 陳志怡,楊森,李敏.核桃根水浸提液對魔芋生長及抗性生理 指標的化感效應(yīng)研究[J].安徽農(nóng)業(yè)科學,2023,51(14):7-10. CHEN Zhiyi, YANG Sen,LI Min. Study on allelopathic effect ofwalnut root water extract on the growth and resistance physiological indicators ofkonjac[J].Journal of Anhui Agricultural Sciences,2023,51(14):7-10.
[8] 耿貴,楊瑞瑞,於麗華,呂春華,李任任,王宇光.作物連作障礙 研究進展[J].中國農(nóng)學通報,2019,35(10):36-42. GENG Gui, YANG Ruirui,YU Lihua,LU Chunhua,LI Renren, WANG Yuguang. Crop continuous cropping obstacles: Research progress[J].Chinese Agricultural Science Bulletin,2019,35 (10):36-42.
[9]LIU H,PAN F J,HAN X Z,SONG F B,ZHANG Z M,YAN J, XUYL.A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops[J]. Journal of Integrative Agriculture,2020, 19(3):866-880.
[10]尹承苗,王玫,王嘉艷,陳學森,沈向,張民,毛志泉.蘋果連作 障礙研究進展[J].園藝學報,2017,44(11):2215-2230. YIN Chengmiao,WANG Mei,WANG Jiayan,CHEN Xuesen, SHEN Xiang,ZHANG Min,MAO Zhiquan. The research advance on apple replant disease[J].Acta Horticulturae Sinica, 2017,44(11):2215-2230.
[11]余高,趙仕龍,馮順梅,陳芬.連作年限對喀斯特山地設(shè)施辣椒 根際土壤養(yǎng)分、酶活性及真菌群落結(jié)構(gòu)的影響[J].江蘇農(nóng)業(yè)科 學,2024,52(18):270-277. YU Gao,ZHAO Shilong,F(xiàn)ENG Shunmei,CHEN Fen. Influencesof continuous cropping years on soil nutrient,enzyme activities,and fungal community characteristics of facility pepper rhizospherein Karst mountains[J].Jiangsu Agricultural Sciences, 2024,52(18):270-277.
[12] 鄭梅迎,劉福童,鄭邦璽,黃治宏,徐畫晴,張雅楠,何文勤,姚 峰,任天寶.不同年限烤煙連作對土壤養(yǎng)分和微生物變化的 影響[J].華中農(nóng)業(yè)大學學報,2024,43(4):182-191. ZHENG Meiying,LIU Futong,ZHENG Bangxi, HUANG Zhihong,XU Huaqing, ZHANG Yanan,HE Wenqin, YAO Feng, REN Tianbao.Effects of diferent years of continuously cropping flue-cured tobacco on changes of nutrients and microbial community in soil[J]. Journal of Huazhong Agricultural University,2024,43(4):182-191.
[13] 古軍霞,李陽,孫會改,鄭倩,嚴玉平,韓曉偉.連作對北沙參土 壤養(yǎng)分、酶活性及微生物群落多樣性的影響[J].中藥材,2021, 44(10):2262-2267. GU Junxia,LI Yang,SUNHuigai,ZHENG Qian,YAN Yuping, HAIN AIaUweI. EIIeuts UI cOIuuous cIUppIng UI sOn Huuiens, enzyme activities and microbial community diversity of Glehnia litoralis[J]. Journal of Chinese Medicinal Materials,2021,44 (10):2262-2267.
[14]于雅靜.老齡核桃園、葡萄園土壤對新栽平邑甜茶幼苗的影 響[D].泰安:山東農(nóng)業(yè)大學,2024. YU Yajing.The effect of aged walnut orchard and vineyard soil on newly planted Malus hupehensis Rehd.seedlings[D].Tai'an: Shandong Agricultural University,2024.
[15]李遠想,王尚堃.果樹再植病研究進展[J].北方園藝,2019(4): 149-154. LI Yuanxiang, WANG Shangkun. Research progress on fruit replant disease[J]. Northern Horticulture,2019(4):149-154.
[16]李賀勤,李星月,劉奇志,張林林,白鵬華,白春啟,王玉玲.連 作障礙調(diào)控技術(shù)研究進展[J].北方園藝,2013(23):193-197. LI Heqin,LI Xingyue,LIUQizhi,ZHANG Linlin,BAI Penghua,BAI Chunqi ,WANG Yuling. Research progress on the regulation technology of continuous cropping obstacle[J].Northern Horticulture,2013(23):193-197.
[17]GITARI H I,GACHENE C K K,KARANJA N N,KAMAU S, NYAWADE S, SCHULTE-GELDERMANN E. Potato- legume intercropping on a sloping terrain and its effects on soil physicochemical properties[J].Plant and Soil,2019,438(1):447-460.
