摘 要:通過引入參數函數H(t,s)及h(t,s),利用積分平均技巧,積分變換和廣義Riccati變換給出了一類二階微分方程的振動準則。
關鍵詞:振動性;微分方程;廣義Riccati變換
中圖分類號:O1758文獻標識碼:A
[WT]文章編號:1672-1098(2011)02-0061-05
收稿日期:2011-03-15
基金項目:安徽理工大學青年教師科學研究基金資助項目(2010)
作者簡介:唐楠(1981-),女,河北邢臺人,助教,碩士,主要從事微分方程定性與穩定性理論的教學和研究工作。
[JZ(〗[WT3BZ]Oscillation Criteria of A Class of Second Order Differential Equation
TANG Nan
(School of Mathematics, Anhui University of Science and Technology, Huainan Anhui 232001, China)
Abstract:By introducing H(t,s),h(t,s),using the iterated integral transformations and generalized Riccati transformation, some oscillation criteria of a class ofsecond order differential equation were given.
Key words:oscillation; differential equation; generalized Riccati transformation.
近年來,微分方程解的振動性問題引起了廣泛關注。文獻[1-4]分別討論了二階非線性方程解的振動性問題。目前二階半線性微分方程已有較多研究成果[5-8],但對于具有特殊形式的二階半線性微分方程的結果并不多見。
考慮二階微分方程
引理1 如果A,B是非負數,那么Aλ+(λ-1)Bλ-λABλ-1≥0,λ>1,
等號成立當且僅當A=B[9]。
通過引入參數函數H(t,s)及h(t,s),下面給出式(1)的解振動的充分條件。
定理1 令D={(t,s)|t≥s≥t0},D0={(t, s)|t>s≥t0}; 若ddtg(t, a)存在, 并且存在函數H(t,s)∈C(D,R),h(t,s)∈C(D0,R+),滿足以下條件
H(t,t)=0,t≥t0;H(t,s)s≤0;H(t,s)>0,(t,s)∈D0(2)
h(t,s)=-H(t,s)s,(t,s)∈D0(3)
參考文獻:
[1] YU Y H, FU X L.Oscillation of second order nonlinear neutral equation with continuous distributed deviating argument[J].Rad Mat, 1991, 7: 167-176.
[2] WANG P G, LI X W. Further results on oscillation of a class of second-order neutral equations[J].Comp Appl Math, 2003, 157: 407-418.
[3] WANG P G, YU Y H.Oscillation of second order neutral equations with deviating arguments[J].Math J Toyama Univ, 1998, 21: 55-66.
[4] WANG P G, M WU.Oscillation of certain second order nonlinear damped difference equations with damping with continuous variable[J].Appl Math Lett, 2007, 20(6): 637-644.
[5] HSU H B, YEH C C.Oscillation theorems for second order half-linear differential equations[J].Appl Math Lett, 1996, 9: 71-77.
[6] LI H J,YEH C C.Oscillations of half-linear second order differential equations[J].Hiroshima Math J,1995,25:585-594.
[7] MANOJLOVI\'{C}.Oscillation Criteria for Second-Order Half-Linear Differential Equations[J].Math Comput Model, 1999, 30: 109-119.
[8] YANG X J. Oscillation Results for Second-Order Half-LinearDifferential Equations[J].Math Comput Model, 2002, 36: 503-507.
[9] WANG Q R.Oscillation and asymptotics for second-order half-lineardifferential equations[J]. Appl Math Comp, 2001, 122: 253-266.
(責任編輯:何學華)