[摘要]為了加快新課程背景下的成績分析過程,全面提供數據結果,本文提出一種適合于教師個體進行化學教學質量評估的個人系統。首先,評價了傳統化學教師個人評估教學質量方法;然后,提出基于馬爾可夫鏈的化學教師個人教學質量評估模型和基于模糊數學的化學測試試卷內容效度模型,對化學教學效果進行有效評估;最后,將以上兩種模型應用于化學教師個人評估教學質量案例分析過程中,分析的結果對教師進一步調整教學計劃提供了理論依據。案例分析結果表明,該系統能夠快速的評估化學教師個人評估教學質量。
[關鍵詞]馬爾可夫鏈;模糊數學;教學質量評估;化學
[中圖分類號]G633.8[文獻標識碼]A[文章編號]1005-4634(2010)03-0082-04
0引言
2009年河北省正式實施新課程,在新課程背景下教師如何更好的實施化學教學,依賴于教師對自己教學質量的準確評估以及根據評估進行反饋調節[1]。傳統教學質量評估方法[2]一般是根據某一次化學考試的結果進行簡單的統計分析,只給出平均分、優秀率、及格率等指標,如表1所示。
由于傳統班級管理模式的影響,每個班在分班時學生成績分布具有很大差異,同時,化學試卷命題質量也影響著學生的成績,因此,傳統教學質量評估方法具有如下幾個方面缺陷。
首先,未分析化學試卷命題質量的統計指標,特別是缺少化學考試的內容效度;然后,未考慮到分班時所造成的每個班的原始情況,平均分高并不一定教學質量就高;其次,未分離出教師個人因素對學生成績造成的影響;最后,未描繪出學生成績分布的統計圖示,圖表的直觀性很差。
通過上述分析,完善傳統化學教學質量評估體系是新課程背景下亟待解決的問題,建立計算機評估系統是非常重要的,同時,良好的成績分析理論模型的建立也是計算機評估系統好壞的一個重要保證,因此,建立良好的成績分析理論模型是這項研究工作的重要組成部分。
1化學教師個人評估教學質量理論模型
在理論模型建立的過程中,既要考慮傳統的成績分析中所采用的指標,也要增加影響成績分析準確性的新的統計指標,例如,試卷的內容效度[3]就是必須有的非常重要的指標,在此基礎上如何把學生成績中與教師教學質量有關的影響因素提取出來,并且進一步量化就更為重要。因此,成績分析理論模型建立的重要工作主要表現在兩個方面。一方面,建立提取學生成績中與教師教學質量有關的部分進行量化的理論模型;另一方面,建立化學試卷的內容效度評估的理論模型。
1.1馬爾可夫鏈評價模型的構建
在一個隨機過程中,如果一種狀態轉移到另一種狀態的轉移幾率只與現在處于什么狀態有關,而與在這時刻以前所處的狀態完全無關,這種過程叫馬爾可夫過程[4],若一個馬爾可夫鏈,從時刻處于狀態,轉移到時刻處于狀態的轉移幾率與起始時間無關,則稱馬爾可夫鏈是齊次的[5],顯然,齊次的馬爾可夫鏈符合化學教學質量評估中對教師因素的研究,一般馬爾可夫鏈分析法把一個班中的學生化學成績分成優、良、中、及格、不及格等幾個等級,然后,把各種等級學生人數占總人數的比例作為狀態變量,。
如果在第二次考試中,原來名優等成績中有 名學生繼續保持優等,有名學生下降為良好,有名學生下降為中,有名學生下降為及格,有 名學生下降為不及格,則名優等成績的學生轉移的情況表示為。同理,其它等級良、中、及格、不及格作類似統計,最終,各個等級學生的轉移情況便構成了轉移矩陣,同時,第二次考試成績狀態向量與第一次考試成績狀態向量之間存在的關系表示為。這一關系可以寫成更為普遍的形式,進一步推得,對于齊次馬爾可夫鏈有:當時, 的極限是齊次馬爾可夫鏈在平穩狀態下的概率分布,即在宏觀上不在發生變化,則成立,其轉置矩陣為。
由本征方程標準式 ,求轉移矩陣的極限向量 ,即求矩陣在本征值的本征向量。
式中為單位向量,令。
這時方程化為求解即可,其中 。此過程已經編成計算機程序,輸入數據即可完成全部過程,即可獲得轉移矩陣的極限向量,狀態是齊次馬爾可夫鏈在穩定狀態向量下的概率分布,因此,該理論方法可以對化學教學效果進行有效評估。
1.2化學測試試卷內容效度模糊數學模型的構建
化學測試試卷內容效度模糊數學模型的構建主要包含確定評判的因素集、確定因素權數、確定評價等級、建立因素集的模糊矩陣、選擇評價模型、計算綜合評判值、合成試卷內容效度共七個部分。
