摘要:生產(chǎn)調(diào)度問(wèn)題是動(dòng)態(tài)規(guī)劃理論常見(jiàn)的一種類型,但求解時(shí)更適合離散型變量的情況,本文針對(duì)連續(xù)型和變量取值較多的實(shí)例,并用EXCEL演示運(yùn)算,具有明顯的實(shí)際意義。
關(guān)鍵詞:動(dòng)態(tài)規(guī)劃;生產(chǎn)調(diào)度;連續(xù)型變量;EXCEL
中圖分類號(hào):F253.2 文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1005-6432(2008)36-0048-02
EXCEL Arithmetic about the Consecutive Variablein “the Problem of Production Scheduling”
Li Qi Chen Yuxin
(School of Economics Management, Liaoning Universityof Petroleum Chemical Technology)
Abstract: The problem of the production scheduling isa fundamental type in DP, but it more fits in the situation ofthe discrete variable. The paper gives an example about theconsecutive variable and much data, and demonstrates thearithmetic course in EXCEL, so it is very practical.
Key Words: dynamic programming (DP); productionscheduling; consecutive variable; EXCEL
一、引言
這里所說(shuō)的“生產(chǎn)調(diào)度問(wèn)題”是指:對(duì)某產(chǎn)品在一個(gè)總計(jì)劃期內(nèi)的某項(xiàng)既定總生產(chǎn)指標(biāo)(如總產(chǎn)量),應(yīng)怎樣分解到各個(gè)生產(chǎn)周期,才能既保證在總計(jì)劃期內(nèi)完成該項(xiàng)總生產(chǎn)指標(biāo),又能使總生產(chǎn)費(fèi)用最少。譬如,某廠已經(jīng)確定了某產(chǎn)品全年計(jì)劃總產(chǎn)量。已知該產(chǎn)品生產(chǎn)費(fèi)用包括產(chǎn)品成本和儲(chǔ)存費(fèi)用兩項(xiàng)。那么每個(gè)月各應(yīng)完成多少產(chǎn)品,才能在計(jì)劃期內(nèi)完成計(jì)劃總產(chǎn)量,且使計(jì)劃期內(nèi)總生產(chǎn)費(fèi)用最少?
通常這類問(wèn)題采用動(dòng)態(tài)規(guī)劃的方法解決,各種運(yùn)籌學(xué)書中均有舉例,另稱做“生產(chǎn)與存儲(chǔ)問(wèn)題”。在該種解法中,動(dòng)態(tài)規(guī)劃解法的缺陷在于:只能針對(duì)變量為離散型的,或者說(shuō)變量取值不能過(guò)多,這樣的情況在實(shí)際問(wèn)題中是非常局限的,本文則針對(duì)變量取連續(xù)型或取值過(guò)多而不適合采用動(dòng)態(tài)規(guī)劃求解的情況,將該問(wèn)題轉(zhuǎn)化為線性規(guī)劃問(wèn)題,尤其適合運(yùn)輸問(wèn)題,并將之用E XC E L求解出來(lái),使問(wèn)題更有實(shí)際應(yīng)用意義。
二、實(shí)例
某肉食品加工廠按合同要在今后兩個(gè)月內(nèi)為某肉蛋禽聯(lián)營(yíng)商店加工某種熟肉制品14500千克。其中第一個(gè)月需交貨8000千克,若未交夠,不足的部分可由第二個(gè)月補(bǔ)交,但補(bǔ)交的數(shù)量必須回扣給商店0.10元/千克。全部加工任務(wù)必須在第二個(gè)月末完成,否則將重金賠償商店損失。另若加工好的肉制品當(dāng)月不交貨,則每存儲(chǔ)一個(gè)月需花冷藏費(fèi)0.05元/千克。該廠的加工能力及加工費(fèi)如表1所示,試為該項(xiàng)合同擬訂一個(gè)總費(fèi)用最少的生產(chǎn)調(diào)度方案。

