趙榮秋,劉樂承 (長江大學園藝園林學院,湖北 荊州434025)
成花轉變是植物生命周期中一個重要的發育過程。擬南芥染色質機制通過調控成花關鍵基因表達在成花時間上起關鍵作用,各種保守的染色質修飾因子、植物特異因子和長的非編碼RNAs都參與到FLOWERING LOCUS C (FLC)基因染色質調節過程中,FLC是植物成花的負調控因子。FLC調控機制的研究已為以染色質調控為基礎的其他發育基因的研究提供了一個范本。同時,染色質修飾在FLOWERING LOCUS T (FT)的表達調控中也同樣起著重要作用;FT是編碼植物成花素的基因,在被子植物中高度保守。此外,其他植物中與FT相關的基因也可能具有與FT基因相同的調控機制從而影響植物成花時間。在此主要對擬南芥成花調控及其以染色質修飾為基礎的調節機制進行綜述。
從營養生長向生殖生長階段轉變的時間是被子植物獲得生殖成功的關鍵,許多物種已進化出多條途徑響應環境信號和內源因子的變化,從而調控其在正確時間開花。長日照植物擬南芥春化作用、光周期、寒冷的冬天、環境溫度和長日照等外因分別響應體內內源因子如苗齡和赤霉素水平共同作用形成復雜的成花調控網絡。目前,已分離出成花網絡中的關鍵成花基因,其表達調控機制已被深入研究。
擬南芥FLC基因是一個主要的開花抑制因子,其表達機制復雜[1-2],FRIGIDA (FRI)可以激活或者上調FLC基因的表達至較高水平從而抑制開花,然而春化作用、長時間低溫誘導可以抵消FRI對FLC激活作用,關閉FLC的表達,促進植物開花[3-4]。有春化響應的冬性一年生植物和無春化需求的早花植物不同的成花習性主要由FLC的表達水平不同所決定,冬性一年生植物具有顯性等位基因FRI和FLC,而無春化需求的早花植物缺乏有功能的FRI,FLC的表達被自主途徑基因或FLC自身抑制,不依賴于環境輸入信號所抑制[5-6]。
FT基因是另外一個調控植物開花時間的關鍵基因,FT蛋白是植物開花素[7-10],其表達可被長日照下CONSTANS(CO)基因所激活,被FLC基因直接抑制[11-13]。FT在維管組織特異表達,尤其在葉的韌皮部,FT蛋白由韌皮部被輸送到莖尖分生組織,在莖尖分生組織與具有bZIP結構的鋅指蛋白FD結合形成復合體,激活花分生組織基因LEAFY和APETALA1(AP1)的表達,導致花原基形成[14-15]。
染色質修飾參與到植物發育基因的調控中,這些修飾調控染色質結構和基因表達,包括核小體重塑、DNA甲基化和各種組蛋白修飾[16]??偟膩碚f,組蛋白乙酰化、組蛋白H3K4三甲基化、組蛋白H2B單泛素化、組蛋白H3K36的二甲基化和三基化與基因表達活性有關;而組蛋白去乙?;?、H3K9甲基化、H3K27三基化、H2A單泛素化抑制基因的表達[17]。擬南芥染色質調節FLC表達已被深入研究,表明各種修飾因子調節FLC表達與其成花有關[3-4,17]。如ATX1H3K4甲基轉移酶和EFS H3K36甲基轉移酶分別調節FLC染色質H3K4和H3K36的甲基化,兩者都是FLC基因表達必須的,其表達抑制成花[18–20];與此相反,PRC2-like復合體使FLC染色質H3K27三甲基化水平升高從而關閉FLC的表達[21-22]。FLC的調控機制已成為認識植物其他發育基因表達調控的范例。
FLC表達調控的最新進展表明FRI是植物體內特異的支架蛋白,是募集染色質修飾因子至FLC位點復合體的一部分,可以激活FLC。另外,最近研究表明長的非編碼RNAs(lncRNAs)不僅可以導致非春化需求型植物FLC表達抑制,而且可以通過春化調節使一年生冬性植物FLC沉默。另外,近年來的研究表明染色質修飾也部分調控FT基因表達。
FRI編碼植物特異的支架蛋白,是決定擬南芥成花時間的關鍵因子[6],許多參與到FRI依賴途徑的FLC表達的激活因子,已在以FRI為背景的抑制FLC表達的突變體遺傳檢測中被驗證,包括保守的染色質修飾因子和植物特異組分[3,5],這些組分功能缺失的突變體抑制FLC表達,所以導致FRI為背景的植物早花。另外,其中一些因子如染色質修飾因子調控擬南芥基因組很多基因表達。
第一個被證實的FRI行使功能的保守成分是PAF1c復合體[23-25],它在酵母、植物和人體內均高度保守,在轉錄過程中與Pol II結合。擬南芥PAF1c有6個亞單位,其功能缺失導致FLC染色質組蛋白H3K4三甲基化、H3K36二甲基化和H3K36三甲基化水平降低,并在FRI背景下抑制FLC的表達[19,23]。另外,PAF1c也是全基因組組蛋白H2B單泛素化所需要的組分[26]。PAF1c本身不具有組蛋白修飾活性,但它為轉錄激活和延伸過程中組蛋白修飾酶活動提供平臺。
