郜攀,司良毅,徐強,王笑梅
白藜蘆醇對血管緊張素Ⅱ誘導的血管平滑肌細胞增殖的抑制作用及其機制觀察
郜攀,司良毅,徐強,王笑梅
目的探討白藜蘆醇對血管緊張素Ⅱ(AngⅡ)誘導的血管平滑肌細胞(VSMCs)增殖的影響及其可能機制。方法體外培養大鼠胸主動脈血管平滑肌細胞(VSMCs)。在檢測白藜蘆醇影響AngⅡ誘導VSMCs增殖和活力的實驗中,將細胞分為對照組、AngⅡ組(1μmol/L)、白藜蘆醇濃度梯度(10、30、100μmol/L)組及AngⅡ+白藜蘆醇濃度梯度組,各組細胞均反應0、6、12、24h,采用細胞計數法檢測VSMCs增殖情況,MTT法檢測VSMCs活力。在檢測腺苷酸活化蛋白激酶(AMPK)抑制劑復合物C對VSMCs生物活性影響的實驗中,將細胞分為對照組、AngⅡ組、白藜蘆醇+AngⅡ組及復合物C組+白藜蘆醇+AngⅡ組,各組細胞反應24h后采用Western blotting檢測增殖細胞核抗原(PCNA)蛋白表達。結果與對照組比較,6、12、24h后AngⅡ組細胞活力和細胞數目均顯著增高(P<0.05);與AngⅡ組比較,不同濃度白藜蘆醇+AngⅡ組細胞活力和細胞數目均顯著降低(P<0.05)。另一方面,與對照組比較,AngⅡ組PCNA蛋白表達顯著增高(P<0.05);與AngⅡ組比較,白藜蘆醇+AngⅡ組PCNA蛋白表達顯著降低(P<0.05);而與白藜蘆醇+AngⅡ組比較,復合物C+白藜蘆醇+AngⅡ組細胞數目、細胞活力及PCNA蛋白表達顯著增高(P<0.05)。結論白藜蘆醇可抑制AngⅡ誘導的VSMCs增殖,其機制可能與AMPK的激活有關。
白藜蘆醇;肌細胞,平滑??;血管緊張素Ⅱ;腺苷酸活化蛋白激酶
動脈粥樣硬化是眾多心腦血管疾病發展的基礎。研究提示,炎癥因子刺激血管平滑肌細胞(vascular smooth muscle cells,VSMCs)表型轉換和異常增殖進而導致血管重構是動脈粥樣硬化發生的重要病理基礎[1-2]。近年來,紅酒中的天然提取物白藜蘆醇(resveratrol)在心血管疾病中的保護作用逐漸受到關注,相關研究表明白藜蘆醇能夠抑制VSMCs增殖,但其作用機制尚未闡明[3-4]。本課題組前期研究發現,白藜蘆醇能激活內皮細胞腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK),誘導一氧化氮釋放、改善內皮功能,提示AMPK對細胞功能具有重要影響[5]。血管緊張素Ⅱ(angiotensin Ⅱ,AngⅡ)是腎素-血管緊張素-醛固酮系統(RAAS)中最重要的一種生物活性肽,除有收縮血管、促醛固酮分泌及心肌肥大[6]等作用外,還具有很強的促VSMCs增殖作用,同時AngⅡ是VSMCs分泌的一種重要炎癥介質,除誘導血管平滑肌細胞增殖之外,還可促進炎癥介質釋放,導致動脈粥樣硬化發生[7]。因此觀察白藜蘆醇與VSMCs內AngⅡ的相互作用,進而探討其相互作用機制對理解白藜蘆醇在心血管系統中的保護作用具有重要意義。
1.1 動物及試劑 清潔級SD大鼠購自第三軍醫大學動物實驗中心。白藜蘆醇、血管緊張素Ⅱ、復合物C(AMPK抑制劑)均購自Sigma公司(美國);細胞計數試劑盒及MTT試劑盒購買自北京鼎國重慶分公司;SM-actin蛋白、增殖細胞核抗原(proliferating cell nuclear antigen,PCNA)蛋白、β-actin蛋白一抗購自Santa Cruz公司(美國);兔抗山羊二抗購自北京中杉金橋生物公司。
1.2 原代VSMCs的培養和鑒定[8]組織貼塊法培養大鼠胸主動脈VSMCs。倒置相差顯微鏡下觀察細胞形態及生長狀況。采用SM-actin免疫熒光法對VSMCs進行細胞鑒定,陽性表達為胞質呈細顆粒狀綠色沉淀反應。
