999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Bitranslations of com p letely sim p le sem igroups and some applications

2013-06-01 12:30:13YANGYuhuiZHANGJiangang
關(guān)鍵詞:數(shù)理性質(zhì)利用

YANG Yuhui,ZHANG Jiangang

(College of Mathematics and Sciences,Shanghai Normal University,Shanghai 200234,China)

Bitranslations of com p letely sim p le sem igroups and some applications

YANG Yuhui,ZHANG Jiangang

(College of Mathematics and Sciences,Shanghai Normal University,Shanghai 200234,China)

We discuss the bitranslations of completely simple semigroups by the representations given by Petrich M.As an application,we get the structure of an inflation of a completely simple semigroup.Furthermore,we consider the isomorphism between two inflations of completely simple semigroups.

completely simple semigroup;bitranslation;inflation

1 Introduction and notations

Lallement G.reduced the structure of completely regular semigroups to that of completely simple semigroups and certain functions among them and their translational hulls in[1].Petrich M gave the representation of the wreath product of left,right translations and bitranslations of a completely simple semigroup in[2]and[3].Zhang JG,etc.considered the properties of bitranslations of completely simple semigroups in[4]by the representation of the wreath product.In this paper,we discuss the bitranslations of completely simple semigroups by another representation of them given by Petrich M.Furthermore,we get the structures of inflations of completely simple semigroups and isomorphisms between two inflations of completely simple semigroups.

An element a of a semigroup S is said to be regular if there exists an x in S such that a=axa.The semigroup S is said to be regular if all its elements are regular.A regular semigroup S is said to be completely regular if every element of S lies in a subgroup of S.A completely simple semigroup is completely regular and simple.By Rees′s theorem,every completely simple semigroup is isomorphic to a Reesmatrix semigroup.

Let S be a semigroup and x,y be arbitrary elements of S.A mapλon S,written on the left,is a left translation ifλ(xy)=(λx)y;amapρon S,written on the right,is a right translation if(xy)ρ=x(yρ);the pair (λ,ρ)is a bitranslation if in addition x(λy)=(xρ)y,λandρa(bǔ)re also said to be linked.The setΛ(S)of all left translations of S is a semigroup under the composition(λλ′)x=λ(λ′x);the set P(S)of all right translations of S is a semigroup under the composition x(ρρ′)=(xρ)ρ′;the subsemigroupΩ(S)ofΛ(S)× P(S)consisting of all bitranslations is the translational hull of S.Specially,λaandρa(bǔ)are linked obviously,whereλax=ax and xρa(bǔ)=xa,for some a∈S.

Throughout this paper,the symbol S denotes a Reesmatrix semigroup M(I,G,Λ;P),where G is a group with identity e and P=(pλi)is the sandwichmatrix.The elements of S are denoted by(i,g,λ),where i∈I,g∈G andλ∈Λ.Let J?I and M?Λ.The symbol SJ×Mdenotes the subset{(i,g,λ)∈S:i∈J,g∈G,λ∈ M}of S.The setof idempotents of a semigroup S is denoted by E(S).An idempotent(i,λ)of S is denoted by eiλ.Let J?I and M?Λ.Then the symbol EJ×Mdenotes the subset{eiλ∈E(S):i∈J,λ∈M}of E (S).

Notation 1.1[5]In this section,we set S=M(I,G,Λ;P)with P normalized at1∈I∩Λ.Let

with multiplication(F,g,Φ)(F′,g′,Φ′)=(FF′,gp1Φ,F(xiàn)′1g′,ΦΦ′),where J′(I)is the set of allmaps in I and J(Λ)is the set of allmaps inΛ.

Lemma 1.1[5]Let S=M(I,G,Λ;P)with P normalized,and let e be the identity of G.Define amappingσby

where F,g andΦare defined by the requirements

Further,we define amappingτby

whereλandρa(bǔ)re defined by the formulae

Thenσandτaremutually inverse isomorphisms betweenΩ(S)and T(S).Moreover

In this paper,we use the triple(F,g,Φ)to describe the Green′s relations and inner bitranslations of completely simple semigroups.Let a∈S and P be a Green′s relation,the symbol Padenotes the P-class of S containing a.

