摘 要:設是一個整函數,f為解析函數,由誘導的疊加算子S定義為S(f)=(f)。對算子S的有界性進行了研究,給出了疊加算子S將QK空間映入Bloch空間或者將Bloch空間映入QK空間的一個充分必要條件。
關鍵詞:Bloch空間;QK空間;疊加算子
中圖分類號:O174文獻標識碼:A
[WT]文章編號:1672-1098(2011)02-0038-03
收稿日期:2011-01-10
作者簡介:周繼振(1976-),男,安徽肥西人,講師,在讀博士,主要從事函數空間和算子理論的研究。
[WT3BZ]Superposition Operators betweenQKand Bloch Space
ZHOU Ji-zhen
(School of Sciences, Anhui University of Science and Technology, Huainan Anhui 232001, China)
Abstract:Letbe an entire function. A superposition operatorSinduced by, defined by S(f)=(f). The author study the boundedness of superposition operator in the paper. A sufficient and necessary condition is given for the superposition operator between QKand the Bloch space.
Key words:Bloch space;QKspaces; superposition operator
根據文獻[5]209的引理2, 可構造出一個具有如下性質的域Ω:
1) Ω是單連通的;
2) Ω保存著無限折線L=∪∞n=1[wn-1,wn],其中[wn-1,wn]表示連接wn-1和wn的線段;
3) 若f是一個將D變換到Ω的Riemann映射,則f∈B;
4) 對于任意一個L上的點w,其到Ω邊界的距離dist(w,Ω)=δ。
假設f是一個將D變換到Ω的Riemann映射且滿足f(0)=0。 因為f是B空間里的一個單葉函數, 運用文獻[
注釋若K滿足條件式(3), 則QK是B的真子集,見文獻[1]1 238的定理23。
參考文獻:
[1] ESSEN M, WULAN H. On analytic and meromorphic functions and spaces of QKtype[J].Illinois J. Math., 2002, 46:1 233-1 258.
[2] ESSEN M, WULAN H, XIAO J. Several function-theoretic characterizations of Mobius invariant QKspaces[J]. J. Funct. Anal., 2006, 230: 78-115.
[3] XIAO J. Geometric Qpfunctions[M]. Basel-Boston-Berlin, Birkhauser Verlag, 2006:25.
[4] XIAO J. Holomorphic QClasses[M].Berlin, Springer LNM, 2001.
[5] ALVAREZ V, MARQUEZ M, VUKOTIC D. Superposition operation between the Bloch space and Bergman space[J]. Ark. Mat. 2004, 42:205-216.
[6] CAMERA G, GIMENEZ J. The nonliner superoposition operators acting on Bergman space[J].Compos. Math., 1994, 93:23-35.
[7] XIONG C. Superposition operators between Qp and Bloch-type spaces[J]. Complex. Var, 2005, 50: 935-938.
[8] XU W. Superposition operators on Bloch-type space[J]. Comput. Methods Funct. Theory,2007,7:501-507.
[9] GIRLA D, MARQUEZ M.Superposition operators between Qpspaces and Hardy sapces[J]. J. Math. Anal. Appl, 2010, 364:463-472.
[10] WULAN H. Criteria for an analytic function to belong to the QKspaces[J].Acta.Math.Sci.,2009,29:33-44.
[11] POMMERENKE CH. Boundary behaviour of conformal maps[M].Grundlehren Math. Wiss, 299, Berlin, Spring-verlag, 1992:17.
[12] LOU Z.Composition operators on Bloch type spaces[J].Analysis,2003,23:81-95.
(責任編輯:何學華)