999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

L2(q)的一個物征性質

2010-06-29 06:14:30趙俊英韓章家
成都信息工程大學學報 2010年1期
關鍵詞:數學

趙俊英, 韓章家

(1.天津商業大學理學院,天津300134;2.成都信息工程學院數學學院,四川成都610225)

1 Introduction

All groups considered in this paper are finite groups.The reader may refer to[1]for the notations of simple groups.

In group theory it is an usual way to get the information on the structure of a group G by studying it's subgroups.It was proved in[2]that if G is one of PSL(2,2n),Sz(22m+1),An(n≤10),K3-groups,Mathieu groups and Janko groups,then G is uniquely determined by the set of orders of it's maximal abelian subgroups.In[3],it is proved that alternative groups whose prime graph has three connected components can be uniquely determined by the set of orders of its maximal abelian subgroups.In this paper we will show that the group L2(q),q≡3,5(mod 8)can be determined up to isomorphism by the set of orders of it's maximal abelian subgroups.

Notations:If G is a finite group then Γ(G)denotes the prime graph of G;t(Γ(G))denotes the number of prime graph components of G;πi(1≤i≤t(Γ(G)))denote the set of vertices of prime graph components of G.If G isof even order,then π1always denotes the even prime graph component of G.M(G)denotes the set of ordersof maximal abelian subgroups of G.

Assume that π1,π2,…,πtare all prime graph components of G.Then|G|=m1m2…mt,where π(mi)=πi,i=1,2,…,t.Positive numbers m1,m2,…,mtare called the order components of G[4].The order components of finite simple groups with non-connected prime graphs are listed in Tables 1-4 given by Chen[5].

The following lemma follows from the definition of order component,Theorem A and Lemma 3 in[6].

Lemma1 Let G be a finite group with disconnected prime graph.Then one of the following statements holds:

(i)G is a Frobenius group or a 2-Frobenius group;

Lemma2 Let G be a Frobenius or a 2-Frobenius group,then t(Γ(G))=2[7].

The following result is important for the proof in our theorem.

Lemma3 Let M(G)=M(L2(q))and q≡3,5(mod 8),where q=tm,then

(i)G has a maximal abelian subgroup of order tmand the order of any maximal abelian 2-subgroup is four;

(ii)If 2? q-1,then G has no abelian subgroup of order q-1,and G has no abelian subgroup of order tr,where(t,r)=1.

Proof.The lemma follows from Theorem 3.6.25 in[8]and Lemma 2.

Lemma4 Let t(Γ(G))≥2 andIf N is a π1-group and a1,a2,…,arare order components of G,then every a1,a2,…,aris a divisor of|H|-1[5].

2 Main result

Now we can show that the group L2(q),q≡3,5(mod 8)is characterized by it's sets of orders of maximal abelian subgroups.

Theorem1 Let G be a finite group.If M(G)=M(M),where M=L2(q),q≡3,5(mod 8),then G?M.

Proof.Since t(Γ(M))=3,it follows by Lemma 1 and Lemma 2 that G has a normal seriessatisfying t(Γ(K/H))≥3 and some odd order components of K/H are equal to the odd order components of G.

If t(Γ(K/H))=6,then K/H ?J4by[6]andis equal to one of 23,29,31,37 or 43.It is impossible.

If t(Γ(K/H))=6,then K/H ?E8(q′)by[6],where q′≡0,1,4(mod 5).

We get a system of equations:

It can be easily shown that this system of equations has no solution,so K/H ?E8(q′).where q′0,1,4(mod 5).By the same way we can easily have that K/H ?E8(q′),q≡2,3(mod 5).Hence,if t(Γ(K/H))=4,then K/H is isomorphic to one of the following groups:2B2(22m+1),A2(4),2E6(2),M22,J1,ON,Ly,F′24and M.

If K/H ?2B2(22m+1),then We get a system of equations:

It iseasy to check that there are no solutions for all above equations.Hence,K/H?2B2(22m+1).Similarly,we have that K/H?A2(4),and2E6(2).If K/H is isomorphic to any sporadic simple group,then by way of calculating we have that the only possibility is K/H?M22.In this case,q=11 and Lemma 3 implies that the order of any Sylow 2-subgroup is 8 at most,which is a contradiction.Thisproves that t(Γ(K/H))≠4.If t(Γ(K/H))=3,then by[6],K/H is isomorphic to one of the following groups:

Ap(p and p-2 prime),A1(q′),G2(q′)(3|q′),2G2(32m+1),2Dp(3)(p=2n+1,n ≥2),2Dp+1(2)(p=2n-1,n ≥2),F4(q′)(2|q′),E7(2),E7(3),A2(2),2A5(2),2F4(22m+1)(m ≥1),M11,M23,M24,J3,HS,Suz,Co2,F23,B and Th.

Obviously,K/H can not isomorphic to of the groups E7(2),E7(3),A2(2),2A5(2),J3,HS,Suz,F23,B,Th,M23and M24.If K/H ?G2(q′)(3|q′),then,we have:

Thus q′=3,q=13.In this case,the orders of some maximal 2-subgroups are greater than 4,which contradicts Lemma 3.By the same reason we have K/H ?2G2(q′).

