999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

有限總體中基于廣義Liu 估計的預測及其小樣本性質

2012-01-01 00:00:00黃介武
經濟數學 2012年1期

摘 要 在有限總體中提出了一類基于廣義Liu估計的新的預測,得到了基于廣義Liu估計的預測在預測均方誤差意義下優于最優線性無偏預測的充要條件,并通過實例對理論成果進行了進一步的說明.

關鍵詞 有限總體;預測均方誤差;最優線性無偏預測;廣義Liu 估計

中圖分類號 O 212.4 文獻標識碼 A

A Predictor Based on the Generalized Liu Estimator

in Finite Populations and Its Smallsample Properties

HUAMG Jiewu1,2

(1.College of Science, Guizhou University for Nationalities, Guizhou, Guiyang 550025;

2.College of Mathematics and Statistics,Chongqing University,Chongqing 401331)

Abstract This paper proposed a new predictor based on the generalized Liu estimator in finite populations.The necessary and sufficient conditions for the superiority of the predictor based on the generalized Liu estimator over the best linear unbiased predictor in the prediction mean squared error sense were derived. Furthermore, a numerical example was given to illustrate some of the theoretical results.

Key words finite populations; prediction mean squared error; best linear unbiased predictor, generalized Liu estimator

1 Introduction

The problem of prediction in finite populations received considerable attention in the past several decades.As we can see, most of works in the existing literatures are in the context of linear unbiased prediction, such as Hendserson[1], Perieira and Kodrigues[2], Bolfarine et al.[3], Yu and He[4] and Rueda et al.[5]. However,the prediction mean squared error of the best linear unbiased predictor(BLUP) will become inflated when there exists multicollinearity among the explanatory variables and the results of regression will be often unacceptable.In this case, some prediction methods have been developed to improve the best linear unbiased predictor, one of these methods is the biased prediction method. Hoerl and Kennard[6]proposed the socalled ridge regression method which isunaffected by multicollinearity among the many independentvariables. Wang[7] proposed adaptive ridgetype predictors in finite population.

Our primary aim in this paper is to introduce a new predictor based on the generalized Liu estimator[8] to combat the multicollinearity. The proposed predictor is biased, and we discuss its superiority over the best linear unbiased predictor in the prediction mean squared sense in some detail.

The remainder of this paper is organized as follows. In Section 2, we introduce the model specifications, some corresponding definitions and lemmas.Some properties of the predictor based on the generalized Liu estimator are discussed in Section 3. Then, a numerical example is provided to illustrate some of the theoretical results in Section 4 .

2 Preliminaries

Let Ω={1,2,…,N}be the set of labels of the units of a finite population of size N, where N is known. Associated with the ith unit of Ω, there are p+1 quantities:

yi,xi1,…xip,i=1,2,…,N, where all but yi are known. Denote y=(y1,y2,…yN)′and X=(X1,X2,…,XN)′, where Xi=(xi1,xi2,…,xiN)′,i=1,2,…,N.

We consider a linear model from Ω denoted by

y=Xβ+e,E(e)=0,cov (e)=σ2V。 (1)

where e is an Ndimensional random vector of error variables, V is a known positive matrix, while β is a p×1 vector of unknown parameters, E(·)and cov (·)denote the expectation and variance of random vector.

Consider linear model (1), suppose that a sample of size s is selected from Ω by using some specified sampling design,r=N-s is the rest labels which are not in the sample. The objective is to predict values of linear function θ=l′y from a sample,where lis a known vector. If we take l=(1,…,1)′,then θ=l′y is the population total. Listing without loss of generality the sampled units first, we may partition ony,X e and V as follows:

經 濟 數 學第 29卷第1期黃介武:有限總體中基于廣義Liu 估計的預測及其小樣本性質

y=ysyr,X=XsXr

e=eser,V=VsVsrVrsVr.

Definition 1 Let θ be a linear predictor of θ=l′y, θ is said to be the best linear unbiased predictor (BLUP) under the finite populations defined by (1) if

(i)θ is unbiased, i.e.E(θ*-θ)=0

(ii) E(θ-θ)2≤E(-θ)2 for any linear unbiased predictor  of θ=l′y.

Lemma 1 Under the finite populations defined by (1), let V >0,V rs=V sr=0, then the BLUP of θ=l′y is given by

U=l′sys+l′rXrOLE,(2)

where OLE=(X′sV-1sXs)-1X′sV-1sys is the ordinary least squares estimator.