The reader is refered to[5-7]for definitions and symbols notmentioned here.

2 Bitranslations of completely simple semigroups

Let i,j∈I,λ,μ∈Λ,and set

Then it is easy to verify the following results.

Lemma 2.1Let S be a completely simple semigroup.The following conditions are equivalent:

(1)qλμij=e,

(2)rλμij=e,

(3)E{i,j}×{λ,μ}is a subband of S.

Proposition 2.1Let(F,g,Φ)∈T(S).Then for any i,j∈I,λ,μ∈Λ,we have

Similarly,(2)can be proved.

The converse part is easy to see.

LetιI,ιΛbe the identitymappings on I,Λ.Then we have the following corollary.

Corollary 2.2The identity of T(S)is(ιI,e,ιΛ).

3 Some applications

A semigroup S is an inflation of a semigroup K if K is a subsemigroup of S and there is amappingφ*of S into K such that

Let Q be a partial semigroup and K=M(I,G,Λ;P)be a Reesmatrix semigroup over a group G,such that Q∩K=?.Letξ:p|→i be amapping from Q into I on the left,η:pλbe amapping from Q intoΛon the right andφ:p|→g be amapping from Q into G on the right side.

Let us define amultiplication on S=Q∪K with

(4)pq=(ξ(p),(p)φp(p)η,ξ(q)(q)φ,(q)η), for all p,q∈Q;g,h∈G;i,j∈I andλ,μ∈Λ.Then S with themultiplication defined above will be denoted by M(I,G,Λ;P;Q;φ,ξ,η).

Lemma 3.1M(I,G,Λ;P;Q;φ,ξ,η)is a semigroup.

ProofIt is clear that themultiplication iswell defined.

The other cases can be proved similarly.So M(I,G,Λ;P;Q;φ,ξ,η)is a semigroup.

Theorem 3.1S is an inflation of a completely simple semigroup K if and only if S is isomorphic to some M(I,G,Λ;P;Q;φ,ξ,η),where K=M(I,G,Λ;P).

ProofLet S be an inflation of a completely simple semigroup K.Then the Reesmatrix semigroup K is the kernel of S,and Q=S\K is a partial semigroup.For any p∈Q and(j,h,μ)∈K,ifφ*(p)=(i,g,λ),we have

Hence we get S=M(I,G,Λ;P;Q;φ,ξ,η).

Conversely,if S=M(I,G,Λ;P;Q;φ,ξ,η),by Lemma 3. 1,S is a semigroup and K=M(I,G,Λ;P)is the kernel of S.Define amappingφ*:SK satisfying that

(1)for any(i,g,λ)∈K,φ*(i,g,λ)=(i,g,λ),

(2)for any p∈Q,φ*p=(ξ(p),(p)φ,(p)η).

Sinceξ,φ,ηaremappings,soφ*iswell defined.

For any(i,g,λ),(j,h,μ)∈K,p,q∈Q,we have

Hence,S is an inflation of the completely simple semigroup M(I,G,Λ;P).

Theorem 3.2

[1] LALLEMENT G.Demi-groups reguliers[J].Ann Mat Pura Appl, 1967,77:47-129.

[2] PETRICH M.The translational hull of a completely 0-simple semigroup[J].Glasgow Math, 1968,9:1-11.

[3] PETRICH M.The structure of completely regular semigroups[J].TAMS, 1974,189:221-236.

[4] SONG G T,ZHANG JG,LIU G X.Bitranslations of Completely Simple Semigroups[J].Southest Asion Bulletion ofMathematics, 2006,30:107-122.

[5] PETRICH M,REILLY N.Completely Regular semigroups[M].New york:John Weley&Sonc INC,1999.

[6] HOWIE JM.Fundamentals of Semigroup Theory[M].Oxford:Oxford University Press Inc,1995.

[7] STOJAN BOGANOVIC.Semigroupswith a System of Subsemigroups[M].Novi Sad:University of Novi sad Institude of Mathematic,1985.

