999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

秩1修正矩陣特征值問題的推廣及其應用

2011-01-02 01:17:02呂海玲明清河
棗莊學院學報 2011年5期
關鍵詞:基金

呂海玲,明清河

(1.棗莊學院 信息科學與工程學院,山東 棗莊 277160;2.棗莊學院 數學與統計學院,山東 棗莊 277160)

1 Introduction

In this paper we prove a spectral perturbation theorem for an extension eigenvalues of rank- one update matrix of special structure,which shows how to modify r eigenvalues of a matrix of order n,(r≤n),ia a rank-k updated matrix,without changing any of the n-rremaining eigenvalues.This theorem plays a relevan t role in the study of the nonnegative inverse eigenvalue problem(NIEP).The main idea behind our proof is from the simple relation between the determinants of a matrix and this result,using a well known determinant identity.Furthermore,we extent this theorem to the block eigenvalues problem.By using this extension,we give a Application on eigenvalues problem of matrix perturbation of special structure.

Because we apply a classic determinant equality to our spectral analysis,we are able to find explicit expression of the characteristic polynomial of the rank-r update matrix.All eigenvalues of the matrix are immediately available.

Lemma1 If A is an invertible n×n matrix,and u and v are two n-dimensional column vectors,then

Proof.We may assume A=I,the n × n identity matrix,since then(1)follows from

in the general case.In this special case,the result comes from the equality

so(2)becomes

Remark1 If A is an invertible n×n matrix,B is a n×r matrix,C is a r×n matrix,then

In the next section we present the main result.

2 Main result

Let A be an n×n matrix.The eigenvalues of A are all the complex zeros of the characteristic polynomial pA(λ)=det(λI- A)of A.Letσ(A)= {λ1,λ2,…,λn}be the set of the eigenvalues of A,counting algebraic multiplicity,that is spectrum of A.

Theorem 1[1]Let u and v are two n - dimensional column vectors such that u is an eigenvector of A associated with eigenvalue λ1. Then,the eigenvalues of A + uvTare {λ1+vTu,λ2,…,λn},counting algebraic multiplicity.

The following result is an extension of the theorem 1.This extension shows how to change r eigenvalues λ1,λ2,…,λr,r≤ n,of a matrix A of order n,via a rank - k updated matrix,without changing any of the n - rremaining eigenvaluesλr+1,λr+2,…,λn.

繼上海之后,云南第二個獲得設立人民幣國際投貸基金的試點資格,人民幣國際投貸基金落戶云南,且啟動了首單人民幣國際投貸基金海外投資項目,為推動人民幣“走出去”探索了新路徑,為企業“走出去”搭建了新平臺。

Theorem 2 Let A be an n × n matrix with eigenvalues λ1,λ2,…,λn.Let X =[x1x2…xr]be such that rank(X)=r and AX=Xdiag [λ1,λ2,…,λr],r≤n.Let C be a r × n matrix.Then the matrix A+XC has eigenvalues γ1,γ2,…,γr,λr+1,λr+2,…,λn.where γ1,γ2,…,γrare eigenvalues of the matrix K+CX with K=diag [λ1,λ2,…,λr].

Proof Letλ ? σ(A)be any complex number.Then,by applying remark 1 to the equality

W e have

The condition AX=Xdiag [λ1,λ2,…,λr]implies that

so(7)becomes

Since the above equality is true for allλ ? σ(A),the theorem is p roved.

Remark2.2 Since A and AThave the same eigenvalues counting algebraic multiplicity,the conclusion of Theorem 2.1 also holds for A+XC,where X= [x1x2… xr]be such that rank(X)=r and AX=Xdiag [λ1,λ2,…,λr].

Furthermore,we extent this theorem to the block eigenvalues problem

Definition 1[4].A matrix X of order n is a block eigenvalue of a matrix A of order mn,if there exists a block vector V of full rank,such that AV=VX,X is a block eigenvector of A.

The matrix A is partitioned into m ×m blocks of order n,and the block vector V.

Definition 2[4].A set of block eigenvalues of a block matrix is a complete set if the set of all the eigenvalues of these block eigenvalues is the set of the matrix.

Let us suppose now that we have computed mn scalar eigenvalues of a partitioned matrix A.We can construct a complete set of block eigenvalues by taking m matrix of order n in Jordan form where the diagonal elements are those scalar eigenvalues.Furthermore,if the scalar eigenvalues of A are distinct,these m matrix are diagonal matrix as is shown in the following construction:

where theλi,i=1,…,mn,are the eigenvaluesof A.The proof that the matrix Xj,j=1,…,m,are a complete set of block eigenvalues of A is in[1,p.74].