評判的因素集可根據試卷質量指標體系的性質特征和需要來確定,例如“試卷難易題比例、試卷知識覆蓋程度、試卷長度、試卷題型分布、試卷卷面設計”等因素(隨機指定)就構成一個評判試卷質量的因素集。
確定因素集后,就要給每個因素分派一個權數。權數的分派法可采用經驗法、德爾菲法、討論法、運算法等,可將提到的試卷質量指標的權數分派為0.2,0.3,0.2,0.1,0.2。
試卷評價等級[6]的劃分應充分考慮指標的性質特點,如上面提到的試卷質量的評價等級的劃分,不宜過細,一般以四等或五等為適中,但在教育評價實踐中,筆者發現,若分為五等級,則容易出現選項集中到中間等的現象,因此,定四等級最為適宜。這四等級分別為很好、較好、一般、較差。
在模糊數學中,把矩陣的每一行叫做一個模糊子集,而每一行表示一個評價因素的每個等級的隸屬度[7]。將各個模糊子集組合起來,從而構成模糊矩陣。在評價中,有的現象的外延是模糊的、不清晰的,如“試卷難易題比例”就不是“非此即彼”的現象,而是一個模糊的概念。模糊的現象只能用不精確的方法來加以描述。隸屬度就是模糊數學中用來度量事物對集合的隸屬程度,它可以把模糊的教育現象數量化。
本文選擇模糊數學中的模型 作為評價模型[8],其中,“”為每一個指標的綜合評判值;“”為乘運算符號;“”為加運算符號;“”為有界和。
綜合評判值和合成試卷內容效度的計算在1.3節中以實例的方式給出計算方法。
1.3化學測試試卷內容效度模糊數學模型實例分 析
現以例題來說明綜合評判值的運算過程,10位化學教師對一份試卷質量綜合評分,假設因素集[試卷難易題比例、試卷知識覆蓋程度、試卷長度、試卷題型分布、試卷卷面設計],五個因素的權數分配為0.2, 0.3, 0.2, 0.1, 0.2。對每個因素的評價分為四個等級,構成,[很好、較好、一般、不好],據此編制出問卷表。
10位化學教師對一份試卷質量的“試卷難易題比例”這一因素的評價,選“很好”等級者有20人,占40%,選“較好”等級者有25人,占50%,選“一般”等級者有5人,占10%,沒有人選“不好”等級。于是,可得到一個數列0.4, 0.5, 0.1, 0。類似地,有如下假定成立。
對“試卷知識覆蓋程度”這個因素的評價,得到的數列是0.6, 0.3, 0.1, 0;對“試卷長度”因素的評價,得到的數列是0.1, 0.2, 0.6, 0.1;對“試卷題型分布”這個因素的評價,得到的數列是0.1, 0.2, 0.5, 0.2;對“試卷卷面設計”這個因素的評價,得到的數列是0.3, 0.3, 0.2, 0.2。最終,這5個數列構成一個矩陣。
在權集設計里,已經對上面五個因素分別賦予了權數,得到的權重向量表示如下。
使用本文選擇模糊數學中的模型計算化學課堂教學質量的綜合評判值,其中,,同理可得,,,故可表示為。
結果表明,50位評價者對試卷質量綜合評判為35%的評價者認為“很好”;31%的評價者認為“較好”;26%的評價者認為“一般”;8%的評價者認為“不好”。根據“最大隸屬原則”,10位評價者對試卷質量的評價的綜合評判結論為“很好”。
模糊數據轉換為普通數據的方法就是把模糊隸屬度轉化為分值。設“很好”是100分,“較好”是80分,“一般”是60分,“不好”是40分。因此,矩陣。
分值 0.35100 + 0.31€?0 + 0.26€?0 +
0.08€?0=43.95。
因此,試卷的效度=0.4395。
2化學教師個人評估教學質量案例分析
按照上面的分析,筆者建立了《新課程背景下化學教學質量評估教師計算機個人系統的研究》系統,依據該系統可全面的分析化學某次考試化學試卷的情況以及教師教學質量情況,分析結果對教師進一步調整教學提供了比較的理論依據,以下是秦皇島市第一中學某次月考化學成績分析的案例。圖1為上一次和這一次考試的成績正態曲線界面。
在圖1中,Y軸表示人數,X軸表示各個分數段,比較這一次和上一次考試人數分布曲線,不難看出,在60至70分段,上一次考試人數分布曲線(曲線1)達到最高點;在90分段左右,這一次考試人數分布曲線(曲線2)達到最高點,因此,學生成績的分數步幅度非常大,和同期學生成績比較基本持平。
通過試卷信息模塊地查閱可以獲得試卷指標中難度、區分度、效度、信度等信息,如圖2所示。
