杜玲玲
(杭州師范大學 數學系,浙江 杭州 310036)
譜估計理論中的一個基本問題是如何估計power spectrum.由于此問題在理論上的重要性和實際應用的廣泛性,其數值解法研究已成為計算數學和優化領域的熱點之一[1-4].原問題可以表述為一個無限維的優化問題,其求解是一個難題.進一步,求解帶上界約束的譜估計問題顯得更為困難.一類重要求解思想是通過對偶原理將其等價轉化為一個有限維問題,并進一步歸結為一個含有mid被積函數的非線性方程組問題[5].類似的積分函數也同樣出現在由半無限變分不等式轉化的、等價的方程形式中.本文針對文獻[5]中引進的一類積分函數,主要研究其半光滑(強半光滑)性,它們在算法收斂性分析中起關鍵作用.利用這些性質,可以建立關于求解原問題Newton型算法的超線性(二次)收斂性[6].
先介紹半光滑函數概念.




設G:Rn→Rm在Rn上Lipschitz連續,則易知G的Clarke意義下的廣義Jacobian ?G(x)均存在[7].


2)對任意h→0和Q∈?G(x+h),都有‖G(x+h)-G(x)-Qh‖=o(‖h‖).


‖H(x+h)-H(x)-Qh‖=O(‖h‖1+p),


考慮
F(λ)=(F1(λ),F2(λ),…,Fn(λ))T.
(1)
式(1)中,
其中:λ=(λ1,λ2,…,λn)T∈Rn;Φ(x)=(φ1(x),φ2(x),…,φn(x))T;mid函數定義為

記fix(λ)=Ψx(λ)φi(x),則
|fix(λ+h)-fix(λ)|= |Ψx(λ+h)-Ψx(λ)||φi(x)|≤
|(λ+h)TΦ(x)-λTΦ(x)||φi(x)|≤‖Φ(x)‖|φi(x)|‖h‖.

(2)
記:
Ω1(λ)={x∈Ω:λTΦ(x)<0
Ω2(λ)={x∈Ω:0
Ω3(λ)={x∈Ω:0<λTΦ(x)
Ω4(λ)={x∈Ω:λTΦ(x)=0};
Ω5(λ)={x∈Ω:λTΦ(x)=B(x)}.
不難知道,
(3)
所以,由式(2)和式(3)知
(4)
進一步,有如下結果:
定理1設{φ1(x),φ2(x),…,φn(x)}在Ω上線性無關,且λ∈Rn{0}滿足μ(Ω5(λ))=0,則F(5)在λ處可導,且

(5)
其中Ξ(x)=Φ(x)Φ(x)T.
證明 因為{φ1(x),φ2(x),…,φn(x)}線性無關且λ≠0,故μ(Ω4(λ))=0.進一步,由式(4)和條件μ(Ω5(λ))=0,得到Fi(5)在λ處可導,且

由此知F(5)在λ處可導且式(5)成立.定理1證畢.

定理2F(5)在λ∈Rn處半光滑.
證明 只需證明對?i∈{1,2,…,n},Fi(5)在λ處半光滑即可.易知,對?x∈Ω,fix(λ)=Ψx(λ)φi(x)關于λ為半光滑的.進一步,對?x∈Ω和λ∈Rn,
由此易知?fix(λ)關于(x,λ)為上半連續的.進一步,從
|fix(λ+h)-fix(λ)|≤‖Φ(x)‖|φi(x)|‖h‖
和‖Φ(x)‖|φi(x)|在緊集Ω上的有界性,知fix(5)在λ處(關于x∈Ω一致地)Lipschitz連續.由文獻[11]中命題 2.1知,F(λ)在λ處半光滑.定理2證畢.


另一方面,由
和

知


定理4設Φ(x)=(φ1(x),φ2(x),…,φn(x))T是一基向量,且φi(x)(i=1,2,…,n)在Ω上至少n-1-階連續可導.設φ1(x)≡1,B(x)≡B. 如果對?x∈Ω4(λ)∪Ω5(λ),
det(Φ(x),Φ(1)(x),Φ(2)(x),…,Φ(n-1)(x))≠0,
(6)



由此

(7)

(8)

(9)
所以,由式(7),式(8)和式(9)有

(10)
另一方面, 對?x∈Ω4(λ)∪Ω5(λ),有det(Φ(x),Φ(1)(x),Φ(2)(x),…,Φ(n-1)(x))≠0.顯然,對?x∈Ω4(λ),存在kx≤n-1,使得
(11)
對?x∈Ω5(λ),存在kx≤n-1,使得
(12)





(13)


參考文獻:
[1]Ben-Tal A,Borwein J M,Teboulle M.Spectral estimation via convex programming[M]//Phillips F Y,Rousseau J J.Systems and Management Science by Extremal Methods:Research Honoring Abraham Charnes at Age 70.London:Kluwer Academic Publishers,1992:275-389.
[2]Byrnes C I,Georgiou T T,Lindquist A.A new approach to spectral estimation:A tunable high-resolution spectral estimator[J].IEEE Trans Signal Process,2000,48(11):3189-3205.
[3]Georgiou T T.Spectral estimation via selective Harmonic amplification[J].IEEE Trans Automat Control,2001,46(1):29-42.
[4]Yin Hongxia,Ling Chen,Qi Liqun.Convergence rate of Newton′s method forL2spectral estimation[J].Mathematical Programming,2006,107(3):539-546.
[5]Cole R E,Goodrich R K.Lp-spectral estimation with anL∞-upper bound[J].J Optim Theory Appl,1993,76(2):321-355.
[6]Qi Liqun,Sun Jie.A nonsmooth version of Newton′s method[J].Mathematical Programming,1993,58(1/2/3):353-367.
[7]Clarke F H.Optimization and Nonsmooth Analysis[M].New York:John Wiley and Sons,1983.
[8]Meng Fanwen,Sun Defeng,Zhao Gongyun.Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization[J].Mathematical Programming,2005,104(2/3):561-581.
[9]Qi Liqun,Jiang Houyuan.Semismooth version Karush-Kuhn-Tucker equations and convergence analysis of Newton and quasi-Newton methods for solving these equations[J].Mathematicas of Operations Research,1997,22(2):301-325.
[10]Qi Liqun,Shapiro A,Ling Chen.Differentiability and semismoothness properties of integral functions and their applications[J].Mathematical Programming,2005,102(2):223-248.
[11]Qi Liqun,Ling Chen,Tong Xiaojiao,et al.A smoothing projected Newton-type algorithm for semi-infinite programming[J].Computational Optimization and Applications,2009,42(1):1-30.