COMPASS-like H3K4甲基轉移酶復合體使FLC染色質H3K4三甲基化水平升高,從而 激活其表達。擬南芥COMPASS包含4個保守的核心亞單位,即含有SET結構域的H3K4甲基轉移酶和3個結構性核心組分 (WDR5a、RBL和ASH2R),它們組成一個穩定的核心亞復合體,為H3K4的甲基化提供結構平臺[27-28]。2個H3K4的甲基轉移酶ATX1和ATXR3(或者SDG2)和2個推定的稱做ATX2和 ATXR7的酶使FLC組蛋白H3K4的三甲基化[18,29-32]。ATX1已被證實與 WDR5亞單位結合[27],很可能ATX2、ATXR3和ATXR7在FLC染色質H3K4的三甲基化過程中也是以COMPASS為背景而行使其功能。H3K4的三甲基化主要集中在FLC的轉錄起始部位[23],這個過程需要COMPASS組分的直接參與,并且激活FLC的表達[27-28]。此外,超表達ASH2R導致FLC染色質H3K4三甲基化水平升高激活FLC轉錄[28],這一結果表明H3K4的三甲基化水平升高足以激活FLC表達從而抑制植物成花。
除了組蛋白H3K4三甲基化外,依賴FRI途徑的FLC表達還分別需要EFS催化下的H3K36甲基化和H2B單泛素化復合體HUB–UBC作用下H2B單泛素化。EFS催化FLC組蛋白H3K36二甲基化和三甲基化[19-20],HUB–UBC復合體包含E3泛素連接酶HUB1和HUB2、E2泛素結合酶UBC1和UBC2,其催化全基因組組蛋白H2B的單泛素化,包括FLC位點[33–35]。利用重組的人類染色質裝配系統,證實H2B單泛素化通過組蛋白分子伴侶FACT調節H2A-H2B間更換和核小體重組,可以使Pol II聚合酶在基因核小體上順暢移動[36]?;蚪M蛋白H2B單泛素化可能與保守的FACT協同作用,從而促使FLC轉錄延伸,因為FACT組分的突變體SPT16和SSRP1使FLC表達受到抑制[37]。另外,H2B單泛素化在FLC位點的內穩定對FLC的表達是關鍵的[26]。FLC染色質上H2B在UBP26去泛素化酶作用下的脫泛素對其表達也是必需的,表明要么維持組蛋白H2B單泛素化在一個恰當的平衡水平,要么其脫泛素化對FLC的轉錄都起著決定性的作用。
FRI依賴途徑的FLC激活也需要FLC位點上保守SWR1復合體 (SWR1c)作用下的組蛋白變體H2A.Z的沉積[38-39]。SWR1c功能缺失阻止FLC染色質上 H2A.Z的沉積,抑制其表達導致早花。SWR1c是ATP酶染色質重塑復合體,其功能是使H2A.Z代替正常的H2A提高擬南芥體內FLC的轉錄能力[40]。研究結果顯示進一步乙?;揎椀慕M蛋白變體H2A.Z核小體不穩定解體促進FLC的轉錄[41-42]。FLC起始位點H2A.Z的沉積可能是通過這種機制促進FLC的轉錄。
除了染色質修飾因子,FRI依賴途徑的FLC激活需要FRL1、FES1 2個植物特異因子和SUF4、FLX 2個組分[43–47],這些蛋白與FRI結合形成一個假定的轉錄增強復合體FRIc,其中SUF4識別FLC的近端啟動子順式元件[48]。任一FRIc亞單位功能缺失可以抑制FLC表達,導致沒有任何明顯表型變化的早花,表明這一復合體是FLC特異增強子;FRIc復合體直接與染色質修飾因子EFS和SWR1c結合[20,48]。另外,FLC位點上WDR5積累需要有功能的FRI,表明FRIc募集COMPASS使之參與到FLC染色質H3K4甲基化過程中[27],同時這些結果表明FRIc募集或者吸引很多FLC染色質修飾因子至基因位點并激活其表達。FRI依賴途徑的FLC激活需要許多有效的染色質修飾,包括組蛋白變體H2A.Z的沉積、組白乙?;?、組白H3K4三甲基化、H2B單泛素化和H3K36二甲基化和三甲基化。這些FLC的染色質修飾存在功能上的相互依賴,如EFS缺失不僅導致以FRI為背景H3K36三甲基化水平的降低,而且也降低了H3K4三甲基化水平[20,49]??傊?,結合到FLC近端啟動子后FRIc募集或吸引很多有活性染色質修飾因子,在FLC位點形成有利于FLC表達的微環境,從而形成冬性一年生植物的開花習性。
如上所述,FRIc復合體功能依賴于PAF1c,酵母中保守的Paf1c與PolⅡ和很多染色質修飾因子結合,包括COMPASS、1個H3K36甲基轉移酶和H2B單泛素化復合體[50]。在FLC位點,PAF1c可能與FRIc直接結合行使功能,導致其募集或吸引有活性的染色質修飾因子,從而提高FLC轉錄水平。
