摘要:通過持續研究發掘新因子,不斷對模型進行優化,也是量化分析基金長期制勝的秘籍所在。
關鍵詞:分析 短線
中圖分類號:F832文獻標識碼:A文章編號:1672-3791(2012)09(c)-0252-02
2012年以來,以量化分析技術投資著稱的量化基金表現得一枝獨秀,逐漸從振蕩市中脫穎而出。一季度,上證綜指上漲2.88%,同期標準股票型基金平均業績為0.31%,而按照Wind分類的13只量化基金,其平均業績為2.92%,五行基金更是取得7.65%的正收益,在亞洲量化基金中排名第一,超越同期上證指數4.77個百分點。
美國私募基金復興科技公司的第一支純粹的量化投資基金—— 大獎章基金,從1988年3月成立至2008年的21年里,平均年度凈收益高達36%,遠遠跑贏同期道指年均8.81%的漲幅,比索羅斯、巴菲特同期的業績高出10%,原因:一是數學家基金經理;二是量化分析技術。
1 基本面分析量化分析是投資機構先后采用的2種投資技術
基本面分析,是分析員和基金經理通常采用研究財務報表,與公司高層會談,與相關人員荷香業專家討論等方式,對少數幾家公司股票(約10到100只股票)進行非常深入的研究分析,來決定要投資哪些股票以及如何投資。在基本面分析分類中,會根據行業不同,有專員長期跟蹤和深入研究其中一個行業,而這幾名專員最后則會成投資這個行業的專家。在股票市場成立以來長期采用的較為傳統的分析和投資方式就是基本面分析。基本面投資,通過企業內部財務報表的形式,來發現企業的潛在價值,以求企業得到穩定持續的高額收益,一旦買入,長期持有。
量化分析,借助數學、物理學、幾何學、心理學甚至仿生學的知識,通過建立模型,進行估值、擇時選股。量化分析員和量化基金經理,通常會同時研究全盤數千支股票,分析的方式也可以是基于公司基本面的,但是會強調量化財務指標。量化的指標(又稱因子)也可以是其他更有特色的數據。從事量化分析投資的基金經理通常不去上市公司實地調研,而是將精力放在不斷完善模型上,量化分析投資的模型是決定投資業績的關鍵,投資模型始終處于絕密狀態,不同市場設計不同的量化分析投資管理模型,在全球各種市場上進行短線交易。
2 量化分析技術獲取超額投資收益之道
在變幻莫測的市場經濟中,能否理性思考投資、不受情緒影響,將是成功的關鍵。而利用計算機的篩選得出的量化分析基金,不受投資中非理性因素影響,使投資更有計劃行、紀律性、規律性,基金管理人要做到不貪婪、不恐懼、不放棄,不受情緒影響,以一顆平常心追求利益瘦小。
量化分析,有一套完整、科學的投資體系。嚴格的紀律性是量化投資明顯區別于主動投資的重要特征。在量化分析基金的運作中,主觀判斷也會出現和量化分析模型相左的情兄,但會堅持量化分析投資的紀律,相信模型判斷的長期穩定性,不會盲目去調整改變。與傳統偏股型基金不同,量化分析基金采用獨特的投資組合管理方式,漸進動態調整基金組合。這樣不僅可以順應瞬息萬變的市場,還可以降低個股集中度,平穩投資業績。因此,這種方式并不會產生傳統意義的重倉股,也就大大降低了重倉個股的風險。
量化分析業績,來自于量化分析模型批量選股的成功率大于失敗率。量化分析的模型敏銳的“發覺”了開場環境的轉變,自動調高了評估因子、預期因子及市場反轉因子的權重,量化分析模型依此邏輯選擇的股票大部分取得較好收益,提升了整體業績。
3 量化分析技術創始人并非經濟學家。
量化分析技術并非發端于華爾街,不少人最初并非經濟學家,如巴契里耶和布萊克原先是數學家,夏普則從事醫學,奧斯伯恩為天文學家,沃金與坎德爾是統計學家,而特雷諾則是數學家兼物理學家。1970年代美國債券市場和股票市場全面崩盤,當時提出用量化分析方法管理投資組合的人是作家彼得·伯恩斯坦。1952年3月發表“投資組合選擇”論文、提出現代財務和投資理論最著名遠見的馬克維茨,以該理論勉強通過博士答辯,到1990年10月,這些人中才有三位獲得諾貝爾經濟學獎。
2012年,美國倫斯理工學院金融工程碩士李炬澎,依據5000年中國古老的《易經八卦數理》研發立體數量模型分析微觀經濟,用超高頻率政治外交詞匯、交易數據、股票期權數據、公司債務數據來做個股分析,用《五行相克相生原理》來分析自然、社會、政治、人文如何影響宏觀經濟。比如用計算機分析新聞報道中天地雷風水火山澤8中自然天文現象與宏觀經濟關聯程度,使五行基金取得亞洲量化分析投資行業第一名的業績。
4 量化分析技術應用的載體是計算機軟硬件技術的發展
馬克維茨的投資組合現代金融理論,提出了風險報酬和效率邊界概念,并據此建立了模型,成為奠基之作。托賓隨后提出了分離理論,但仍需要利用馬克維茨的系統執行高難度的運算,1961年,與馬克維茨共同獲得1990年諾貝爾獎的夏普用IBM最好的商用電腦,解出含有100只證券的問題也需要33mim。夏普1963年1月提出了“投資組合的簡化模型”(單一指數模型),簡化模型只用30s。1964年夏普又開發出資本資產定價模型(CAPM),不僅可以作為預測風險和預期回報的工具,還可以衡量投資組合的績效,以及衍生出在指數型基金、企業財務和企業投資、市場行為和資產評價等多領域的應用和理論創新。1976年,羅斯在CAPM的基礎上,提出“套利定價理論”(APT),提供一個方法評估影響股價變化的多種經濟因素。布萊克和斯克爾斯提出了“期權定價理論”。莫頓則發明了“跨期的資本資產定價模型”。
