中圖分類號:Q943 文獻標識碼:A 文章編號:1000-3142(2025)08-1518-12
Abstract:FKF1is known tobeablue light-responsive geneandanimportantfactor in regulating plantflowering through the photoperiod pathway.To explore the molecular mechanismof BdFKF1 gene inregulating flowering in tobacco plants through he photoperiod pathway,wild-type tobacco (SR1)and BdFKF1 gene-transformed tobacco plants (BdFKF1-OE) were usedas materials.Transcriptomic sequencing andRT-qPCRvalidation were conducted to observe and record the flowering timein both materials.The results were as follows:(1)In SR1 vs FKF1 group,a totalof 472 diferentially expressed genes were identified,with 248 up-regulated genesand 224 down-regulated genes.Among them,14 diferentiallyexpressd genes wererelated tothephotoperiod,with7up-regulated genesand7down-regulated genes.(2)GO enrichment analysis revealed that diferentially expressed genes were significantly enriched in pathways such as U5 snRNP,oxidoreductase activity,acting on paired donors and response to blue light.Among them,the diffrentially expressed genesrelated to the photoperiod were mainly enriched in pathwayssuch as FK5O6 binding, photoperiodismand flowering,photoperiodism,phosphatidylethanolamine binding,macrolide binding,andregulationof flower development.(3)KEGG enrichmentanalysis revealed that the diferentially expressed genes were mainly enriched in pathways such asABC transporters,Protein processing in endoplasmic reticulum,cutin,suberin and wax biosynthesis and circadian rhythm-plant pathways.Among them,the diferentially expressed genes related to the photoperiod were mainly enriched in pathwayssuch as plant hormone signal transduction andcircadian rhythmplant.(4)Theobservation and recording showed thattheflowering timeof BdFKF1-OE plants was3.9dearlier than that of SR1.(5)RT-qPCRresults wereconsistent with the trend of changes inthe transcriptomic data,indicating that the transcriptomicdatahad highreliability.In conclusion,under long-dayconditions,the BdFKF1 genecanaffect the expresion of photoperiodpathway-related genes,andoverexpressionof theBdFKF1 gene promotes flowering in tobacco plants.
Key Words: FKF1 gene,photoperiodism,tobacco,Brachypodium distachyon, transcriptomics