1.3 細胞分組 選擇第3~5代VSMCs進行實驗。胰蛋白酶消化制備細胞懸液,調整細胞密度為5.0×107/L,接種于培養板備用。在37℃、5%CO2條件下經10%胎牛血清預培養24h和0.5%胎牛血清預處理12h后進行分組。在檢測白藜蘆醇對AngⅡ誘導的VSMCs增殖和細胞活力的影響作用實驗中,將細胞隨機分為對照組(不加特殊處理因素)、AngⅡ組(1μmol/L AngⅡ處理)、不同濃度白藜蘆醇組(10、30、100μmol/L白藜蘆醇處理)、不同濃度白藜蘆醇+AngⅡ組(1μmol/L AngⅡ+10、30、100μmol/L白藜蘆醇處理),各組細胞反應0、6、12、24h后進行檢測。在檢測復合物C對VSMCs生物活性影響的實驗中,將細胞隨機分為對照組、AngⅡ組(1μmol/ L AngⅡ處理)、白藜蘆醇+AngⅡ組(1μmol/L AngⅡ和100μmol/L白藜蘆醇處理)和復合物C+白藜蘆醇+AngⅡ組(以1μmol/L復合物C預處理細胞24h后,再加入100μmol/L白藜蘆醇+1μmol/L AngⅡ),各組細胞反應24h后進行檢測。
1.4 細胞計數[9]VSMCs培養24h后換用含0.5%胎牛血清的DMEM培養液同步化24h。按實驗分組換用含不同干擾因素及10%胎牛血清的DMEM培養液繼續培養。分別在給予干擾因素后0、6、12、24h計數各組細胞。實驗重復3次,每次計數3個復孔。
1.5 MTT法檢測細胞活力[10]按每孔1×103個細胞接種于96孔板,用含10%胎牛血清的DMEM培養液培養24h后換用含0.5%胎牛血清的DMEM培養液同步化24h。按實驗分組用含不同干擾因素及10%胎牛血清的DMEM培養液繼續培養。分別在給予干擾因素后6、12、24h后用MTT法檢測,于490nm波長處測定各孔A值。實驗重復3次,每次6個復孔。
1.6 Western blotting檢測PCNA蛋白的表達[11]提取細胞總蛋白,以SDS-PAGE凝膠行蛋白電泳,上樣量為50μg。電泳完畢將蛋白轉到聚偏氟乙烯膜(PVDF)上。轉膜后在含5%脫脂奶的TBST中封閉1h,TBST洗滌3次,與1:250稀釋的PCNA及β-actin抗體反應,4℃過夜。洗膜3次,加1:2000稀釋的二抗,室溫孵育1h,ECL化學發光法顯色,X線膠片曝光、顯影、定影,采用Quantity One軟件行灰度分析,以兔抗鼠β-actin作為內參照。
1.7 統計學處理 采SPSS 13.0統計軟件進行分析。計量資料結果以±s表示,組間比較采用單因素方差分析,進一步兩兩比較采用Tukey多重比較法,P<0.05為差異有統計學意義。
2.1 VSMCs的體外培養及鑒定 倒置相差顯微鏡下觀察,細胞為梭形或長梭形,排列成放射狀、旋渦狀,呈典型“谷”與“峰”生長現象(圖1A)。SM-actin單克隆抗體免疫組化染色可見胞質肌絲呈典型棕黃色細顆粒狀沉淀,陽性率達95%以上,表明VSMCs純度高(圖1B)。

圖1 體外培養的VSMCs形態及鑒定Fig. 1 Morphology and identification of VSMCs cultured in vitro
2.2 白藜蘆醇對AngⅡ誘導VSMCs增殖的影響在6、12、24h時間點,AngⅡ組細胞數均明顯高于對照組(P<0.05),而10、30、100μmol/L白藜蘆醇組細胞數在各時間點與對照組比較差異均無統計學意義(P>0.05)。AngⅡ+30μmol/L白藜蘆醇組和AngⅡ+100μmol/L白藜蘆醇組各時間點細胞數均低于AngⅡ組(P<0.05),而AngⅡ+10μmol/L白藜蘆醇組細胞數在各時間點與AngⅡ組比較差異無統計學意義(P>0.05,表1),表明30μmol/L和100μmol/L白藜蘆醇均可阻斷AngⅡ誘導的VSMCs增殖,而10μmol/L白藜蘆醇無此作用。
2.3 白藜蘆醇對AngⅡ調節VSMCs細胞活力的影響 MTT法檢測顯示,AngⅡ組A值在6、12、24h均明顯高于對照組(P<0.05),而10、30、100μmol/L白藜蘆醇組A值在各時間點與對照組比較差異均無統計學意義(P>0.05)。與AngⅡ組比較,AngⅡ+30μmol/L白藜蘆醇組和AngⅡ+100μmol/L白藜蘆醇組各時間點A值均明顯降低,差異有統計學意義(P<0.05),而AngⅡ+10μmol/L白藜蘆醇組A值在各時間點與AngⅡ組比較無明顯差異(P>0.05,表2),表明30、100μmol/L白藜蘆醇均可阻斷AngⅡ增強VSMCs細胞活力的作用,而10μmol/L白藜蘆醇則無此作用。
表1 各組血管平滑肌細胞計數結果(×105/ml,±s,n=3)Tab. 1 VSMCs count in different groups (×105/ml,±s, n=3)