FT被長日照和外界環境溫度升高誘導在維管組織中特異表達;各種染色質修飾因子,包括SWR1c、PRC2、LHP1、REF6H3K27的去甲基化酶和PKDM7BH3K4的去甲基化酶,參與到FT的表達調控中。
FT不管在長日照還是在短日條件下均可被PcG抑制,CLF纏繞在FT染色質上,促進FT染色質的組蛋白H3K27三甲基化積累抑制FT表達[51]。另外,其他PRC2組分,包括SWN、EMF2和FIE也會抑制FT的表達[51-52],表明PRC2-like復合體使FT染色質H3K27積累而抑制其在維管組織中表達。H3K27三甲基化水平被H3K27去甲基轉移酶動力調控,REF6、含JmjC結構域的H3K27去甲基轉移酶參與FT染色質H3K27去甲基化是其表達必須的[53]。因此,FT染色質的H3K27的三甲基化水平被PRC2和REF6動態控制。如上所述,H3K27三甲基化標記已被LHP1所識別。事實上,LHP1直接纏繞在FT染色質上抑制其在維管組織中表達[54]。另外,另一個假定的PRC1-like組分EMF1也抑制FT的表達[55-56],同時PRC1-like復合體與PRC2協同作用抑制FT表達從而抑制植物成花。
FT染色質有一個二價結構,自發攜帶有活性H3K4三甲基化標記和抑制態的H3K27三甲基化標記[51],PRC2依賴途徑的H3K27三甲基化被抑制但沒有消除,FT染色質的H3K4三甲基化處于活化狀態,反之亦然。PRC2功能缺失不僅消除H3K27三甲基化,而且導致FT染色質H3K4三甲基化水平增加[51]。組蛋白H3K4二甲基化和三甲基化去甲基轉移酶PKDM7B與FT染色質結合,使FT染色質H3K4去甲基化抑制其表達[57–59],PKDM7B功能缺失導致H3K4三甲基化水平升高而H3K27三甲基化水平降低[57-58],因此FT染色質上H3K4和H3K27三甲基化具有拮抗作用,它們的相對水平在FT的表達調控中起著關鍵的作用。
FT的表達通過溫感途徑被環境溫度升高所誘導,FT染色質上含有H2A.Z的核小體調節這一反應[60-61],SWR1c作用使組蛋白變體H2A.Z堆積,H2A.Z核小體位于FT起始位點區域,研究已表明環境溫度從178℃升高到278℃引起H2A.Z核小體解體,使FT被PolⅡ誘導表達[61],SWR1c的功能破壞導致溫度不敏感FT表達增強和早花。
FT在維管組織中特異表達,這一空間調節不涉及上述的染色質修飾因子,如PcG活性在大多數組織中普遍存在,其缺失導致FT僅在維管中脫抑制,表明它是FT表達必須的維管特異因子[52]。因此,FT表達的空間和環境調節不僅涉及到保守的通用染色質修飾因子,也涉及到與FT基因的順式調節元件共同行使功能的維管特異因子。這些因素共同調控FT的表達,導致植物開花。
擬南芥染色質修飾調控成花關鍵基因FLC和FT的表達,在成花時間決定中起著決定性的作用,FLC染色質修飾涉及到多種保守的染色質修飾因子、植物特異因子和lncRNAs,其他發育基因的調節也涉及到染色質的修飾。FLC基因在十字花科植物中高度保守,而FT基因在被子植物中作為成花誘導因子其結構和功能均高度保守,在擬南芥中參與FT染色質修飾的因子在其他開花植物中也是保守的。因此以擬南芥FT基因調控為基礎的染色質修飾機制也可能參與到FT相關基因的調節和其他植物的開花時間控制中,開花時間對環境信號如溫度和光周期非常敏感,如何使內在的染色質修飾與外在的環境條件刺激FLC和FT表達最終導致成花轉變,是一個值得探討的有趣的領域。
[1]Michaels SD,Amasino R M.Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization [J].Plant Cell,2001,13:935-941.
[2]Sheldon C C,Rouse D T,Finnegan E,et al.The molecular basis of vernalization:the central role of FLOWERING LOCUS C [J].PNAS,2000,97:3753-3758.
[3]Crevillen P,Dean C.Regulation of the floral repressor gene FLC:the complexity of transcription in a chromatin context[J].Curr Opin Plant Biol,2011,14:38-44.