植物開花過程被稱為從營養生長到生殖生長的過渡期,該過渡期由植物精確調控,而調控植物開花的常見途徑主要有光周期、春化、自主、環境溫度、年齡和赤霉素6種,其中光周期途徑是調節各種植物開花的重要環境因素之一(Songetal.,2015;Wang et al.,2020;Izawa,2021)。FKF1(FLAVIN-BINDINGKELCHREPEATF-BOX1)是光周期調控基因,在植物開花機制中發揮著重要的作用,該基因表達由生物鐘控制,在轉錄和翻譯水平上正向調節CO(CONSTANS)且與ZTL(ZEITLUPE)、LKP2(LOVKELCHPROTEIN2)同屬于F-box 基因家族(Magoriamp;Citovsky,2011;Leeetal.,2017;Feke etal.,2021;Shibuya etal.,2021)。而對于FKF1基因在光周期途徑調控植物開花的分子機制已有大量研究:長日照的早上,FKF1可以通過其LOV結構域與CO相互作用,穩定CO蛋白,進而促使植物成花(Songetal.,2012);下午,太陽光激活FKF1且與GI(GIGANTEA)相互作用形成FKF1-GI蛋白復合物以特異性降解CO的轉錄抑制因子CDFs蛋白以激活CO表達,最終促使植物提前開花(Leeetal.,2017);傍晚,FKF1與COP1蛋白形成蛋白復合體進而抑制COP1蛋白的活性,使植物提前開花(Lee etal.,2019)。水稻擁有2種由Hd3a(HEADINGDATE3a)和RFT1(RICEFLOWERINGLOCUST1)編碼的成花素,其OsFKF1基因與擬南芥AtFKF1基因具有 72% 的氨基酸同一性且2種基因都表現出晝夜節律表達,OsFKF1參與的光周期途徑,類似于AtFKF1,在長日照作用下,通過調節Ehd2(Ehd1的激活劑)和Ghd7(Ehd1的抑制劑)來激活Ehd1-Hd3a/RFT1途徑,從而促進開花(Han et al.,2015;Giaume et al.,2023; Zhang etal.,2023)。在玉米中,ZmGI1與ZmFKF1形成蛋白質復合物,并通過調節光周期途徑中的CO轉錄而發揮正向調節開花時間的作用(Wuetal.,2021)。
二穗短柄草(Brachypodiumdistachyon)作為新型模式作物具有很多良好的生物學特點,如基因組小、較強的繁殖力、生長周期短(一般情況下需8~10周)基因多態型、遺傳轉化效率高、簡單易得和生長環境條件簡單等(Vainetal.,2008;Vogelamp;Hill,2008;Huoetal.,2009)。目前,關于FKF1基因的研究對象大多數為擬南芥、水稻、玉米,而對于二穗短柄草BdFKF1基因研究極為罕見,僅有李安等(2021)通過二穗短柄草BdFKF1基因表達、亞細胞定位及蛋白互作分析發現BdFKF1蛋白存在于細胞核上且與BdCDF1和BdGI蛋白均有互作關系,路雪萍等(2022)在對二穗短柄草BdCO基因表達與生物學功能分析中發現BdFKF1蛋白與BdCO蛋白在細胞內有蛋白互作關系。因此,本研究以基因表達調控為研究區域,依托高通量測序和生物信息學分析方法,通過將二穗短柄草BdFKF1基因轉入野生煙草中,以野生型煙草(SR1)和轉基因煙草(BdFKF1-OE)為材料,采用轉錄組測序的方法,擬探討以下問題:(1)2種煙草在生殖生長期,差異表達基因主要富集在哪些通路;(2)與光周期相關的差異表達基因有哪些;(3)這些基因主要富集在哪些通路中;(4)2種煙草的開花時間。本研究旨在為二穗短柄草分子植物育種提供理論依據。
1材料與方法
1.1試驗材料
野生型煙草(SR1)和轉BdFKF1基因煙草(BdFKF1-OE)由貴州省農業科學院草業研究所保存。
1.2試驗處理
篩選大小相近的SR1和BdFKF1-OE種子播種于高 25cm 、直徑 30cm 的花盆中,并置于人工氣候室內進行長日照(long-day,LD)處理( 16h 光照 /8h 黑暗),定期澆水,晝夜溫度控制在23~25C ,濕度為 55%~60% 。于2022年7月20日取其幼嫩葉片進行液氮速凍保存以備后期試驗使用,每份材料取3個生物學重復,3片葉混樣,觀測記錄植株第一次開花時間,其中野生型和轉基因植株各有13株。
1.3轉基因植株陽性鑒定
根據TIANGENDNAsecure新型植物基因組DNA提取試劑盒說明書提取BdFKF1-OE葉片DNA,其中PCR擴增所需引物如表1所示。
表1PCR擴增引物
Table1 PCR amplification primers

1.4轉錄組測序
根據試劑盒Axyprep的說明書提取總RNA,采用 1% 瓊脂糖凝膠電泳對RNA的質量和完整性進行評估。委托蘇州帕諾米克生物醫藥科技有限公司進行參考基因組轉錄組測序,采用第二代測序技術(next-generationsequencing,NGS),基于IlluminaHiSeq測序平臺,對文庫進行雙末端(paired-end,PE)測序,其中對下機數據(RawData)進行統計分析,使用Cutadapt軟件去除平均質量分數低于Q20的Reads,使用HISAT2軟件將過濾后的Reads比對到煙草的參考基因組上(Guoet al.,2022)。
1.5差異表達基因篩選