表1 各組血管平滑肌細胞計數結果(×105/ml,±s,n=3)Tab. 1 VSMCs count in different groups (×105/ml,±s, n=3)
(1)P<0.05 compared with control group; (2)P<0.05 compared with AngⅡgroup
2.4 復合物C對白藜蘆醇抑制AngⅡ誘導VSMCs細胞增殖及PCNA蛋白表達的影響 采用1μmol/L復合物C預處理后,與AngⅡ+白藜蘆醇組比較,復合物C+AngⅡ+白藜蘆醇組VSMCs細胞數增加38.0%,細胞活力增加22.1%,差異有統計學意義(P<0.05)。Western blotting檢測顯示:與對照組比較,AngⅡ組VSMCs內PCNA蛋白表達顯著升高,差異有統計學意義(P<0.05)。與AngⅡ組比較,白藜蘆醇+AngⅡ組PCNA蛋白表達顯著降低(P<0.05)。采用復合物C預處理后,復合物C+AngⅡ+白藜蘆醇組VSMCs細胞內PCNA蛋白表達顯著高于白藜蘆醇+AngⅡ組,差異有統計學意義(P<0.05,圖2)。

表2 MTT法檢測細胞活力(A值,n=3)Tab. 2 Activity of VSMCs measured by MTT assay (A value, n=3)

圖2 不同處理對VSMCs內PCNA蛋白表達的影響Fig. 2 Effects of resveratrol and AngⅡ on the protein expression of PCNA in VSMCs
動脈粥樣硬化是由多種病因造成的始發于動脈壁內膜的一系列復雜的分子和細胞改變的總結果,也是誘發冠心病、心肌梗死、腦梗死等心腦血管疾病的主要原因[12]。流行病學調查發現,有飲用適量葡萄酒習慣的人其心血管疾病的發病率和病死率相對較低,進一步研究發現這一現象可能與葡萄酒中含有較高含量的白藜蘆醇有關[13]?,F代藥理學研究證實,白藜蘆醇具有多種藥理學作用,如抗炎、抑制血小板聚集、調節脂質代謝、保護心血管缺血性損傷和抗腫瘤等[14]。
VSMCs異常增殖是高血壓、冠狀動脈粥樣硬化和冠狀動脈介入治療術后再狹窄等疾病的主要病理生理機制[15]。AngⅡ是一種重要的血管活性物質,在體內和體外均可誘導VSMCs過度增殖,而抑制此作用可阻止多種心血管疾病的發生及發展[16]。本研究發現AngⅡ能夠顯著增加VSMCs細胞的增殖能力、細胞活性及增殖標志物PCNA蛋白的表達,且30、100μmol/L白藜蘆醇能夠抑制AngⅡ誘導的VSMCs增殖,而10μmol/L白藜蘆醇則無此作用,提示白藜蘆醇對VSMCs增殖的影響呈濃度依耐性。Schreiner等[17]研究發現白藜蘆醇可抑制AngⅡ誘導的VSMCs信號轉導分子激活,進而發揮相應的生物學作用,且這一作用與白藜蘆醇抗氧化作用有關,但其具體機制尚未闡明。
本課題組前期研究發現,100μmol/L白藜蘆醇可顯著減輕高糖對血管舒張活動的抑制作用,進一步研究發現白藜蘆醇能夠激活AMPK,進而誘導內皮細胞內一氧化氮等生物活性物質釋放,起到抗氧化和抗炎癥反應的作用[5]。AMPK是廣泛存在于真核生物細胞中的一種信號通路分子,介導多種細胞生物學功能,本研究結果顯示,給予復合物C抑制細胞內AMPK活性后,白藜蘆醇抑制細胞增殖、活力和PCNA蛋白表達的作用被逆轉。該結果提示AMPK是白藜蘆醇發揮細胞保護作用的重要信號分子,激活AMPK后抑制氧化應激可能是白藜蘆醇抑制平滑肌細胞增殖的重要作用途徑。
綜上所述,白藜蘆醇能夠抑制血管平滑肌細胞的異常增殖,進而起到預防高血壓、冠心病等心腦血管疾病的作用,而AMPK信號激活在白藜蘆醇細胞保護過程中起到重要作用。
[1] Little PJ, Getachew R, Rezaei HB, et al. Genistein inhibits PDGF-stimulated proteoglycan synthesis in vascular smooth muscle without blocking PDGFbeta receptor phosphorylation[J]. Arch Biochem Biophys, 2012, 525(1): 25-31.