Definition 2 Under the finite populations defined by eq.(1), let V>0, Vrs=Vsr=0, the predictor based on the generalized Liu estimator D of θ=l′y is defined as

D=l′sys+l′rXrLE, (3)

where LE=(X′sV-1sXs+I)-1(X′sV-1sXs+D)OLE is the generalized Liu estimator ofβ with D=diag(d1,d2,…,ds),0<di<1,i=1,2,…,s,being the Liu parameters [ 9].

When D=diag(d,d,…,d),0<d<1,we denote d=D which is called the predictor based on Liu estimator.

In order to compare the predictors, we provide with a notion of prediction mean squared error (PMSE).

Definition 3 Under the finite populations defined by eq.(1), let be a predictor of θ, the prediction mean squared error of  is defined as

PMSE()=E(-θ)′(-θ) .(4)

Lemma 2 Under the finite populations defined by eq.(1), for any predictor  of θ=l′y, we have

PMSE()=l′rXrMMSE()X′rlr+σ2l′rVrlr .See [7].

Lemma 3 Let M be a positive definite matrix, namely M>0, α be some vector, then M-αα′≥0 if and only if α′M-1α≤1. See [10].

3 Properties of the predictor based on the generalized Liu estimator

Theorem 1 Under the finite populations defined by eq.(1), let V>0,Vrs=Vsr=0, the predictor based on generalized Liu estimator D of θ=l′y is biased.

Proof: ‖E(D)-θ‖=

‖l′sXs+l′rXrE(LE)-l′sXs-l′rXr‖

=‖l′rXr‖×||β‖×

‖(X′sV-1sXs+I)-1(X′sV-1sXs+D)-I|

=‖l′rXr‖×‖β‖×||(D-I)(Λ+I)-1‖,

where

Λ=diag(λ1,…,λs)=Q(X′sV-1sXs)Q′, 

λi>0,1=1,…,s,Q is an orthogonal matrix.

Noted that 0<di<1,i=1,2,…,s, these imply that ‖E(D)-θ‖≠0, that is, D is a biased predictor of θ=l′y.The proof is completed.

From Lemma 2, we have

PMSE(D)=l′rXrMMSE(D)X′rlr+σ2l′rVrlr,

PMSE(U)=l′rXrMMSE(OLE)X′rlr+σ2l′rVrlr.

In order to compare D with U in the PMSE sense, we investigate the difference

Δ=PMSE(D)-PMSE(U)

=l′rXr(MMSE(D)-MMSE(U))X′rlr.

Noted that

MMSE(D)-MMSE(U)

=σ2FDSFD-σ2S-1+(FD-I)ββ′(FD-I)

=(S+I)-1σ2(S+D)S-1(S+D)+

(D-I)ββ′(D-I)(S+I)-1-

σ2(S+I)-1(S+I)S-1(S+I)(S+I)-1,

where S=X′sV-1sXs,FD=(S+I)-1(S+D).

Thus Δ≤0 if and only if

S-1-DS-1D-2(D-I)

≥1σ2(D-I)ββ′(D-I).

Applying Lemma 3, we have Δ≤0 if

and only if

β′(D-I)-1S-1-DS-1D-2(D-I)×

(D-I)-1β≤σ2.

So, we may state the following theorem:

Theorem 2 The predictor based on generalized Liu estimator D is superior to the best linear unbiased predictor U in the PMSE sense, if and only if

β′(D-I)-1S-1-DS-1D-2(D-I)×

(D-I)-1β≤σ2. (5)

When

D=diag(d,d,…,d),0<d<1,

educes to the necessary and sufficient condition for superiority of the predictor based on Liu estimator d over the best linear unbiased predictor U in the PMSE sense, given as follow:

β′1+d1-dS-1+21-dI-1β≤σ2(6)

4 Numerical example

To illustrate our theoretical results we consider the dataset on Portland cement ever considered by Zhong and Yang [1]. In this article, we use the same data, try to illustrate that the proposed predictor is superior to the best linear unbiased predictor under certain conditions. Our computations were performed by using Matlab. We assemble our data as follows:

The four columns of the matrix X comprise the data on x1,x2,x3 and x4 respectively.

Firstly, we can obtain the eigenvalues of X′Xas λ1=446 76.21,λ2=5 965.42,

λ3=809.95,λ4=105.42,λ5=0.001 23,

and the condition number is approximately 3.66793e+007 .So the design matrix X is quite illconditioned.

Then, partitioning the data, let s=11,r=2,

y=ysyr,X=XsXr and θ=1′13y,where 1′13=(1,1,1,1,1,1,1,1,1,1,1,1,1).In this case,

we consider the estimated PMSE values of d and U and their corresponding estimated values of σ2 and

β′1+d1-dS-1+21-dI-1β .

which are denoted by 2 and  respectively. The results are showed in Table 1.