Theorem 2.If the scalar eigenvalues of A are distinct,let V and C be the block vectors such that V is a block eigenvector of A associated with block eigenvalues X1,Then,the eigenvalues of A + VCTare μ1,…,μn,λn+1,…,λ2n,…λ(m-1)n+1,…,λmnwhere μ1,…,μnare eigenvalues of the matrix K+CTV with K=diag[λ1,…,λn].Proof.The same to theorem 1.

3 Application of the theorem

A direct consequence of Theorem 2.1 is the following.

One Application of the result is given to illustrate the eigenvalues problem with the perturbation matrix.

Proposition 3.1Let A,B,C,D ∈ Cn×n,D=A+B,where B is the perturbation of A.If B=XC,where X= [x1,x2,…,xn],xiis an eigenvector of A dissociate with eigenvalue xi,i=1,2,…,n.So thatthen,the eigenvalues of A+B are the eigenvalues of the matrix diag[λ1,λ2,…,λn]+CX.

[1]Jiu D,Zhou A H.Eigenvalues of rank -one updated matrix with some applications[J].Applied Mathematics Letters,2007,20:1223-1226.

[2]Ricrdo L S,Oscar R.Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem[J].Linear Algebra and its Applications,2006,416:844 -856.

[3]Bapat R B,Raghavan E S.Nonnegative Matrices and Applications,Cambridge University press,1997.

[4]Dennis J E,Traub J F and Weber R.P.On the matrix polynomial,lambda- matrix and block eigenvalue problem,Tech.Rep.71 - 109,Computer Science Department,Cornell Univ,Ithaca,NY and Carnegie - Mellon Univ.,Pitsburgh,PA,(1971).


登錄APP查看全文

猜你喜歡
基金
私募基金近1個月回報前50名
私募基金近1個月回報前50名
私募基金近1個月回報前后50名
私募基金近一個月回報前后50名
投資與理財(2009年8期)2009-11-16 02:48:40
私募基金近1個月回報前后50名
私募基金近1個月回報前后50名
私募基金近1個月回報前后50名
私募基金近6個月回報前50名
私募基金近6個月回報前后50名
私募基金近1個月回報前50名
主站蜘蛛池模板: 国产精品无码制服丝袜| 强奷白丝美女在线观看| 伊伊人成亚洲综合人网7777| 91精品国产91久久久久久三级| 91国内外精品自在线播放| 四虎国产精品永久在线网址| 亚洲色图另类| 波多野结衣一区二区三区四区| 国产精品片在线观看手机版 | 这里只有精品在线播放| 成人精品免费视频| 欧美性色综合网| 国产精品19p| 日韩不卡免费视频| 欧美激情综合一区二区| 亚洲欧美精品一中文字幕| 欧美伊人色综合久久天天| 美女无遮挡拍拍拍免费视频| 亚洲人成网站在线播放2019| 99精品国产高清一区二区| 亚洲福利视频网址| 永久成人无码激情视频免费| 欧美a在线视频| 色视频国产| 久久国语对白| 中文字幕永久在线观看| 日韩一区二区三免费高清| 国产一二视频| 日本不卡免费高清视频| 99免费在线观看视频| 国产剧情一区二区| 91在线播放免费不卡无毒| 秋霞国产在线| 无码精品国产VA在线观看DVD| 久久香蕉国产线看观看亚洲片| 九色综合视频网| 欧美一区二区三区国产精品| 色窝窝免费一区二区三区 | 一级一级一片免费| 久久久久国产一区二区| 亚洲一区二区三区在线视频| 亚洲有无码中文网| 国内精品伊人久久久久7777人| 亚洲精品动漫| 一级全免费视频播放| 99在线视频精品| 色婷婷啪啪| 日韩精品高清自在线| 亚洲综合色吧| 午夜毛片免费观看视频 | 毛片免费网址| 内射人妻无套中出无码| 无码专区第一页| 日韩高清一区 | 久综合日韩| 日本黄网在线观看| 亚洲成a人片77777在线播放| 免费a级毛片18以上观看精品| 成人亚洲天堂| 国产超碰一区二区三区| 中文无码精品A∨在线观看不卡| 日韩无码黄色| 国产成人1024精品下载| 国产无码精品在线播放 | 99精品福利视频| 99国产在线视频| 国产成人综合网在线观看| a级毛片毛片免费观看久潮| 精品夜恋影院亚洲欧洲| 激情午夜婷婷| 日韩激情成人| yjizz国产在线视频网| 国产办公室秘书无码精品| 免费女人18毛片a级毛片视频| 九色在线观看视频| 午夜精品久久久久久久无码软件| 亚洲天堂成人| 亚洲国产日韩欧美在线| 欧美色99| 久青草免费在线视频| 国产噜噜噜视频在线观看| 亚洲 欧美 偷自乱 图片 |