[18]XIAO J X,ZHU Y G,DONG Y,YIN X H, TANG L,ZHENG Y.Wheat and faba bean intercropping changes phenolic acids from roots to rhizosphere[J].Acta Ecologica Sinica,2023,43 (1):89-98.
[19]ZHUQR,YANG ZY,ZHANGYP,WANGY Z,F(xiàn)EI JC, RONG X M,PENG J W, WEI X M,LUO G W. Intercropping regulatesplant-and microbe-derived carbonaccumulation byinfluencing soil physicochemical and microbial physiological properties[J]. Agriculture,Ecosystems amp; Environment,2024, 364:108880.
[20]劉凱,李津津,趙星哲,王芳,王紅霞,張俊佩,馬慶國,張志 華.間作黃豆、花生對核桃幼苗及土壤化學性質(zhì)的影響[J].河 北農(nóng)業(yè)大學學報,2021,44(3):22-28. LIU Kai,LI Jinjin,ZHAO Xingzhe,WANG Fang,WANG Hongxia,ZHANG Junpei,MA Qingguo,ZHANG Zhihua. Effects of intercropping soybean and peanut on walnut seedlings and soil chemical properties[J]. Journal of Hebei Agricultural University,2021,44(3):22-28.
[21]WANG C X,LIANG Q,LIU JN,ZHOU R,LANG X Y,XU S Y,LI X C,GONG AD,MUY T,F(xiàn)ANG HC,YANG KQ. Impact of intercropping grass on the soil rhizosphere microbial community and soil ecosystem function in a walnut orchard[J]. FrontiersinMicrobiology,2023,14:1137590.
[22]BAIYC,LIBX,XUCY,RAZAM,WANGQ,WANG Q Z, FUYN,HUJY,IMOULANA,HUSSAINM,XUYJ. Intercropping walnut and tea:Effects on soil nutrients,enzyme activity,and microbial communities[J].Frontiers in Microbiology, 2022,13:852342.
[23]國家藥典委員會.中華人民共和國藥典:一部[M].北京:中國 醫(yī)藥科技出版社,2020:314. Chinese Pharmacopoeia Commission.Pharmacopoeia of the people'srepublic of China:Volume 1[M].Beijing:China Medical Science Press,2020:314.
[24]許小明,彭曉邦,趙培.秦嶺生態(tài)環(huán)境保護研究進展[J].江西 農(nóng)業(yè)學報,2023,35(10):120-127. XU Xiaoming, PENG Xiaobang, ZHAO Pei. Research progress in ecological environmental protection in Qinling Mountains[J]. Acta Agriculturae Jiangxi,2023,35(10):120-127.
[25]武雅娟,高同雨,李晶,蘇本營.生態(tài)涵養(yǎng)區(qū)林下經(jīng)濟發(fā)展特征 及對策建議:以北京市門頭溝區(qū)為例[J].農(nóng)業(yè)科技通訊,2022 (11):6-10. WU Yajuan,GAO Tongyu,LI Jing,SU Benying. Characteristics and policy recommendations for the development of forestry economy in ecological conservation areas: A case study of Mentougou district,Beijing[J].BulletinofAgricultural Science and Technology,2022(11):6-10.
[26]鮑士旦.土壤農(nóng)化分析[M].3版.北京:中國農(nóng)業(yè)出版社,2000. BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000.
[27]魏福曉,顏秋曉,王道平,林紹霞,鄧廷飛,楊瑩,梁光焰.辣椒 幼苗對鎘脅迫的生理生化響應(yīng)[J].云南農(nóng)業(yè)大學學報(自然科 學),2024,39(6):121-132. WEI Fuxiao,YAN Qiuxiao,WANG Daoping,LIN Shaoxia, DENG Tingfei, YANG Ying,LIANG Guangyan. Physiological and biochemical responses of Capsicum annuum L. seedlings to cadmium stress[J]. Journal of Yunnan Agricultural University (Natural Science),2024,39(6):121-132.
[28]盧孟召,劉梅,陳光,王雪峰.靈芝連作對土壤理化性質(zhì)及線蟲 群落的影響[J].吉林農(nóng)業(yè)大學學報,2022,44(5):586-594. LU Mengzhao,LIU Mei,CHEN Guang,WANG Xuefeng.Effects of Ganoderma lingzhi continuous cropping onsoil physicochemical properties and nematode community[J]. Journal of Jilin Agricultural University,2022,44(5):586-594.
[29]MENCH M,MARTIN E. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L.,Nicotiana tabacum L.and Nicotiana rusticaL.[J].Plant and Soil,1991, 132(2): 187-196.