使用HTSeq統計比對到每一個基因上的Readcount值,作為基因的原始表達量(Andersetal.,2015),采用FPKM對表達量進行標準化,以表達差異倍數 ∣log2 (Fold Change) ∣gt;1 和顯著性 P value lt;0.05 為篩選條件,篩選出具有差異表達的基因。
1.6差異表達基因火山圖、聚類熱圖、GO富集和 KEGG富集分析
采用R語言ggplots2軟件和Pheatmap軟件包將篩選出的差異表達基因分別繪制成火山圖和聚類熱圖,對符合條件的差異表達基因進行GO(Gene Ontology,http://geneontology.org/)和KEGG(Kyoto Encyclopedia ofGenes and Genomes,http://www.kegg.jp/)分類,通過超幾何分布方法計算 P value(顯著富集的標準為 P value lt;0.05 )并將得到的不同GO和KEGG條目進行富集分析。
1.7RT-qPCR分析
從轉錄組測序結果中隨機挑選6個差異表達基因進行RT-qPCR驗證,使用GoScriptTM反轉錄試劑盒將RNA反轉錄為cDNA,最后以反轉錄的cDNA 為 模板 根 據 GoTaq@qPCR MasterMix(Promega,北京)試劑盒說明書進行RT-qPCR實驗,每個樣品設計3個重復試驗。其中,以煙草NtActin基因作為內參基因,結果以 2-ΔΔCt 法計算其相對表達量,用于RT-qPCR分析的引物見表2。
表2煙草RT-qPCR引物 Table 2 Tobacco RT-qPCR primers

1.8數據處理
對試驗所得的數據用SPSS26進行單因素分析,運用GraphPadPrism9.0.0軟件作圖
2 結果與分析
2.1轉BdFKF1基因煙草植株的構建
對BdFKF1-OE煙草進行PCR陽性鑒定實驗,所用引物是BdFKF1特異性引物,產物長度為413bp,結果如圖1所示,條帶在 250~500bp 之間,與產物長度相符,BdFKF1轉SR1得到13株陽性植株(其中4-16為陽性苗,其他均為陰性苗)。提取轉BdFKF1基因煙草RNA,經反轉錄后通過RT-qPCR檢測BdFKF1的表達情況,結果如圖2所示,在BdFKF1-OE中,BdFKF1表達量遠遠大于1,證明BdFKF1轉基因煙草植株構建成功。
2.2轉錄組原始數據整理、過濾、質量評估及比對分析
經測序質量控制,結果如表3所示,6個樣品原始數據的Reads數為 38646086~45840284 高質量序列Reads數(Clean_Reads)為36 339 668~43 111 238 ,將過濾后的Reads比對到參考基因組上,實驗所產生的測序序列的總比對率和唯一比對率高于 95% ,則參考基因組選擇合適且相關實驗不存在污染。樣本中的堿基識別正確率(Q30,表示堿基識別錯誤的概率為 0.1% ))所占比例均超過 90% ,以上結果表明測序數據質量可靠,可用于后續分析。
2.3差異表達基因分析
2.3.1差異表達基因的篩選本試驗采用RNA-seq技術,對BdFKF1-OE植株材料(受體材料為SR1)和SR1植株材料進行了轉錄組測序,對基因表達進行差異分析,結果如圖3所示,在SR1vsFKF1組中檢測到472個基因差異表達,其中上調基因為248個,下調基因為224個,表明二穗短柄草BdFKF1基因的插入會影響煙草中相關基因的表達。
2.3.2差異表達基因GO功能富集分析對差異表達基因按照生物過程(biologicalprocess,BP)、細胞組分(cellularcomponent,CC)分子功能(molecularfunction,MF)進行GO分類,在每個GO分類中挑選 P value值最小即富集最顯著的前10個GOterm條目進行展示,結果如圖4所示,在SR1vsFKF1組中,在生物過程中顯著富集在U5小核核糖核蛋白體、細胞壁和外部封裝結構通路中,在分子功能中顯著富集于氧化還原酶活性中,作用于成對供體、單加氧酶活性和鐵離子結合通路中,在生物過程中顯著富集于藍光反應、黃酮類生物合成過程和向光性通路中。
2.3.3差異表達基因KEGG通路富集分析根據差異表達基因的 P value值最小的前30條通路進行KEGG通路富集,結果如圖5所示,在SR1vsFKF1組中,顯著富集到環境信息處理過程中的2條通路,包括ABC轉運蛋白和植物激素信號轉導;顯著富集到遺傳信息處理過程中的內質網中蛋白質加工1條通路;顯著富集到新陳代謝通路中的25條,其中富集最顯著的有角質、木栓素和蠟的生物合成,黃酮類生物合成,倍半萜和三萜生物合成及泛醌和其他萜類-醌生物合成;顯著富集到生物體系統中的晝夜節律-植物和植物與病原體相互作用2條通路。
圖1BdFKF1轉SR1的PCR檢測結果 Fig.1Results of PCR detection of BdFKF1 to SR1

M.DL2000;1-16. T0 代株系;WT.陰性對照(野生型);CK.陰性對照(水);P.陽性對照(農桿菌菌液)。 M. DL2000;1-16. T0 generation strains;WT.Negative control(wildtype);CK.Negative control(water);P.Positive control (Agrobacteriumspp.liquid).
