一、學會獨立思考,促進學生思維發展
學會學習的核心就是要學會“思維”。常言道:“多想出智慧。”學習數學最重要的方法是“思維”。數學教學
教的是如何“思維”,如何運用最一般最抽象的數字來表達萬般事物,來分析事物之間的各種關系。“思考”是學習數學的法寶,學生只有學會獨立思考,展開聯想和想像,才能增長才智。因此,在數學教學中,教師要十分重視創造條件讓學生有獨立思考的機會,逐步培養學生的獨立思考能力。例如,一位教師在教學完長方體的表面積和體積計算后,設計了這樣一道題:“一個長方體,它的底面是邊長為5厘米的正方形,高是10厘米。這個長方體的表面積是多少?”大部分學生列出算式:(5×5+5×10+5×10)×2=250(平方厘米)。教師鼓勵學生繼續想想這個長方體是一個怎樣的長方體,還可以怎樣求它的表面積?于是又有學生列出算式:5×5×2+5×10×4=250(平方厘米)。教師讓學生再動手畫一畫并進一步思考出幾個較為簡便的計算方法:1.每個側面可以看作2個底面,那么四個側面就有8個底面,再加上上、下2個底面,一共是10個底面,求表面積,列出算式就是:5×5×10=250(平方厘米)。2.上、下兩個底面合并起來是1個側面,再加上四個側面一共是5個側面,求表面積,列出算式就是:5×10×5=250(平方厘米)。這樣層層深入思考,學生的創新思維得到發展,感受到了思維的樂趣,成功的喜悅。
二、學會自主探索,促進學生能力發展
蘇霍姆林斯基說過:“在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者和探索者。而在兒童的精神世界里,這種需要特別強烈。”探索是學習數學的法寶,數學探索的方式,更注重思考與動手,只有學生掌握了探索的方法,養成了探索的習慣,學習能力才能得到發展,解決問題的能力才能得到提高。例如:“一塊長40厘米、寬20厘米的長方形鐵皮,要將其做成一個高為5厘米的長方體鐵盒(無蓋),它的容積最大是多少?”一題,如果讓學生直接解答確實有困難,如果改讓學生用紙板模擬制作,讓他們在動手實踐中自主探索,通過想一想、畫一畫、剪一剪,學生會知道長方形紙板是怎樣圍成長方體紙盒的,同時思考:要使做成的長方體鐵盒(無蓋)的容積最大,首先要考慮底面是正方形,并且使材料全部用上,因此可以把長方形鐵皮先剪成2個正方形,再把其中一個正方形平均剪成4個長方形,這樣把1個正方形當作底面、4個長方形分別當作4個側面,就能圍成一個容積最大的長方體鐵盒(無蓋),它的容積最大是:20×20×5=2000(立方厘米)。由此可見,對于動作思維占優勢的小學生來說,只有做過了,才會真正理解。因此,教師要善于用實踐、探索的眼光處理教材,力求把教學內容設計成物化活動,讓學生在探索中學習,只有這樣,才能促進學生能力的發展。
三、學會自我反思,促進學生智能發展
反思能使人看到自己的成績,找出自己的不足,明確今后努力的方向。引導學生對自己的學習方法、學習過程、學習結果進行自我反思,有利于學生養成在思中學、在學中思,有利于學生的思維發展,有利于發展學生的心智潛能,使學生不僅能學會,而且會學、善學,實現學法的升華。因此,在數學教學中,教師要聯系實際引導學生進行自我反思,隨時調控自己的學習行為,完善自己的認知建構,掌握科學的學習方法,不斷提高自我監控水平和自我反思能力。例如,一位教師在教學“稍復雜的求平均數應用題”時,出示這樣一道題:“一次數學考試,某班20位男生的平均分是90.5分,25位女生的平均分是86分。全班的平均分是多少?”教師針對一位學生列出的解答式:(90.5+86)÷2,引導全班學生進行反思:如果男、女生人數相等,這樣列式不僅正確,而且簡便;如果男、女生人數不相等,就應該先分別求出男、女生的總成績,然后用男、女生的總成績之和除以總人數,才能求得全班的平均分。因此,當學生在解決問題的過程中遇到障礙或出現差錯時,應盡量引導學生進行自我評價與反思,讓學生自己去發現、糾正錯誤,只有這樣,才能使每位學生體驗到成功的快樂,保持旺盛的學習熱情。
作者單位
福建省上杭縣教師進修學校
◇責任編輯:曹文◇