[30]崔翠,蔡靖,張碩新.核桃根系分泌物化感物質(zhì)的分離與鑒定[J]. 林業(yè)科學,2013,49(2):54-60. CUI Cui,CAI Jing,ZHANG Shuoxin. Isolation and identificationof theallelochemicalsinwalnut (Juglansregia) root exudates[J]. Scientia Silvae Sinicae,2013,49(2):54-60.
[31]LIJF,JIAYD,DONGRS,HUANGR,LIUPD,LIXY, WANG Z Y,LIU G D,CHEN Z J. Advances in the mechanisms of plant tolerance to manganese toxicity[J]. International Journal of Molecular Sciences,2019,20(20):5096.
[32]黃小輝,吳焦焦,馮大蘭,孫向陽.缺鉀脅迫對核桃幼苗生長及 生理特性的影響[J].北京林業(yè)大學學報,2022,44(8):23-30. HUANG Xiaohui, WU Jiaojiao,F(xiàn)ENG Dalan,SUN Xiangyang. Effects of potassium deficient stress on growth and physiological characteristics of walnut seedlings[J]. Journal ofBeijing Forestry University,2022,44(8):23-30.
[33]RADIN JW,EIDENBOCK M P. Hydraulic conductance as a factorlimiting leaf expansion ofphosphorus-deficient cotton plants[J].PlantPhysiology,1984,75(2):372-377.
[34] MARTRE P,NORTH G B,NOBEL P S. Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa inrelationtosoil dryingand reweting[J].Plant Physiology,2001,126(1):352-362.
[35] CHEN Y D,YANG L, ZHANG L M,LI J R, ZHENG YL, YANG W W,DENG L L,GAO Q,MI Q L,LI X M,ZENG W L,DING X H, XIANG H Y. Autotoxins in continuous tobacco cropping soils and their management[J].Frontiers in Plant Science,2023,14:1106033.
[36]MAL,MA SY,CHENGP,LUX,CHAIQ,LIS.Mechanisms and mitigation strategies for theoccurrence of continuous cropping obstacles oflegumes inChina[J].Agronomy,2024,14(1):104.
[37]AHMED N,ZHANG B G,BOZDAR B,CHACHAR S,RAI M, LI J,LI Y Q,HAYAT F,CHACHAR Z,TU P F. The power of magnesium: Unlocking the potential for increased yield,quality, and stress tolerance of horticultural crops[J]. Frontiers in Plant Science,2023,14:1285512.
[38]ANJUMNA,ADAMV,KIZEKR,DUARTE AC,PEREIRA E,IQBAL M, LUKATKIN A S, AHMAD 1. Nanoscale copper in the soil-plant system - toxicity and underlying potential mechanisms[J].Environmental Research,2015,138:306-325.
[39] 馬強,張民,李子雙,李洪杰,王湘峻,耿計彪,路艷艷.銅基營 養(yǎng)葉面肥提高棉花光合特性、產(chǎn)量及其防病效果[J].植物營養(yǎng) 與肥料學報,2018,24(4):969-980. MA Qiang,ZHANG Min,LI Zishuang,LI Hongjie,WANG Xiangjun,GENG Jibiao,LU Yanyan.Effectsof copper- based nutritional foliar fertilizers on photosynthetic characteristics, yield and disease control efficiency ofcoton[J]. Journal of Plant Nutrition and Fertilizers,2018,24(4):969-980.
[40]張涵,貢璐,劉旭,邵康,李昕竹,李蕊希.氮添加影響下新疆 天山雪嶺云杉林土壤酶活性及其與環(huán)境因子的相關(guān)性[J].環(huán) 境科學,2021,42(1):403-410. ZHANG Han,GONG Lu,LIU Xu,SHAO Kang,LI Xinzhu,LI Ruixi.Soil enzyme activity in Picea schrenkiana and its relationship with environmental factors in the Tianshan Mountains, Xinjiang[J].Environmental Science,2021,42(1):403-410.
[41]朱蕓蕓,李敏,曲博,趙暾,滕澤棟.濕地植物根際土壤磷酸酶活 性變化規(guī)律研究[J].環(huán)境科學與技術(shù),2016,39(10):106-112. ZHU Yunyun,LI Min,QU Bo,ZHAO Tun,TENG Zedong. Research on the variations of phosphatase activity in rhizosphere soilof wetland plants[J].Environmental Science amp;Technology, 2016,39(10): 106-112.
[42] CALDWELL B A. Enzyme activities as a component of soil biodiversity:A review[J]. Pedobiologia,2005,49(6):637-644.
[43]盛美君,李勝君,楊昕玥,王蕊,李潔,李剛,修偉明.華北潮土 農(nóng)田土壤酶活性對土地利用強度的響應(yīng)特征探討[J].生態(tài)環(huán) 境學報,2023,32(2):299-308. SHENG Meijun,LI Shengjun, YANG Xinyue,WANG Rui, LI Jie,LI Gang,XIU Weiming. Changes of soil enzyme activities incropland with different landuse intensities in fluvo-aquic soil area,North China[J]. Ecology and Environmental Sciences, 2023,32(2):299-308.
