當前的小學數學課堂中,大部分教師能夠在新授部分采用“動手實踐、自主探索、合作交流”的教學方式,但在練習活動中還普遍保留著“單一、被動、機械”的教學方式。學生在這種被動的教學方式下往往會喪失學習的興趣,致使學習效率低下。對此,筆者結合自己的教學實踐,談一談在小學數學第一學段練習活動中如何優化學生學習方式。
一、變“一問一答”為“動手操作”,激活思維
“打乒乓球”式的對話,即教師問,學生答;學生問,學生答。在實踐中,我們經常看到:一堂課看似熱熱鬧鬧,對話開展得很順利,但常常是無疑而問,如圍繞“是不是”“對不對”而展開的問答。這樣的問答,對學生心智成長并無多大益處。
國標本蘇教版小學數學三年級(上冊)“24時記時法”課后有這樣一道題:
紅領巾廣播站節目預報:
上午7時30分 學校新氣象
中午12時 兒童歌曲欣賞
下午1時 健康教育
下午4時 科學家的故事
問:你能用24時記時法來播報節目嗎?
由于前面已經介紹了“二十四時記時法”和“普通記時法”之間的轉換方法,這題再讓學生進行“二十四時記時法”和“普通記時法”之間的單向轉換,對學生缺乏挑戰性,容易引發思維疲勞,并且一問一答式的交流局限了學生的參與面。所以我大膽嘗試,把時刻改成兩種記時法并存,并把題中的幾個整點時刻改成非整點時刻,最后把五個時刻及節目做成五張紙條打亂后放在信封中,發給每位學生。練習時,我讓大家倒出這些節目條,根據時間的先后順序給這些節目排排隊。
由于問題中呈現的方式不是單一記時法,學生一時無法排出五個不同時刻的先后順序,只得另尋解決的方法。于是有的學生想到把“二十四時記時法”轉換成“普通記時法”,然后排序;有學生想到把“普通記時法”轉換成“二十四時記時法”,然后排序。更有學生在比較完兩種方法后總結出:由于“二十四時記時法”書寫起來比較簡便,比較起來也比較方便,所以我們通常看到的節目表都是用“二十四時記時法”來記時的。學生在動手操作的過程中真正做到了手腦并用,人人都有所思、有所得。
二、變“線性學習”為“非線性互動”,人人發展
線性學習方式是指學生按照教師設計的流程,按部就班地進行學習。非線性學習方式是指學生可以根據自己的學習能力和水平,自主選擇學習程序。
如國標本蘇教版三年級下冊《認識分數》課后有這樣一道習題:
一堆小棒有12根,分別拿出這堆小棒的1/2和1/3,你還能拿出這堆小棒的幾分之一?
這一內容安排在三年級下冊,是學生在小學階段第二次接觸分數,從一個物體的幾分之一到一個整體的幾分之一,是認識分數的一次發展。對于有些學生來說,通過新授部分的學習已經深刻理解一個整體的幾分之一,并能憑借自己的知識經驗算出12根的和分別是多少根。而有些學生還得借助于動手操作小棒,才能完成這一思考過程。根據學生的實際情況,我們設計了非線性的學習方式:如果你能直接想出,可以先填空再用小棒驗證你的思考;如果你不能直接想出,可以借助小棒邊擺邊填;如果你還有困難,可以和同桌合作,也可以求助老師。
這種以上教學法給了學生充分的自主權,學生完全是學習的主人,可以根據自己的情況靈活地選擇適合自己的學習方式,可以先操作再填空,也可以先思考再操作,當然這里的兩種操作所起的作用是不同的。前者面的操作是思維的拐杖,幫助學習進行思考,而后面的操作則是思維的驗證。在非線性的學習方式下,每個學生都能學有所獲。
三、變“單槍匹馬”為“小組合作”,分享智慧
為了改變學生被動接受的學習方式,培養學生的創新與自我實踐能力,在平時的練習中,可根據教材教學內容以及課堂教學實際的需要,讓學生以小組合作或同桌合作的方式來完成教學任務。學生在合作過程中從同伴身上獲取了知識,培養了合作精神,共同體驗了成功的樂趣。
例如國標本蘇教版三年級上冊《認識長方形和正方形》教材第59、60頁的練習,教學時我們把課本習題進行優化組合,設計了兩個版塊的練習:
(1)小小創造師(四人合作):①運用學具盆里的工具,創造出自己喜歡的長方形或正方形。②展示學生的作品。
(2)小小魔術師(同桌合作):①把一張長方形紙變出一個最大的正方形。②用16個小正方形拼出不同的長方形。
第一個板塊“小小創造師”把“想想做做”第1題“在釘子板上圍一個長方形和一個正方形”、第2題“用兩副同樣的三角尺,分別拼成一個長方形和一個正方形”、第7題“在方格紙上畫一個長方形和一個正方形”融合在一個板塊中。給學習小組提供充足的工具,讓學生自由選擇,合理分工,比一比哪一個小組做得又快又多。這樣不僅可以達到原本習題練習的目的,還極大地調動了學生的學習熱情。第二個板塊則把“想想做做”第3題和第4題加以組合,讓學生同桌合作,在爭當魔術師的活動中體會長方形和正方形的區別和聯系。
四、變“淺嘗即止”為“深入探究”,體驗過程
數學課程標準十分重視學生參與知識形成和發展過程,強調要讓學生在經歷的過程中體驗和感悟數學,建構屬于自己的認知結構。練習部分亦是如此。
國標本蘇教版三年級下冊《認識除法》練習一第4題:
800÷2÷2 900÷3÷3 600÷3÷2
800÷4 90÷09 600÷6
在執教這道題時,我是這樣組織學生學習的:
師:觀察這些算式,在做之前你能發現什么?
生:每組算式的被除數相等。
生:我還發現上面算式中的兩個除數相乘的積就是下面的除數。
師:關于它們的商,你有什么猜想?
生:我猜想它們的商相等。
師:是不是這樣,我們口算來驗證。(學生口算驗證。)
師:還能舉出這樣的例子嗎?
生:800÷2÷4=800÷8;400÷2÷2=400÷4;1200÷3÷4=1200÷12
一道簡單練習題的講解,在老師的合理引導下,就變簡單的告知為自主探索的過程。
當然,每種練習活動中的學習方式并不是單一的,而是多種學習方式的融合。這就要求我們教師在讀懂、讀通教材的基礎上,根據學生實際,優化組合適宜的學習方式,引導學生真正采用最優的學習方式高效地練習。