(責(zé)任編輯:馮珍珍)

完全單半群的平移包及其應(yīng)用

楊禹慧,張建剛

(上海師范大學(xué)數(shù)理學(xué)院,上海200234)

利用Petrich M.關(guān)于完全單半群的平移包的表示進(jìn)一步研究了完全單半群平移包的性質(zhì).作為應(yīng)用,給出了完全單半群膨脹的結(jié)構(gòu)和它們之間的同構(gòu).

完全單半群;平移包;膨脹

O 152.7

A

1000-5137(2013)02-0111-09

Received date:2013-01-12

Foundation item:National Natural Science Foundation of China( 11201305,11001046);Innovation Projectof Shanghai Education Committee(12YZ081)

Biography:YANG Yuhui(1987-),female,graduate student,College of Mathematics and Sciences,Shanghai Normal University;ZHANG Jiangang(1977-),male,associate professor,College ofMathematics and Sciences,ShanghaiNormal University.

猜你喜歡
數(shù)理性質(zhì)利用
踐行“德融數(shù)理” 打造“行知樂園”
利用min{a,b}的積分表示解決一類絕對(duì)值不等式
隨機(jī)變量的分布列性質(zhì)的應(yīng)用
完全平方數(shù)的性質(zhì)及其應(yīng)用
利用一半進(jìn)行移多補(bǔ)少
數(shù)理:多少人吃飯
孩子(2019年9期)2019-11-07 01:35:49
九點(diǎn)圓的性質(zhì)和應(yīng)用
利用數(shù)的分解來思考
Roommate is necessary when far away from home
厲害了,我的性質(zhì)
主站蜘蛛池模板: 日韩一二三区视频精品| 亚洲成人一区二区三区| 亚洲娇小与黑人巨大交| 久久国产乱子| 日韩专区欧美| 亚洲成av人无码综合在线观看 | 国产精品自在在线午夜区app| 国产无码在线调教| 欧美人与牲动交a欧美精品 | 免费无遮挡AV| 国产精品林美惠子在线播放| 一级爆乳无码av| 亚洲区第一页| 国产欧美另类| 久久精品这里只有国产中文精品| 91成人试看福利体验区| 国产精品不卡片视频免费观看| 在线va视频| 日韩a级片视频| 欧美A级V片在线观看| 日韩资源站| 亚洲男人天堂2020| 亚洲最黄视频| 福利在线不卡一区| 婷婷99视频精品全部在线观看 | 57pao国产成视频免费播放| 国产成人超碰无码| 国产亚洲美日韩AV中文字幕无码成人 | 久久国产精品电影| 国产精品hd在线播放| 亚洲一区毛片| 亚洲专区一区二区在线观看| 国产一区二区三区在线精品专区| 国产丝袜精品| 麻豆a级片| 久久性妇女精品免费| 亚洲熟女偷拍| 91免费国产高清观看| 国产精品亚洲精品爽爽| 三区在线视频| 久久成人免费| 欧美另类图片视频无弹跳第一页| 亚洲区一区| 青青草原国产av福利网站| 免费看黄片一区二区三区| 久久精品女人天堂aaa| 香蕉久人久人青草青草| 国产精品网拍在线| 久久精品免费看一| 国产办公室秘书无码精品| 18禁黄无遮挡网站| 久久久久国产一区二区| 国产99在线观看| 欧美区一区| 51国产偷自视频区视频手机观看 | 国产成年无码AⅤ片在线| 狠狠色婷婷丁香综合久久韩国| 亚洲国产精品美女| 国产亚洲现在一区二区中文| 欧美一级黄片一区2区| 日本在线国产| 欧美亚洲欧美区| 性喷潮久久久久久久久| 亚洲国产无码有码| 91毛片网| 亚洲一级无毛片无码在线免费视频| 国产亚洲欧美另类一区二区| 国产精品va| 2021亚洲精品不卡a| 99久久精品美女高潮喷水| 永久成人无码激情视频免费| 91麻豆精品国产91久久久久| 成人国产一区二区三区| 国产日韩欧美一区二区三区在线| 在线看片中文字幕| 欧美成在线视频| 日韩小视频在线播放| 99视频国产精品| 欧美伦理一区| 91福利国产成人精品导航| 国产高清毛片| 自拍亚洲欧美精品|