[2] Badimon L, Vilahur G. LDL-cholesterol versus HDL-cholesterol in the atherosclerotic plaque: inflammatory resolution versus thrombotic chaos[J]. Ann N Y Acad Sci, 2012, 1254(2): 18-32.
[3] Chu LM, Lassaletta AD, Robich MP, et al. Resveratrol in the prevention and treatment of coronary artery disease[J]. Curr Atheroscler Rep, 2011, 13(6): 439-446.
[4] Paffett ML, Lucas SN, Campen MJ. Resveratrol reverses monocrotaline-induced pulmonary vascular and cardiac dysfunction: a potential role for atrogin-1 in smooth muscle[J]. Vascul Pharmacol, 2012, 56(1-2): 64-73.
[5] Xu Q, Hao X, Yang Q, et al. Resveratrol prevents hyperglycemiainduced endothelial dysfunction via activation of adenosine monophosphate-activated protein kinase[J]. Biochem Biophys Res Commun, 2009, 388(2): 389-394.
[6] Li L, Xu YF. Effect of Angiotensin Ⅱ on the expression of Kv4.2 potassium channel and its underlying mechanism in cardiomyocytes of neonatal rat[J]. Acta Acad Med CPAPF, 2010, 19(1): 26-28. [李亮, 許彥芳. Ang Ⅱ對心肌細胞Kv4.2鉀通道蛋白表達的影響及機制[J]. 武警醫學院學報, 2010, 19(1): 26-28.]
[7] Putnam K, Shoemaker R, Yiannikouris F, et al. The reninangiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome[J]. Am J Physiol Heart Circ Physiol, 2012, 302(6): H1219-H1230.
[8] Guo RW, Wang H, Gao P, et al. An essential role for stromal interaction molecule 1 in neointima formation following arterial injury[J]. Cardiovasc Res, 2009, 81(4): 660-668.
[9] Li CY, Jiang S, Yue YJ, et al. Effect and pathway of Id1 on the cell growth of nasopharyngeal carcinoma[J]. Med J Chin PLA, 2012, 37(6): 569-572. [李春燕, 江山, 岳渝娟, 等. 分化抑制因子1對鼻咽癌細胞增殖的影響及其途徑[J]. 解放軍醫學雜志, 2012, 37(6): 569-572.]
[10] Feng F, Gao XD, Lu YY, et al. Regulatory effect of LINE-1 ORF-1p on hepatocellular carcinoma cells and proliferation of immortalized hepatocellular cells[J]. Med J Chin PLA, 2012,37(3): 213-216. [馮帆, 高旭東, 陸蔭英, 等. LINE-1 ORF-1p對肝臟腫瘤細胞系和肝源永生化細胞系增殖的調控作用[J].解放軍醫學雜志, 2012, 37(3): 213-216.]
[11] Jia QH, Yang XP, Hui L, et al. Effect of lead acetate on apoptosis of human renal mesangial cells and caspase-3 expression[J]. Med J Chin PLA, 2012, 37(6): 628-631. [賈慶華, 楊霄鵬, 惠玲, 等.醋酸鉛對人腎小球系膜細胞凋亡及Caspase-3表達的影響[J]. 解放軍醫學雜志, 2012, 37(6): 628-631.]