[4]Kim D H,Doyle M R,Sung S,et al.Vernalization:winter and the timing of flowering in plants[J].Annu Rev Cell Dev Biol,2009,25:277-299.
[5]Amasino R.Seasonal and developmental timing of flowering [J].Plant J,2010,61:1001-1013.
[6]Johanson U,West J,Lister C,et al.Molecular analysis of FRIGIDA,a major determinant of natural variation in Arabidopsis flowering time[J].Science,2010,290:344-347.
[7]Corbesier L,Vincent C,Jang S,et al.FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J].Science,2007,316:1030-1033.
[8]Tamaki S,Matsuo S,Wong H L,et al.Hd3aprotein is a mobile flowering signal in rice[J].Science,2007,316:1033-1036.
[9]Jaeger K E,Wigge P A.FT protein acts as a long-range signal in Arabidopsis [J].Curr Biol,2007,17:1050-1054.
[10]Mathieu J,Warthmann N,Küttner F,et al.Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis[J].Curr Biol,2007,17:1055-1060.
[11]Searle I,He Y,Turck F,et al.The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis [J].Genes Dev,2006,20:898-912.
[12]Helliwell C A,Wood C C,Robertson M,et al.The Arabidopsis FLC protein interacts directly in vivo with SOC1and FT chromatin and is part of a high-molecular-weight protein complex [J].Plant J,2006,46:183-192.
[13]Li D,Liu C,Shen L,et al.A repressor complex governs the integration of flowering signals in Arabidopsis [J].Dev Cell,2008,15:110-120.
[14]Wigge P A,Kim M C,Jaeger K E,et al.Integration of spatial and temporal information during floral induction in Arabidopsis [J].Science,2005,309:1056-1059.
[15]Abe M,Kobayashi Y,Yamamoto S,et al.FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J].Science,2005,309:1052-1056.
[16]Henikoff S,Shilatifard A.Histone modification:cause or cog?[J].Trends Genet,2011,27:389-396.
[17]He Y.Control of the transition to flowering by chromatin modifications[J].Mol Plant,2009,2:554-564.