圖2轉基因煙草中BdFKF1基因表達量 Fig.2Expression of BdFKF1 gene in transgenic tobacco

WT.對照組, ∣log2 (Fold Change) Ψ|Ψ=1 ;BdFKF1-OE. BdFKF1轉基因煙草;****.差異極顯著( Plt;0.000 1? 。 WT. Control group, ∣log2 (Fold Change) Ψ|Ψ=Ψ1 ; BdFKF1- OE.BdFKF1 transgenic tobacco;****.Diferences are extremely significant ( Plt;0.000 1 .
2.3.4與光周期相關的差異表達基因聚類熱圖分析將與光周期相關的差異表達基因進行聚類分析,結果如圖6所示,其中在SR1_vs_FKF1組中檢測到上調基因7個,分別是gene_11419(rootphototropismprotein2)、gene_25652(auxin-regulatedprotein)、gene_52144(ARR9-like)、gene_63196(ABCtransporterB family member19)gene_31623(IAA29-like)、gene_43850(NPR5-like)、gene_27809(UVR8),下調基因7個,分別是gene_50814(FTSH6)、gene_65017(GI)、gene_83255(PRR37)、gene_52363(DNAdamage-binding)、gene_1556(CONSTANS-LIKE2)、gene_13100(APRR7)、gene_57553(HY5)。2.3.5與光周期相關的差異表達基因GO和KEGG功能富集分析將與光周期相關的差異表達基因進行GO和KEGG功能富集分析,在SR1vsFKF1組中結果如圖7和圖8所示,其中在GO功能富集氣泡圖中發現,與光周期相關的差異表達基因顯著富集在鋅離子結合、mer的營養-生殖相變、射擊系統開發、對輻射的反應、對光刺激的反應、對非生物刺激的反應、生殖芽系統發育、射擊系統開發的規律、生殖過程的調節、胚胎后發育的調控、多細胞生物過程的調控、多細胞生物發育的調控、花發育調控、發育過程的調節、光周期和開花、光周期、磷脂酰乙醇胺結合、大環內酯結合、花朵發育、FK506結合20條通路中,其中富集程度較大的在FK506結合、大環內酯結合、光周期、光周期和開花、磷脂酰乙醇胺結合、花發育調控6條通路中。KEGG富集氣泡圖發現顯著富集在植物激素信號轉導和晝夜節律-植物2條通路中。
2.4轉BdFKF1基因煙草表型分析
以野生型煙草(SR1)為對照組,對轉基因煙草(BdFKF1-OE)的第一朵花開放時間進行記錄,結果(圖9)發現,野生型煙草平均第一朵花開放時間為68.3d,轉基因煙草平均第一朵花開放時間為64.4d,比野生型提前開花 3.9d 。這表明BdFKF1基因會影響煙草開花時間。
表3轉錄組數據質控與比對統計
Table 3Transcriptome data quality control and comparison statistics

注:FKF1_1、FKF1_2、FKF1_3.轉基因煙草的3個重復;SR1_1、SR1_2、SR1_3.野生型煙草的3個重復。Note:FKF1_1,FKF1_2,FKF1_3.Threereplicatesof transgenictobacco;SR1_1,SR1_2,SR1_3.Threereplicatesof wild-typetobacco.