由圖2不難看出,測試考試的化學試卷的內容效度適中,難度以及區分度偏小,試卷的信度比較適中,成績分布的均分以及標準差比較適中,試卷整體基本符合化學月考這種階段性考試的特征。考試信息管理模塊中的馬爾可夫鏈分析可以預測考試結果,如圖3所示。
如圖3所示,教學效果各等級預測結果分別為0.958,0.030,0.010,0.001,0.001。因此,教學質量量化得分為88.90分,教師教學質量較高,教師的教學做法值得做進一步地分析和總結。
通過上面案例的分析發現,化學教學質量評估教師計算機個人系統給出的教學以及學生學習情況的信息是多方面的,具有如下特點:①教師教學質量馬爾可夫鏈分析可以在學生基礎不同的條件下,客觀分析教師真實教學質量;②由于測試試卷質量的高低影響學生學習成績以及教師教學成績的評估,本系統給出試卷質量指標;③本系統可進行橫向比較,使教師直觀分析比較該屆學生和上屆同期學生成績的異同;④給出化學試卷的內容效度分析,對考試內容的合理性和有效性進行了模糊評價;⑤成績分析過程快速、全面和深刻,分析結果以數據庫形式保存,便于形成系統地分析材料,對于教師分析教學活動以及學生學習情況提供了全面而可靠的數據結果。
3結束語
提出了一種新課程背景下化學教學質量評估教師計算機個人系統,引入馬爾可夫鏈和模糊數學思想,構建成績分析理論模型。化學教師個人評估教學質量案例分析結果表明,較傳統的化學教學質量評估體系更適合當前的課改形式,成績分析過程快速,全面,深刻,并且分析結果可以以數據庫形式保存,便于形成系統的分析材料,對于教師分析自己的教學活動以及學生的學習情況提供了較全面且可靠的數據結果。
參考文獻
[1]Wang Xuhui,Xu Jian.The model of teaching quality evaluation based on BP neural networks and its application[C].Proceedings of the 2009 first international workshop on education technology and computer science,Wuhan,China,2009:916-919.
[2]王慶東,侯海軍.基于區間數變權原理的教學質量評估模型[J].系統工程理論與實踐,2008,28(3):151-158.
[3]劉喜華,仲紅,沙新華.基于灰色統計模型的試題內容效度測量方法研究[J].數學的實踐與認識,2008,38(8):16-25.
[4]Campillo Fabien,Rakotozafy Rivo,Rossi Vivien.Parallel and interacting markov chain monte carlo algorithm[J].Mathematics and computers in simulation,2009,79(12):3424-3433.
[5]趙為華,束劍.矩陣秩在判定齊次馬爾可夫鏈遍歷性中的應用[J].南通大學學報:自然科學版,2009,8(1):80-82.
[6]萬玉成,嚴斌輝,王金德.基于屬性數學模型的試卷質量綜合評價方法[J].大學數學,2009,25(3):150-156.
[7]Yuan Shuai,Tong Weiming,Tong Chengde,etal.A novel method for power quality comprehensive evaluation based on ANN and subordinate degree[C].Proceedings of the 2008 fourth international conference on natural computation,Jinan,China,2008:62-65.
[8]Liu Fuming,Tang Rongmin,Song Yunfeng.Information fusion oriented fuzzy comprehensive evaluation model on enterprises' internal control environment[C].Proceedings of the 2009 Asia-pacific conference on information processing,Shenzhen,China, 2009:32-34.