[18]Pien S,Fleury D,Mylne J S,et al.ARABIDOPSIS TRITHORAX1dynamically regulates FLOWERING LOCUS C activation via histone H3lysine-4trimethylation [J].Plant Cell,2008,20:580-588.
[19]Xu L,Zhao Z,Dong A,et al.Di-and trimethylation on histone H3lysine 36marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana [J].Mol Cell Biol,2008,28:1348-1360.
[20]Ko J H,Mitina I,Tamada Y,et al.Growth habit determination by the balance of histone methylation activities in Arabidopsis[J].EMBO J,2010,29:3208-3215.
[21]De Lucia F,Crevillen P,Jones A M,et al.A PHD-Polycomb repressive complex 2triggers the epigenetic silencing of FLC during vernalization [J].PNAS,2008,105:16831-16836.
[22]Wood C C,Robertson M,Tanner G,et al.The Arabidopsis thaliana vernalization response requires a Polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3 [J].PNAS,2006,103:14631-14636.
[23]He Y,Doyle M R,Amasino R M,et al.PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive,winter-annual habit in Arabidopsis [J].Genes Dev,2004,18:2774-2784.
[24]Oh S,Zhang H,Ludwig P,et al.A mechanism related to the yeast transcriptional regulator Paf1cis required for expression of the Arabidopsis FLC/MAF MADS box gene family [J].Plant Cell,2004,16:2940-2953.
[25]Yu X,Michaels S D.The Arabidopsis Paf1ccomplex component CDC73participates in the modification of FLOWERING LOCUS C chromatin [J].Plant Physiol,2010,153:1074-1084.
[26]Schmitz R J,Tamada Y,Doyle M R,et al.Histone H2Bdeubiquitination is required for transcriptional activation of FLOWERING LOCUS C and for proper control of flowering in Arabidopsis [J].Plant Physiol,2009,149:1196-1204.
[27]Jiang D,Gu X,He Y,et al.Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis [J].Plant Cell,2009,21:1733-1746.
[28]Jiang D,Kong NC,Gu X,et al.Arabidopsis COMPASS-like complexes mediate histone H3lysine-4trimethylation to control floral transition and plant development[J].PLoS Genet,2011,7:e1001330.
[29]Tamada Y,Yun J Y,Woo S C,et al.ARABIDOPSIS TRITHORAX-RELATED7is required for methylation of lysine 4of histone H3and for transcriptional activation of FLOWERING LOCUS C [J].Plant Cell,2009,21:3257-3269.
[30]Berr A,McCallum E J,Ménard R,et al.Arabidopsis SET DOMAIN GROUP2is required for H3K4trimethylation and is crucial for both sporophyte and gametophyte development[J].Plant Cell,2010,22:3232-3248.
[31]Yun J Y,Tamada Y,Kang Y E,et al.ARABIDOPSIS TRITHORAX-RELATED3/SET DOMAIN GROUP2is required for the winter-annual habit of Arabidopsis thaliana [J].Plant Cell Physiol,2012,53:834-846.
[32]Guo L,Yu Y,Law J A,et al.SET DOMAIN GROUP2is the major histone H3lysine 4trimethyltransferase in Arabidopsis [J].PNAS,2010,107:18557-18562.
[33]Xu L,Ménard R,Berr A,et al.The E2ubiquitin-conjugating enzymes,AtUBC1and AtUBC2,play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana [J].Plant J,2008,57:279-288.
[34]Gu X,Jiang D,Wang Y,et al.Repression of the floral transition via histone H2Bmonoubiquitination [J].Plant J,2009,57:522-533.
[35]Cao Y,Dai Y,Cui S,et al.Histone H2Bmonoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis[J].Plant Cell,2008,20:2586-2602.
[36]Pavri R,Zhu B,Li G,et al.Histone H2Bmonoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II[J].Cell,2006,125:703-717.
[37]Lolas I B,Himanen K,Gr?nlund J T,et al.The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2 [J].Plant J,2009,61:686-697.
[38]Deal R B,Topp C N,McKinney E C,et al.Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z [J].Plant Cell,2007,19:74-83.
[39]Choi K,Park C,Lee J,et al.Arabidopsis homologs of components of the SWR1complex regulate flowering and plant development[J].Development,2007,134:1931-1941.