Table1 The values of ,2,PMSE()and

PMSE(d)for θ=1240.5

d

We can see from Table 1 that when  is smaller than 2 which implies that condition (6) is satisfied, we have

PMSE(d)<PMSE(OLE), which illustrates the conclusion of Theorem 2

References

[1] C R HENDSERSON. Best linear unbiased estimation and prediction under a selection model [J].Biometrics,1975, 31(2): 423-447.

[2] C A B PEREIRA, J RODRIGUES. Robust linear prediction in finite populations [J]. Internat Statist Rev,1983,51(1):293-300.

[3] H BOLFARINE, S ZACKS,S N ELIAN. Optimal prediction of the finite population regression coefficient[J].Sankhya Ser B, 1994, 56(1): 1-10.

[4] S H YU, C Z HE. Optimal prediction in finite populations[J]. Appl.Math.J. Chinese Univ Ser A,2000,15(2): 199-205.

[5] M RUEDA, I R S BORREGO. A predictiveestimator of finite population mean using nonparametric regression [J]. Comput Stat,2009,24(1):1-14.

[6] A E HEORL, R W KENNARD. Ridge regression: biased estimation for nonorthogonal problems [J].Technimetrics, 1970, 12(1): 55-67.

[7] S G WANG.Adaptive ridgetype predictors in the finite population [J].Chinese Science Bul1, 1990, 35(11): 804-806.

[8] F AKDENIZ, S KACIRANLAR.On the almost unbiased generalized Liu estimator and unbiased estimation of the Bias and MSE[J].Commun. Statist. Theor. Meth ,1995,24(7):1789-1797.

[9] Z ZHONG,H YANG.Ridge estimation to the restricted linear model [J]. Commun Statist Theor Meth,2007,36:2099-2115

[10]R W FAREBROTHER. Further results on the mean square error of ridge regression[J].J R Stat Soc Ser B1976,38(3):248-250.

主站蜘蛛池模板: 日日噜噜夜夜狠狠视频| 久久久精品国产SM调教网站| 日韩欧美国产精品| 日韩不卡高清视频| 亚洲天堂免费| 九色视频线上播放| 999国内精品久久免费视频| 欧洲av毛片| 2021国产在线视频| 在线观看欧美国产| 国产在线拍偷自揄拍精品| 国产成人精品高清不卡在线| 伊人国产无码高清视频| 亚洲天堂网视频| 欧洲极品无码一区二区三区| 丰满人妻久久中文字幕| 操操操综合网| 国产不卡国语在线| 伊人国产无码高清视频| 亚洲二区视频| 亚洲a免费| 亚洲伊人电影| 国产人人乐人人爱| 露脸真实国语乱在线观看| 国产精品免费福利久久播放| 试看120秒男女啪啪免费| 亚洲成人一区在线| 国产精品久久久久久久久久久久| 日本黄色不卡视频| 欧美精品在线视频观看| 97青青青国产在线播放| 日韩无码黄色| 91美女视频在线| a级毛片毛片免费观看久潮| 亚洲高清资源| 欧美日韩va| 欧美色伊人| 亚洲国产精品久久久久秋霞影院| 美女一区二区在线观看| 国产99免费视频| 国产爽爽视频| 91麻豆精品国产高清在线| 免费看美女毛片| 久久一级电影| 亚洲欧洲美色一区二区三区| 中文字幕首页系列人妻| 久久综合结合久久狠狠狠97色 | 污视频日本| 伦伦影院精品一区| 日韩区欧美区| 国产免费怡红院视频| 免费不卡在线观看av| 日韩福利在线观看| 国产一区二区三区免费观看| 国产香蕉国产精品偷在线观看| 蜜桃视频一区二区三区| 欧美日韩激情在线| 国产chinese男男gay视频网| 国产h视频免费观看| 亚洲国产黄色| 热伊人99re久久精品最新地| 人妻无码中文字幕一区二区三区| 超碰91免费人妻| 欧美啪啪精品| 国产91丝袜在线播放动漫 | 被公侵犯人妻少妇一区二区三区 | 欧美亚洲网| 亚洲男女在线| 青青草91视频| 国产自产视频一区二区三区| 国产小视频a在线观看| 伦精品一区二区三区视频| 亚洲精品国偷自产在线91正片| 精品三级网站| 午夜不卡福利| 亚洲国产日韩欧美在线| 成人免费午间影院在线观看| 一边摸一边做爽的视频17国产 | 久久人体视频| 一本一道波多野结衣av黑人在线| 亚洲综合精品香蕉久久网| 91精品啪在线观看国产60岁|