If K/H ?2Dp(3)(p=2n+1,n≥2),then the following equations hold:

It iseasy to check that all these equationshave no solutions,hence K/H?2Dp(3)(p=2n+1,n≥2).By using the same argument,we know that K/H can not be isomorphic to F4(q′)(2|q′),2F4(q′)(q′=22m+1,m ≥1)and2Dp+1(2),p=2n-1,n≥2.If K/H?Ap,then we can get p=q=5.The theorem follows by[11].Hence the only possibility is K/H=A1(q′),which forces that q=q′and then K/H=A1(q).We now claim that H=1.Otherwise the center Z(T)of a Sylow t-subgroup T of H is normal in G.Consequently,if 4|(q+1),we haveby Lemma 4,this implies that G has an abelian subgroup of order greater than q,which contradicts Lemma 3.This proves our claim,hence K?L2(q).Since CG(K)=1,we have(q)).Note that the outer automorphisms of L2(q)are field automorphisms or diagonal automorphisms of order two and every field automorphism ? centralizes the prime field,so the order of ? is a power of two.If G ≠L2(q),then G has a cyclic subgroup of order 2kt(k≠0),which contradicts Lemma 3.IfG has nontrivial diagonal automorphisms,then there is an element of order q-1 in G,which contradicts Lemma 3 too.Hence we obtain that G?L2(q).The proof is complete.

[1]D Gorenstein.Finite Groups[M].New York:Harper-Row,1968.

[2]Wang Linhong.A characterization of some classes of finite simple groups[D].Chongqi:Southwest China Normal University,2005.

[3]G Y Chen.Characterization of Alternating Groups by the Set of Orders of Maximal Subgroups[J].Siberian Mathematical Journal,2006,47(3).

[4]G Y Chen.On Thompson's Conjecture[J].J.Algebra,1996,185:184-193.

[5]G Y Chen.A new characterization of spordic simple groups[J].Algebra Colloq,1996,3(1):49-58.

[6]J S Williams.Prime Graph Components of Finite Groups[J].J.Algebra,1981,69:487-513.

[7]G Y Chen.On Frobenius and 2-Frobenuis group[J].J.Southwest China Normal Univ,1995,20(5):485-487.

[8]M Suzuki.Group Theory[M].Berlin:Springer-Verlag,1980.

[9]G Y Chen,S H Guo.2Dn(3)(9≤2m+1 not a prime)can be characterized by itsorder component[J].J.Appl.Math.Comput,2005,19(1-2):353-362.

[10]A S Kondratév.Prime graph componentsof finite simple groups[J].Math.USSRSbornik,1990,67(1):235-247.

[11]Li xianhua,Bi Jianxing.On the finite group with the same or-ders of solvable subgroups as the simple group Ln(q)[J].Comm.Algeba,2005,33(5):1337-1343.

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 国产欧美日韩综合在线第一| 欧美日在线观看| 亚洲91精品视频| 国产精品福利社| 香蕉久久国产精品免| 日韩欧美高清视频| 国内视频精品| 在线播放91| 亚洲天堂777| 一级香蕉人体视频| 亚洲一本大道在线| h视频在线播放| 久久情精品国产品免费| 中文字幕在线看| 欧美性色综合网| 国产真实乱了在线播放| 女人爽到高潮免费视频大全| 色久综合在线| 亚洲精品日产AⅤ| 精品久久久久成人码免费动漫| 爽爽影院十八禁在线观看| 天天操精品| 国产精品尤物铁牛tv| 日韩欧美中文字幕在线韩免费| 一级黄色网站在线免费看| 国产玖玖视频| 四虎国产永久在线观看| 2020亚洲精品无码| 免费看久久精品99| 激情无码字幕综合| 毛片最新网址| 少妇精品久久久一区二区三区| 91麻豆精品视频| 国产呦精品一区二区三区网站| 国产美女久久久久不卡| 亚洲AV成人一区国产精品| 亚洲天堂成人在线观看| 色综合天天视频在线观看| 99r在线精品视频在线播放| 国产资源免费观看| 国产成人AV综合久久| 国产高清国内精品福利| 亚洲婷婷在线视频| 毛片大全免费观看| 欧洲一区二区三区无码| 91久久精品日日躁夜夜躁欧美| 毛片一级在线| 自拍中文字幕| 91精品国产91久无码网站| 老汉色老汉首页a亚洲| 欧美国产精品不卡在线观看| 国国产a国产片免费麻豆| 久久这里只有精品2| 91视频免费观看网站| 99re视频在线| 国产白浆视频| 免费看一级毛片波多结衣| 欧美一区国产| 青青草国产一区二区三区| 久久频这里精品99香蕉久网址| 老司国产精品视频| 日韩av手机在线| 国产丝袜无码一区二区视频| 久久香蕉欧美精品| 91丨九色丨首页在线播放| 成人福利免费在线观看| 欧美精品亚洲日韩a| 国产激情影院| 欧美yw精品日本国产精品| 91午夜福利在线观看| 久久毛片免费基地| 国产理论最新国产精品视频| 欧美福利在线播放| 一级毛片在线免费视频| 日韩AV无码免费一二三区| 国产老女人精品免费视频| 综合色在线| 国内熟女少妇一线天| 手机精品视频在线观看免费| 操美女免费网站| 国产在线无码一区二区三区| 在线五月婷婷|