圖3SR1vsFKF1差異表達基因火山圖分析 Fig. 3SRlvs FKF1 volcano map analysis of differentially expressed genes

2.5RT-qPCR數據驗證
為驗證轉錄組測序數據可靠性,隨機挑選出6個基因進行RT-qPCR驗證。驗證結果如圖10所示,其中選取的6個基因的表達量上調或下調趨勢與轉錄組測序數據一致,說明測序結果是可靠的。
3 討論與結論
煙草開花時間由多個基因相互協調調控,其基因調控網絡十分復雜。Cheng等(2022)對野生型和轉GhSAMDC1基因2種體系煙草進行轉錄組分析,共發現938個差異表達基因(上調基因569
C1.U5 小核核糖核蛋白體;C2.細胞壁;C3.外部封裝結構;C4.膜的整合組分;C5.膜的固有組分;C6.膜;C7.剪接體復合物;C8.高爾基運輸復合物;C9.胞間質;C10.U4/U6 σX U5tri-snRNP復合體;M1.氧化還原酶活性,作用于成對供體;M2.單加氧酶活性;M3.鐵離子結合;M4.2-氧戊二酸依賴性二氧酸酶活性;M5.柚皮素3-二氧化酶活性;M6.L-抗壞血酸結合;M7.M-四吡咯結合;M8.血紅素結合;M9.單糖結合;M10.二酰基甘油O-酰基轉移酶活性;B1.藍光反應;B2.黃酮類生物合成過程;B3.向光性;B4.黃酮類代謝過程;B5.脂質代謝過程;B6.天冬氨酸代謝過程;B7.天冬氨酸生物合成過程;B8.動物器官形態發生;B9.動物器官形成;B10.對光刺激的響應。C1.U5snRNP;C2.Cellwall;C3.Externalencapsulatingstructure;C4.Integralcomponentofmembrane;C5.Intrinsicompoentofmembrane; C6. Membrane; C7. Spliceosomal complex; C8. Golgi transport complex; C9. apoplast; C10. U4/U6 x U5 tri-snRNP complex;M1.Oxidoreductaseactivity,actingonpaireddonors;M2.Monoxygenaseactivity;M3.Ironionbinding;M4-Oxoglutarate-depdentdioxygenaseactivity;M5.Naringenn3-dioxygenaseactivity;M6.L-ascorbicacidbnding;M7.M-tetrapyolebinding;M8.Hebiding;M9.Monosahadendig;0acyllolOcyrasferasectivitysposetuelight;.vodosycs;B3.Phototropism;B4.lavonoidmetabolicprocess;B5.Lipidmetabolicprocess;B6.Asparaginemetabolicprocess;B7Asparaginebiosyntheticprocess;B8.Animal organ morphogenesis;B9.Animal organ formation;B10.Response to light stimulus.
Fig.4GO enrichment of SR1 vs FKF1 differentially expressed genes
圖4SR1vsFKF1差異表達基因GO富集

個和下調基因369個)。Laitz等(2015)對野生型和轉AtUCP1基因煙草進行轉錄組分析,共發現816個差異表達基因(上調基因239個和下調基因577個),與其他未轉基因的研究相比(Changetal.,2020;Liuetal.,2020),轉基因煙草的差異表達基因相對較少。本試驗對野生型煙草和轉基因煙草進行轉錄組測序,共檢測到472個差異表達基因(上調基因248個和下調基因224個),而與光周期相關的基因共檢測到14個差異表達基因(上調基因7個和下調基因7個),本試驗中差異表達基因數量也相對較少,推測是由于BdFKF1基因轉入煙草所導致。
HY5(ELONGATEDHYPOCOTYL5)參與植物非生物脅迫(Xiaoetal.,2022)。在番茄中,HY5可以直接調節CBF轉錄水平,精確調節植物的耐寒性(Zhangetal.,2020)。在擬南芥中,HY5與
E1.ABC轉運蛋白;E2.植物激素信號傳導;G1.內質網中蛋白質加工;M1.角質、木栓素和蠟的生物合成;M2.黃酮類生物合成;M3.倍半萜和三萜生物合成;M4.泛醌和其他萜類-醌生物合成;M5.半胱氨酸和蛋氨酸代謝;M6.二萜生物合成;M7.氰基氨基酸代謝;M8.苯丙烷類生物合成;M9.苯丙氨酸代謝;M10.黃酮和黃酮醇生物合成;M11.谷胱甘肽代謝;M12.花生四烯酸代謝;M13.芪類化合物、二芳基庚烷類化合物和姜酚生物合成;M14.糖胺聚糖降解;M15.糖脂生物合成-腦糖苷系列;M16.脂肪酸延長;M17.各種次生代謝產物生物合成-第3部分;M18.騰酸鹽和麟酸酯代謝;M19.糖脂生物合成-球狀和異球狀系列;M20.硫代謝;M21.葡萄傷膚堿生物合成;M22.酪氨酸代謝;M23.淀粉和蔗糖代謝;M24.丙酮酸代謝;M25.苯丙氨酸、酪氨酸和色氨酸生物合成;01.晝夜節律-植物;02.植物與病原體相互作用。