1.轉(zhuǎn)化為線性規(guī)劃問(wèn)題求解
該問(wèn)題中產(chǎn)量取值較大并且為連續(xù)型變量,使用動(dòng)態(tài)規(guī)劃求解不實(shí)際,而且演算起來(lái)工作量也較大,在這里省略求解過(guò)程而轉(zhuǎn)化為線性規(guī)劃問(wèn)題,步驟如下:
我們可以將各種生產(chǎn)方式看做是提供產(chǎn)量的“產(chǎn)地”,而將供貨時(shí)間1月、2月看做是接受產(chǎn)品的“銷地”,運(yùn)輸問(wèn)題涉及的“運(yùn)輸單價(jià)”在該問(wèn)題中則變?yōu)椤皢挝划a(chǎn)品生產(chǎn)費(fèi)用”,比如,1月加班生產(chǎn)的產(chǎn)品供應(yīng)到2月的單位生產(chǎn)費(fèi)用=0.75+0.05=0.8元/千克,其他略;整理的運(yùn)輸表如表2所示。
表中“正常1”表示1月份正常生產(chǎn)的供貨方式,其他類同,運(yùn)量單位是百千克;很顯然該問(wèn)題是運(yùn)輸不平衡問(wèn)題中產(chǎn)大于銷的情況。當(dāng)然該問(wèn)題可以用表上作業(yè)法做,但是隨著變量取值增多,手算的解法顯然不合適,現(xiàn)將EXCEL求解過(guò)程演示如下。
2.EXCEL求解演示
(1)輸入運(yùn)輸表

(2)規(guī)劃求解的各個(gè)參數(shù),如下圖

(3)該實(shí)例有另一個(gè)解,如表3

最優(yōu)解為:總費(fèi)用9150元
①1月正常生產(chǎn)5500千克、加班生產(chǎn)2000千克、欠500千克貨;2月正常生產(chǎn)6000千克,其中補(bǔ)上月欠500千克,加班生產(chǎn)1000千克。
②1月正常生產(chǎn)5500千克、加班生產(chǎn)2000千克、欠500千克貨;2月正常生產(chǎn)6000千克,加班生產(chǎn)1000千克,其中補(bǔ)上月欠500千克。
三、結(jié)論
(1)很顯然該種情況的“生產(chǎn)調(diào)度問(wèn)題”更適合用運(yùn)輸問(wèn)題求解,而且由于采用了EXCEL軟件,使整個(gè)問(wèn)題求解更加具有實(shí)際應(yīng)用能力。
(2)對(duì)于某些企業(yè)長(zhǎng)期的生產(chǎn)計(jì)劃有更大意義,并不會(huì)因?yàn)槟P椭心承┳兞恐档母淖兒蛿?shù)量的增多而重新計(jì)算,只需直接改變“規(guī)劃求解”的部分參數(shù),從而對(duì)生產(chǎn)周期的各個(gè)時(shí)期做相應(yīng)改變即可。
(3)當(dāng)遇到時(shí)間上不可逆的情況時(shí),比如該問(wèn)題中2月生產(chǎn)不能供貨給1月定額,“運(yùn)輸單價(jià)”在運(yùn)輸問(wèn)題上處理時(shí)應(yīng)改為M時(shí),這時(shí)只需要將相應(yīng)位置的單價(jià)在EXCEL表格中設(shè)定為某個(gè)相對(duì)其他運(yùn)價(jià)而言比較大的值即可,如該問(wèn)題的運(yùn)價(jià)基本不超過(guò)1元/千克,那么M可處理為500元/千克,讀者可自行實(shí)驗(yàn)一下。
(4)該例題也說(shuō)明在供給具有時(shí)間先后的“銷地”問(wèn)題,運(yùn)輸問(wèn)題同樣有效,這需要對(duì)模型稍加改動(dòng)就可以了。作者單位:遼寧石油化工大學(xué)經(jīng)濟(jì)管理學(xué)院
參考文獻(xiàn):
[1]郭耀煌,李軍.管理運(yùn)籌學(xué)[M].成都:西南交通大學(xué)出版社,2001:216-219.
[2]韓大衛(wèi).管理運(yùn)籌學(xué)[M].大連:大連理工大學(xué)出版社,1998:127.
[3]劉舒燕.運(yùn)籌學(xué)[M].北京:人民交通出版社,1999.