[44]尹曉童,楊浩,于瑞鵬,李隆.根系分泌物在作物多樣性體系 中對種間地下部互作的介導(dǎo)作用[J].中國生態(tài)農(nóng)業(yè)學報(中英 文),2022,30(8):1215-1227. YIN Xiaotong,YANG Hao,YURuipeng,LI Long.Interspecific below-ground interactions driven by root exudates in agroecosystems With diverse crops[J]. Chinese Journal of Eco-Agriculture,2022,30(8): 1215-1227.
[45]YINX T,ZHANGFF,YURP,LIUN,ZHANGWP,F(xiàn)ORNARA D,MOMMER L,LI X X,LI L. Root exudates drive root avoidance of maize in response to neighboring wheat[J]. Plant and Soil,2025,510(1):507-524
[46] 徐健程,王曉維,聶亞平,羅杰,楊瀟一,楊文亭.不同銅濃度下 玉米間作豌豆對土壤銅的吸收效應(yīng)研究[J].農(nóng)業(yè)環(huán)境科學學 報,2015,34(8):1508-1514. XUJiancheng,WANGXiaowei,NIE Yaping,LUO Jie,YANG Xiaoyi,YANG Wenting.Eectofmaize-eaintercroppingoncrop copper accumulation under diffrent copper concentrations[J]. Journal of Agro-Environment Science,2015,34(8):1508-1514.
[47]LI Z X,SHANG QY,ZOU L,XING Z N,CHEN G L,CHEN Z, ZHOU JL,LIU X L. The dynamic response mechanism of cropsto manganeseuptakeand transfermediatedby different intercropping crop attributes[J].Journal of the Science of Food and Agriculture,2024,104(15):9706-9718.
[48]徐金玉,王偉偉,王惠,張海燕.銅污染土壤的生物修復(fù)研究進 展[J].生物工程學報,2020,36(3):471-480. XU Jinyu, WANG Weiwei, WANG Hui, ZHANG Haiyan. Progress in bioremediation of copper-contaminated soils[J]. Chinese Journal of Biotechnology,2020,36(3):471-480.
[49]邱梅.黃土坡地核桃林不同間作模式土壤養(yǎng)分及酶活性研究[D]. 楊凌:西北農(nóng)林科技大學,2014. QIU Mei. Study on soil nutrient amp; enzyme activity under different intercropping mode of walnut forest on loess plateau[D]. Yangling:NorthwestAamp;FUniversity,2014.
[50]徐永杰,吳強盛,汪芳玲,徐雅雯,韓夢壯,肖之炎.油茶和薄殼 山核桃間作對土壤養(yǎng)分和真菌多樣性的影響[J].中南林業(yè)科 技大學學報,2024,44(1):28-36. XU Yongjie, WU Qiangsheng,WANG Fangling, XU Yawen, HAN Mengzhuang,XIAO Zhiyan. Effects of intercropping Camelliaoleifera and Caryaillinoinensison soil nutrientsand fungal diversity[J].Journal of Central South University of Forestryamp; Technology,2024,44(1):28-36.
[51]丁婷婷,段廷玉.果園綠肥對果樹-土壤-微生物系統(tǒng)影響研究 進展[J].果樹學報,2021,38(12):2196-2208. DING Tingting,DUAN Tingyu. Research progress on the influence oforchard green manure on fruit tree-soil-microbe system[J]. Journal ofFruit Science,2021,38(12):2196-2208.
[52]夏海勇,孔瑋琳,薛燕慧,湯艷艷,汪寶卿,劉開昌,萬書波.間 作對玉米磷、鐵、鋅和鈣素吸收及其在植株體內(nèi)轉(zhuǎn)移分配的影 響[J].山東農(nóng)業(yè)科學,2017,49(7):86-90. XIAHaiyong,KONG Weilin,XUE Yanhui,TANG Yanyan, WANG Baoqing,LIU Kaichang,WAN Shubo.Effectsof intercropping on absorption of phosphorus,iron,zinc and calcium from soil and translocation and allocation in maize plants[J]. Shandong Agricultural Sciences,2017,49(7):86-90.
[53]任靜,劉小勇,劉芬,彭海,韓富軍.核桃/大豆間作對氮素吸收 利用及轉(zhuǎn)移的影響[J].經(jīng)濟林研究,2022,40(1):1-10. REN Jing,LIU Xiaoyong,LIU Fen,PENG Hai,HAN Fujun. Absorption,utilization and transfer efficiency of nitrogen in walnutsoybean intercropping pattern[J].Non-wood Forest Research, 2022,40(1):1-10.