5 量化分析應用的關鍵是基本面分析無法快速精確處理豐富的金融產品和巨大交易量
1970年代以前,華爾街認為投資管理需要天賦、直覺以及獨特的駕馭市場的能力,基本面分析師、基金經理可以獨力打敗市場,而無需依靠那些缺乏靈魂、怪異的數學符號和縹緲虛幻的模型。華爾街對學術界把投資管理的藝術,轉化成通篇晦澀難懂的數學方程式一直持有敵意,1970年代初期,美國表現最佳的基金經理人從未聽過貝塔值,并認為那些擁有數學和電腦背景的學者只是一群騙子。
量化分析投資不會出現在個人投資者為主的時代。個人投資者既缺乏閑暇的時間,也普遍無此能力。僅有現代投資理論的建立,及各類模型的完善與推陳出新,并不會直接催生出量化分析投資,它還需要其他幾個重要前提條件,比如:機構投資者在市場中占據主導,隨著社保基金和共同基金資產的大幅增加,成為市場上的主要機構投資者,專業機構管理大規模資產,需要新的運作方式和金融創新技術,專業的投資管理人有能力和精力專注地研究、運用這些量化分析技術。
1970年代后期的Wells Fargo銀行,率先用量化分析技術管理投資組合,投資高股息股票,用較少的風險獲得了較大的收益,不用這些模型,不用電腦運算這些公式,會陷于困境。1980年代以來,面對數不勝數的各類證券產品和期權類產品,以及龐大的成交量,許多復雜的證券定價,必須靠大容量高速運算的電腦來完成。到2007年美國股市近一半的機構基金都是由量化模型來管理的。從2000年初到2007年全球量化分析基金市場連續8年表現遠遠超過其他投資方式。
6 量化分析在應對經濟危機和突發經濟事件中開拓前進
1987年10月大股災,當天股市和期貨成交量高達令人吃驚的410億美元,價值瞬間縮水6000億美元。很多股票直接通過電腦而不是經由交易所交易。一些采用投資組合保險策略的公司,在電腦模式的驅使下,不問價格機械賣出股票。很多交易員清楚這些投資組合會有大單賣出,寧愿走在前面爭相出逃,加劇了恐慌。針對整個投資組合而非單個證券,機械式的交易,電腦的自動操作,大量的空單在瞬間涌出,將市場徹底砸垮。
1997年至1998年亞洲金融危機股市暴跌,量化分析投資的算法交易也起到了同樣的壞作用。著名的長期資本管理公司,遭遇俄羅斯國債違約這一小概率事件,也陷入破產之境,迫使美聯儲集華爾街諸多投資銀行之力,加以救助。
2007年8月金融危機中,許多量化基金出現巨額損失。其原因主要是幾家大型對沖基金大量賣出它們的量化分析基金股票,去彌補其在其他投資方式上的損失。由于很大相同倉位的股票在很短的時間內被廉價賣出,從而加劇了很多投資指標的損失,尤其是價值和動量指標的損失。
2011年即使歐債金融危機發生,量化分析基金也再次表現優異,超過其他投資方式,雖然能否就此再度復興仍屬未知,此一趨勢已不可逆轉。
7 量化分析技術今后幾年全球應用的熱點在中國的A股市場
中國金融、資本、股市投資者結構很不合理,A股市場的專業投資機構持有市值的15.6%,而發達市場這一比例大致為70%。更為不合理的是交易結構,A股市場個人投資者持有市值占比26%,但卻完成了85%的交易。根據Wind分類,目前我國市場上共有13只量化基金,包含11只普通股票型基金,1只指數基金和1只偏股混合基金。
中國現有的人才和技術都難以支持完全的量化分析投資,在缺乏國際化人才和成熟模型的情況下,經營業績自然也差強人意。
量化分析今后幾年全球熱點在中國的A股市場。現在主要發達國家的股市很大程度上由量化基金所控制。為了尋找更高收益的市場,很多大型量化基金也開始大量投資于發展中國家市場,中國的A股市場是今后幾年全球量化分析投資熱點,所以近年來很多北美和歐洲的高層量化分析基金經理和分析員紛紛到中國大陸、香港和新加坡推廣量化投資技術。這是國際國內的金融市場和投資者,都要面對的機會和挑戰。
量化分析基金2002年才在中國剛剛起步,到2009年和2010年,才真正進入快速發展期,2010年末量化基金的總規模達到了779億元。雖然規模有顯著提升,但是與國外市場量化分析基金占共同基金總資產16%相比,國內量化分析基金還有非常大的發展空間。
量化分析投資依靠發現和捕捉到其他人沒有發現的機會攫取超額收益,當一種有效的模型或者策略被許多人都采用時,往往它的效果就會大打折扣。現階段中國市場上使用量化分析策略的產品不多,這也給開拓這個領域的先行者提供了廣闊的空間。
量化分析投資技術在國內市場的使用,越來越多的基金參與進來,特定因子就可能被更多的應用,其帶來超額收益的可能也就降低了。因此,通過持續研究發掘新因子,不斷對模型進行優化,也是量化分析基金長期制勝的秘籍所