[40]Zilberman D,Coleman-Derr D,Ballinger T,et al.Histone H2A.Z.and DNA methylation are mutually antagonistic chromatin marks[J].Nature,2008,456:125-129.
[41]Millar C B,Xu F,Zhang K,et al.Acetylation of H2A.Z.Lys 14is associated with genome-wide gene activity in yeast [J].Genes Dev,2006,20:711-722.
[42]Billon P,Cote J.Precise deposition of histone H2A.Z.in chromatin for genome expression and maintenance[J].Biochim Biophys Acta,2012,1819:290-302.
[43]Michaels S D,Bezerra I C,Amasino R M,et al.FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis[J].PNAS,2004,101:3281-3285.
[44]Schmitz RJ,Hong L,Michaels S,et al.FRIGIDA-ESSENTIAL 1interacts genetically with FRIGIDA and FRIGIDA-LIKE 1to promote the winter-annual habit of Arabidopsis thaliana [J].Development,2005,132:5471-5478.
[45]Kim S,Choi K,Park C,et al.SUPPRESSOR OF FRIGIDA 4,encoding a C2H2-type zinc finger protein,represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C [J].Plant Cell,2006,18:2985-2998.
[46]Kim S Y,Michaels S D.SUPPRESSOR OF FRI 4encodes a nuclear-localized protein that is required for delayed flowering in winterannual Arabidopsis [J].Development,2006,133:4699-4707.
[47]Andersson C R,Helliwell C A,Bagnall D J,et al.The FLX gene of Arabidopsis is required for FRI-dependent activation of FLC expression [J].Plant Cell Physiol,2008,49:191-200.
[48]Choi K,Kim J,Hwang H J,et al.The FRIGIDA complex activates transcription of FLC,a strong flowering repressor in Arabidopsis,by recruiting chromatin modification factors[J].Plant Cell,2011,23:289-303.
[49]Kim SY,He Y,Jacob Y,et al.Establishment of the vernalization-responsive,winter-annual habit in Arabidopsis requires a putative histone H3methyl transferase[J].Plant Cell,2005,17:3301-3310.
[50]Jaehning J A.The Paf1complex:platform or player in RNA polymerase II transcription?[J].Biochim Biophys Acta,2010,1799:379-388.
[51]Jiang D,Wang Y,Wang Y,et al.Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2components[J].PLoS ONE,2008,3:e3404.
[52]Farrona S,Thorpe F L,Engelhorn J,et al.Tissue-specific expression of FLOWERING LOCUS T in Arabidopsisis maintained independently of Polycomb group protein repression [J].Plant Cell,2011,23:3204-3214.
[53]Lu F,Cui X,Zhang S,et al.Arabidopsis REF6is a histone H3lysine 27demethylase[J].Nat Genet,2011,43:715-719.
[54]Turck F,Roudier F,Farrona S,et al.Arabidopsis TFL2/LHP1specifically associates with genes marked by trimethylation of histone H3lysine 27 [J].PLoS Genet,2007,3:e86.
[55]Moon Y H,Chen L,Pan R L,et al.EMF genes maintain vegetative development by repressing the flower program in Arabidopsis[J].Plant Cell,2003,15:681-693.
[56]Bratzel F,López-Torrejón G,Koch M,et al.Keeping cell identity in Arabidopsis requires PRC1RING-finger homologs that catalyze H2Amonoubiquitination [J].Curr Biol,2010,20:1853-1859.
[57]Yang W,Jiang D,Jiang J,et al.A plant-specific histone H3lysine 4demethylase represses the floral transition in Arabidopsis[J].Plant J,2010,62:663-673.
[58]Jeong J H,Song H R,Ko J H,et al.Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3lysine 4demethylases in Arabidopsis[J].PLoS ONE,2009,4:e8033.
[59]Lu F,Cui X,Zhang S,et al.JMJ14is an H3K4demethylase regulating flowering time in Arabidopsis [J].Cell Res,2010,20:387-390.
[60]Blázquez M A,Ahn J H,Weigel D,et al.A thermosensory pathway controlling flowering time in Arabidopsis thaliana [J].Nat Genet,2003,33:168-171.
[61]Kumar S V,Wigge P A.H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J].Cell,2010,140:136-147.