E1.ABCtranspores;E2.Planthoonealtrasuction;G1.Proteprocessginedoplasicetic;.Cutiubidaxbiosynthesis;M2.lavonoidbiosynthsis;M3.Sesquiterpenoidandtriterpenoidbiosynthsis;M.Ubiqunoneandotherterpenoid-quinoebiosynthesis;M5.Cysteineandmethioninemetabolism;M6.Diterpenoidbiosynthesis;M7.Cyanoaminoacidmetabolism;M8.Phenylpropanoidbiosynthesis;M9.Phenylalaninemetabolism;M10.Flavoneandflavonolbiosynthesis;M11.Glutathionemetabolism;M12.Arachidonicacidmetabolism;M13.Stilbenoid,diaryleptanoidandgingerolbiosynthsis;M14Glycosamioglycandegradation;M15.Glycosphgolipdosthesisaglries;M6.Fattcidelogation;M7osthsisfarioscodarymeabolitart;M18.Phosphonateandphosphnatemetabolism;M19.Glyosphingolipidbiosythess-goboandisogloboseries;M0.Sulfurmetabolism;M21.Glucosinolatebiosynthesis;M2.Tyrosinemetabolism;M23.Starchandsucrosemetabolism;M24.Pyruvatemetabolism;M25.Phenylalanine, tyrosineand tryptophan biosynthesis; O1. Circadian rhythm-plant; O2. Plant-pathogen interaction.
圖5SR1vsFKF1差異表達基因KEGG富集分析
Fig.5KEGG enrichment analysis of SR1 vs FKF1 differentially expressed genes

PIF4相互作用可調節其熱形態發生(Leeetal.,2021)。本試驗通過對光周期相關基因進行富集分析,發現SR1vsFKF1的差異表達基因顯著富集在對非生物刺激的反應和對光刺激的反應通路中,并且在這些通路中發現HY5下調,推測BdFKF1參與植物的非生物脅迫。有研究表明:
UVR8是UV-B光感受器,參與植物光形態建成(Podolecetal.,2021);APRR5和APRR7各自在光信號整合中發揮關鍵作用,以調控植物晝夜節律(Yamamotoetal.,2003);在擬南芥中,晝夜節律會影響COL2的表達與轉錄水平(Ledgeretal.,2001)。此外,芒果MiCOL2基因的過表達增強轉基因擬南芥對非生物脅迫的耐受性(Lianget al.,2023)。本試驗發現在SR1vsFKF1組中光周期途徑基因UVR8表達上調,APRR7和COL2的表達下調,表明BdFKF1會影響煙草晝夜節律調控和光形態建成。Yan等(2020)研究表明,在長日照條件下擬南芥AtFKF1缺失導致其表現為晚花,AtFKF1過表達可在開花過程中正向調節赤霉酸(gibberellicacid,GA)反應,促使擬南芥表現為早花型。Huang等(2017)認為將桂圓DLFKF1基因轉入擬南芥中可導致其出現早花表型。大豆GmFKF1和GmGI1之間相互作用促進大豆開花(Wangetal.,2016)。在本試驗中,轉基因煙草比野生型煙草提前開花3.9d,表現為早花型,表明過表達BdFKF1可以使煙草提前開花。本試驗證實了BdFKF1會影響光周期途徑相關基因的表達,在長日照條件下過表達BdFKF1能調控煙草開花時間。
圖6SR1vsFKF1與光周期相關的差異表達基因熱圖
Fig. 6Heatmap of SR1 vs FKF1 differentially expressed genes associated with photoperiod

參考文獻:
ANDERSS,PYLPT,HUBERW,2O15.HTSeq—aPython framework to work with high-throughput sequencing data [J].Bioinformatics,31(2):166-169.
BERKMAN SJ,ROSCOE EM,BOURRET JC,2019.Comparing self-directed methods for training staff to create graphs usingGraphpadPrism[J].Journal of Applied Behavior Analysis,52(1):188-204.
CHANGW,ZHAO HN,YUSZ,etal.,202O.Comparative transcriptome and metabolomic profiling reveal the complex mechanisms underlying the developmental dynamicsof tobacco leaves[J].Genomics,112(6):4009-4022.
