摘 要:在本文中,我們得到了由Littlewood-Paley算子和Lipschitz函數生成的多線性交換子在Triebel-Lizorkin空間、Hardy空間和Herz-Hardy空間的連續性.
關鍵詞:Littlewood-Paley算子;線性交換子;Triebel-Lizorkin空間;Herz-Hardy空間;Herz空間;Lipschitz空間
中圖分類號:O174.3 文獻標識碼:A
Lipschitz Estimates for Multilinear Commutator
of Littlewood-Paley Operator
GU Guang-ze1,CAI Ming-jie1,XIAO Qing-feng2
(1.College of Mathematics and Econometrics, Hunan Univ, Changsha, Hunan 410082, China;
2. Dongguan Vocational College of Technology, Dongguan, Guangdong 523808, China)
Abstract: This paper studied the continuity of a multi-linear commutator generated by littlewood-Paley operator and Lipschitz functions on Triebel-Lizorkin space, Hardy space and Herz-Hardy space.
Key words: Littlewood-Paley operator; multi-linear commutator; Triebel-Lizorkin space; Herz-Hardy space; Herz space; Lipschitz space
設T是Calderón-Zygmund算子,Coifman等[1]得到,交換子[b,T](f)= bT(f) -T(bf)(b∈BMO(Rn))在Lp (Rn)的有界性(1<p<∞).當T是分數次積分算子時,Chanillo[2]證明了類似的結果.Janson[3]和Paluszynski[4]在Triebel-Lizorkin空間和b屬于齊次Lipschitz空間時研究了這些結果.本文的主要目的是研究由Littlewood-Paley算子和b生成的極大多線性交換子在Triebel-Lizorkin空間,Hardy空間和Herz型Hardy空間的有界性,其中b= (b1,b2,…,bm)且函數bj∈Lipβ,1≤j≤m.
1 預備知識和定義
本文中,M(f)表示f的Hardy-Littlewood極大函數,且記Mp(f)=(M(fp))1/p對0
0和p>l,令Fβ,
SymboleB@ p為齊次Tribel-Lizorkin空間;用Lipβ(Rn)表示Lipschitz空間,函數f滿足
這就完成了定理3的證明.
參考文獻
[1] COIFMAN R,ROCHBERG R,WEISS G. Factorization theorems for Hardy spaces in several variables[J]. Ann of Math,1976,103:611-635.
[2] CHANILLO S. A not on commutators[J] .Indiana Univ Math,1982,31:7-16.
[3] JANSON S. Mean oscillation and commutators of singular integral operators[J]. Ark Math, 1978,16:263-270.
[4] PALUSZYNSKI M. Characterization of the besov spaces via the commutator operator of coifman[J]. Rochbeg and Weiss Indiana Univ Math J,1995, 44, 1-17.
[5] LU S Z. Four lectures on real Hp spaces[M].New York: World Scientific, River Edge, NI, 1995.
[6] STEIN E M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[M]. Princeton: Princeton Univ Press, 1993.
[7] TORCHINSKY A. Real variable methods in harmonic analysis[M]. New York: Academic Press, 1986.
[8] GARCIA-CUERVA J,HERRERO M J L. A theory of Hardy spaces associated to Herz spaces[J]. Proc London Math Soc , 1994(69):605-628.
[9] LU S Z,YANG D C. The decomposition of the weighted Herz spaces and its applications[J]. Sci in China (ser.A), 1995,38, 147-158.
[10]LU S Z,YANG D C. The weighted Herz type Hardy spaces and its applications[J]. Sci in China(ser.A), 1995,38:662-673.
[11]ALVARE Z J, BABGY R J, KURTZ D S,et al. Weighted estimates for commutators of linear operators[J].Studia Math, 1993,104:195-209.
[12]CHEN W G. Besov estimates for a class of multilinear singular integrals[J]. Acta Math Sinica, 2000,16:613-626.
[13]LIU L Z.The continuity of commutators on Triebel-Lizorkin spaces[J]. Integral Equations and Operator Theory, 2004,49:65-76.
[14]LIU L Z. Boundedness for multilinear Littlewood-Paley operators on Hardy and Herz-Hardy spaces[J]. Extracta Math,2004,19(2):243-255.
[15]LIU L Z,LU S Z,XU J S. Boundedness for commutators of Littlewood-Paley operators[J].教學進展, 2003,32(4):473-480.
[16]LU S Z,WU Q,YANG D C. Boundedness of commutators on Hardy type spaces[J]. Sci in China(ser A), 2002, 45: 984-997.