[摘要] 為了克服主觀賦權法在確定供應商評價指標權重時的主觀性,本文借助信息工程學中“熵”的概念,客觀地揭示出各評價指標的重要性,從而確定權重,然后用灰色關聯分析法對供應商進行排序選擇,并給出具體的計算方法和實例分析。
[關鍵詞] 熵權法 灰色關聯分析 供應商選擇
一、引言
供應鏈合作伙伴關系(Supply Chain Partnership,SCP)是供應商與制造商為實現某個特定目標,在一定時期內共享信息、共擔風險、共同獲利的協議關系,因此,合作伙伴的選擇是供應鏈合作關系的基礎。供應商的選擇過程是一個典型的多目標決策問題,在用灰色關聯進行分析的過程中,灰色關聯度的計算實際上是將各項指標等權劃分,這樣會因為沒有考慮到各指標重要性差異和允許指標屬性之間可以相互線性補償,且被補償的值不受任何限制而導致存在信息流失、誤差大等缺陷,而采用主觀賦權法又無法消除各因素權重的主觀性。借助信息工程學中“熵”的概念,在多方案評定中能夠對每個指標的重要程度尤其是對重要屬性指標都加以考慮和保證,客觀地揭示出各評價指標的重要性。因此,決策算法采用基于灰色關聯度的灰色綜合評價決策模型,運用信息熵來確定指標權重。
二、算法原理
灰色關聯分析的基本思路是根據各比較數列構成的曲線與參考數列構成的曲線的幾何相似程度來確定比較數列與參考數列之間的關聯度,幾何形狀越接近,則關聯度越大。
灰色關聯分析把各項指標等權劃分,無法給出各評價指標的重要性差異,而按照信息論觀點,各個指標在指標體系中的作用,與指標的變異度有關,指標的變異度越大,它所攜帶和傳遞的決策信息越多,對方案的比較作用也越大。信息量的大小可用熵值來測度,熵值的減少意味著信息量的增加。熵值法根據各指標的信息載量的大小來確定指標權重。熵值法的最大優點是其計算得到的權重完全是依據屬性矩陣所帶的信息,沒有任何主觀判斷,能夠得出較為客觀的綜合評價結果。
1.指標規范化處理
設原始指標屬性矩陣,則對效益型指標規范化處理,有:,;對成本型指標規范化處理,有。
2.各指標灰色關聯系數的計算
設表示各屬性值中的最優解,取組成的最優方案作為參考序列,以第i方案屬性值作為比較序列,則xo與xi在第j項指標下的關聯系數計算公式為:,式中,、分別為比較序列絕對差中的最小值和最大值,為比較序列的絕對差,為分辨系數,取值范圍為,通常取。
3.熵值法計算權重的步驟
(1)設原始指標屬性矩陣中為第i方案在第j指標下的指標屬性值,則第i個方案對第j個指標屬性的貢獻度為:。
(2)對于此貢獻度所包含的信息內容,可以用熵Ej來表示所有方案對第j個指標的貢獻總量,計算公式為:,,其中取,,。
(3)定義第j個指標下各方案貢獻度的差異系數,其計算公式為:,則當gi越大時,指標越重要。
(4)將其指標權重歸一化就得到各評價指標的權重,其計算公式為:。
4.計算綜合評價值
綜合評價值的計算公式為:值越大說明方案i與最優方案的接近程度越高,因此可根據Di值的大小對各方案進行優劣決策分析。
三、算例分析
影響供應商選擇的因素有很多,結合企業的實際,主要的評價指標有9個:產品合格率、產品價格、售后服務、地理位置、技術水平、供應能力、經濟效益、交貨情況、市場影響度。具體數據見表。
表 某企業選擇供應商的指標評價相關數據
其中產品質量、技術水平、供應能力、經濟效益、交貨情況,市場影響度指標屬于效益型指標;產品價格、售后服務、地理位置指標屬于成本型指標。根據灰色關聯系數的計算步驟對表1中數據進行規范化處理后得到的灰色關聯系數矩陣為:
由表中數據,根據熵值法計算權重的步驟得到各指標的權重為:wj=[0.0085,0.0090,0.2411,0.2744,0.2440,0.0496,0.0992,0.0084,0.0657]。
用計算綜合評價值公式計算得到各方案的綜合評價值為:Di=[0.4834,0.4965,0.5123,0.6661,0.6008,0.6628],得到最優方案為:D4>D6>D5>D3>D2>D1。
四、比較與結論
雖本文的計算結果與參考文獻[3]中的結果(D6>D4>D5>D1>D2>D3)不完全一致,但文獻[3]中采用的傳統TOPSIS法沒有考慮各評價指標權重的差異性,而本文采用的方法能夠克服在方案評定中由于忽視各指標重要性差異,僅以指標與正、負理想指標之間偏離程度作為方案的判斷依據而帶來的信息流失、誤差大等缺陷。參考文獻[4]中采用的案例與參考文獻[3]及本文中的案例一致,但對TOPSIS法進行了賦權改進,其計算結果與本文基本一致:最優供應商均為供應商4,次優供應商均為企業6,其余供應商優劣排序不同,其原因在于本文與參考文獻[4]采用的方法不同,體現出不同方法的適用性和差異性。但本文所采用的方法概念清晰,計算簡單方便,更適合于在具體實際工作中應用。
參考文獻:
[1]孫元欣:供應鏈管理原理[M].上海:上海財經大學出版社,2003
[2]鄧聚龍:灰理論基礎[M].華中科技大學出版社,2002
[3]白榮崔炳謀:TOPSIS在供應商選擇中的應用[J].鐵道運輸與經濟,2006, 28(9):58-61
[4]周文坤蔣文春:基于改進TOPSIS法的供應商選擇方法[J].運籌與管理,2005,14(6):39-44