CHENG XQ,PANG FQ,TIAN WG,et al.,2022. Transcriptome analysis provides insights into the molecular mechanism of GhSAMDC,involving in rapid vegetative growth and early flowering in tobacco[J].Scientific Reports,12: 13612.
FEKEA,VANDERWALLM,LIUW,etal.,2O21.Functional domain studies uncover novel roles for the ZTL Kelch repeat domaininclock function [J].PLoS ONE, 16(3):e0235938.
GIAUMEF,BONOGA,MARTIGNAGOD,etal.,2023.Two florigens and a florigen-likeprotein form a triple regulatory module at the shoot apical meristem to promote reproductive transitionsinrice[J].NaturePlants,9(4):525-534.
GUO JN,GAO J,LIU ZY,2022.HISAT2 parallelization method based on spark cluster [J]. Journal of Physics: Conference Series,2179:012038.
HANSH,YOO SC,LEE BD,et al.,2015.Rice FLAVINBINDING,KELCHREPEAT,F-BOX1(OsFKF1) promotes floweringindependent ofphotoperiod[J].Plant, Cell amp; Environment,38(12):2527-2540.
HUANG FN,FU ZY,ZENG LH,et al.,2O17.Isolation and characterization of GI and FKF1 homologous genes in the subtropical fruit tree Dimocarpus longan[J].Molecular Breeding,37(7):1-13.
HUON,VOGEL JP,LAZO GR,et al.,2OO9.Structural characterization of Brachypodium genome and its syntenic relationshipwith rice and wheat[J].Plant Molecular Biology,70:47-61.
IZAWA T,2O21. What is going on with the hormonal control of flowering inplants?[J].PlantJournal,105(2):431-445.
LAITZ AVN,ACENCIO ML,BUDZINSKI IGF,etal., 2015.Transcriptome response signatures associated with the overexpression ofamitochondrialuncouplingprotein (AtUCP1)intobacco[J].PLoSONE,10(6):e0130744.
LEDGERS,STRAYERC,ASHTONF,etal.,2OO1.Analysis ofthefunction oftwo circadian-regulated CONSTANS-LIKE genes[J].Plant Journal,26(1):15-22.
LEE BD,KIM MR,KANG MY,et al.,2O17.The F-box proteinFKF1inhibitsdimerization of COP1 in the control of photoperiodic flowering[J].Nature Communications, 8(1) :2259.
LEEBD,CHAJY,KIM MR,etal.,2019.Light-dependent suppression of COP1 multimeric complex formationis determined by theblue-lightreceptor FKF1in Arabidopsis [J].Biochemical Biophysical Research Communications, 508(1) : 191-197.
LEES,WANGWL,HUQE,2021.Spatial regulationof thermomorphogenesis by HY5 and PIF4 in Arabidopsis [J].Nature Communications,12(1):3656.
LIA,TONG WY,LUO W,et al.,2021.The expression, subcellularlocalization and protein interaction of BdFKF1 gene in Brachypodium distachyon[J].Molecular Plant Breeding,19(20):6697-6707.[李安,童偉楊,羅維,等, 2021.二穗短柄草BdFKF1基因表達、亞細胞定位及蛋白互 作分析[J].分子植物育種,19(20):6697-6707.]
LIANG RZ,LUO C,LIU Y,et al.,2023. Overexpression of two CONSTANS-like 2 (MiCOL2) genes from mango delays
圖7SR1vsFKF1與光周期相關的差異表達基因GO富集分析
Fig.7GO enrichment analysis of SR1 vs FKF1 differentially expressed genes associated with photoperiod

圖8SR1vsFKF1與光周期相關的差異表達基因KEGG富集分析
Fig.8KEGG enrichment analysis of SR1 vs FKF1 differentially expressed genes associated with photoperiod

圖9煙草第一朵花開放時間和生長表現型 Fig. 9Opening time and growth phenotype of the first tobacco flower

A.煙草第一朵花開放時間;B.野生型煙草生長表型;C.轉基因煙草生長表型;***.差異顯著( Plt;0.001 )A.Theopeningtimeofthefistobacoflower;B.Wild-tyetobacogrowthphenotye;C.Geneticallymodifiedtobaccogrowthhenotype;***.Differences significant ( Plt;0.001 )
圖10RT-qPCR驗證基因相對表達量 Fig.10RT-qPCR verify the relative expression of genes

WT.對照組, ∣log2 (FoldChange) 1gt;1 為上調, ∣log2 (FoldChange) 1lt;1 為下調。
WT. Control group, ∣log2(FoldChange)∣gt;1 indicates up-regulation,and
(Fold Change)llt;1 indicates down-regulation. flowering and enhances tolerance to abiotic stressin transgenic Arabidopsis[J].Plant Science,327:111541.
LIU PP,LUO J,ZHENG QX,et al.,2020.Integrating transcriptome and metabolome reveals molecular networks involved in genetic and environmental variation in tobacco [J].DNA Research,27(2):dsaa006.
LU XP,TONG WY,SHU JH,et al.,2022.AnalysisofBdCO gene expression and biological function in Brachypodium distachyon[J]. Plant Physiology Journal,58(5):889- 903.[路雪萍,童偉楊,舒健虹,等,2022.二穗短柄草 BdCO基因表達與生物學功能分析[J].植物生理學報, 58(5) : 889-903.]
MAGORI S,CITOVSKY V,2011.Hijacking of the host SCF ubiquitin ligase machinery by plant pathogens [J].Frontiers in Plant Science,2:87.
PODOLEC R,DEMARSY E,ULM R,2021. Perception and signaling of Ultraviolet-B radiation in plants[J]. Annual Review of Plant Biology,72:793-822.
SHIBUYA T,NISHIYAMA M,KATO K,et al.,2021. CharacterizationoftheFLAVIN-BINDING, KELCH REPEAT,F-BOX1homolog SlFKF1 in tomato asa model forplants with fleshy fruit[J].International Journal of Molecular Sciences,22(4):1735.
SONG YH,SHIM JS,KINMONTH-SCHULTZ HA,et al., 2015.Photoperiodicflowering: time measurement mechanisms in leaves[J]. Annual Review of Plant Biology, 66:441-464.
SONG YH,SMITH RW,TO BJ,et al.,2012.FKF1 conveys timing informationforCONSTANSstabilizationin photoperiodic flowering[J].Science,336(6084): 1045-1049.
VAIN P, WORLANDB,THOLE V,etal., 2008. Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis[J].Plant Biotechnology Journal, 6: 941.
VOGEL J,HILL T,2008.High-efficiency Agrobacteriummediatedtransformation ofBrachypodiumdistachyoninbred line Bd21-3[J].Plant Cell Reports,27(3):471-478.
WANG LJ,SUN J,REN LP,et al.,2020. CmBBX8 accelerates flowering by targeting CmFTL1 directlyin summer chrysanthemum [J]. Plant Biotechnology Journal, 18(7) : 1562-1572.
WANGY,GUYZ,GAO HH,et al.,2O16.Molecularand geographic evolutionary support for the essential roleof GIGANTEAa in soybean domestication of flowering time [J].BMC Evolutionary Biology,16:79.
WU FK,LIUL,KANG Y,et al.,2021.Dual functions of ZmGIl in the photoperiodic flowering pathway and salt stress responses in maize[J]. BioRxiv,5:443837.
XIAO YT,CHUL,ZHANG YM,et al.,2022.HY5:A pivotal regulator of light-dependent development in higher plants [J].Frontiers inPlant Science,12:800989.
YAMAMOTO Y,SATO E,SHIMIZU T, et al.,2003. Comparative genetic studieson the APRR5 and APRR7 genes belonging to the APRR1/TOC1 quintet implicated in circadian rhythm,control offlowering time,and early photomorphogenesis[J]. Plantand Cell Physiology, 44(11):1119-1130.
YAN JD,LI XM,ZENG BJ,et al.,2O2O. FKF1 F-box protein promotes flowering inpart by negatively regulating DELLA protein stability under long-day photoperiod in Arabidopsis [J].Journal Integrative Plant Biology,62(11):1717-1740.
ZHANG LY,JIANG XC,LIUQY,et al.,2O20.TheHY5and MYB15transcriptionfactorspositivelyregulatecold tolerance in tomato via the CBF pathway[J].Plant, Cell amp; Environment,43(11):2712-2726.
ZHANG XN,FENGQ,MIAO JS,et al.,2023.The WD40 domain-containingproteinEhd5positivelyregulates flowering in rice(Oryza sativa)[J].The Plant Cell, 35(11) : 4002-4019.
(責任編輯鄧斯麗)