[12] Campbell KA, Lipinski MJ, Doran AC, et al. Lymphocytes and the adventitial immune response in atherosclerosis[J]. Circ Res, 2012, 110(6): 889-900.
[13] Kroon PA, Iyer A, Chunduri P, et al. The cardiovascular nutrapharmacology of resveratrol: pharmacokinetics, molecular mechanisms and therapeutic potential[J]. Curr Med Chem, 2010, 17(23): 2442-2455.
[14] Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging[J]. Cell, 2011, 146(5): 682-695.
[15] Jing QM, Huang GQ, Han YL, et al. Comparative study on percutaneous coronary intervention of unprotected left main coronary artery disease: transradial versus transfemoral approach[J]. Med J Chin PLA, 2011, 36(11): 1149-1153. [荊全民, 黃貴奇, 韓雅玲, 等. 經橈、股動脈途徑行無保護左主干病變介入治療的對比研究[J]. 解放軍醫學雜志, 2011, 36(11): 1149-1153.]
[16] Wang ZM, Wu X. Influence of atorvastatin on left ventricular hypertrophy in spontaneous hypertension rats[J]. J Zhengzhou Univ (Med Sci), 2012, 47(4): 554-556. [王智敏, 吳瑕. 阿托伐他汀對自發性高血壓大鼠左心室肥厚的影響[J]. 鄭州大學學報(醫學版), 2012, 47(4): 554-556.]
[17] Schreiner CE, Kumerz M, Gesslbauer J, et al. Resveratrol blocks Akt activation in angiotensin Ⅱ- or EGF-stimulated vascular smooth muscle cells in a redox-independent manner[J]. Cardiovasc Res, 2011, 90(1): 140-147.
Inhibitory effect of resveratrol on proliferation of vascular smooth muscle cells induced by angiotensin Ⅱ and its underlying mechanism
GAO Pan, SI Liang-yi*, XU Qiang, WANG Xiao-mei
Department of Geriatrics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
*
, E-mail: doctorsly@126.com
This work was supported by the National Natural Science Foundation of China (81000132), and the Special Fund of Chongqing Key Laboratory (CSTC) from Institute of Cardiovascular Science in Xinqiao Hospital (CQZDSYS201202)
ObjectiveTo explore the effect of resveratrol on proliferation of vascular smooth muscle cells (VSMCs) as induced by angiotensin Ⅱ (Ang Ⅱ) and its underlying mechanism.MethodsVSMCs of rat′s thoracic aorta were primarily cultured in vitro. For detecting the effects of resveratrol on Ang Ⅱ-induced VSMC proliferation, the cultured cells were divided into a control group, Ang Ⅱ group (1μmol/L), gradient concentrations of resveratrol groups, and Ang Ⅱ + gradient concentration of resveratrol groups. The gradient concentrations of resveratrol were set as 10, 30 and 100μmol/L. Cells in each group were treated for 0, 6, 12 and 24h, respectively. VSMC proliferation was detected by cell count assay, and the viability of the VMSC was measured by MTT assay. For detecting the effects of compound C [adenine monophosphate-activated protein kinase (AMPK) inhibitor] on biological effects of VSMCs, the cultured cells were divided into a control group, Ang Ⅱ group, resveratrol + Ang Ⅱ group and compound C + resveratrol + Ang Ⅱ group. The protein expression of proliferated cell nuclear antigen (PCNA) in each group was detected by Western blotting after being treated for 24 hours.ResultsCompared with control group, the cell viability and cell number in Ang Ⅱ group were significantly increased (P<0.05) after Ang Ⅱ stimulation for 6, 12 and 24 hours. Compared with AngⅡ group, the cell vitality and cell number were significantly decreased in different concentrations of resveratrol + Ang Ⅱ groups (P<0.05). On the other hand, compared with the control group, the expression of PCNA protein in Ang Ⅱ group was significantly increased (P<0.05); as compared with Ang Ⅱ group, the expression of PCNA protein in resveratrol + Ang Ⅱ group was significantlydecreased (P<0.05); as compared with resveratrol + Ang Ⅱ, the cell number, cell viability, and PCNA protein expression in compound C + resveratrol + Ang Ⅱ group was significantly increased (P<0.05).ConclusionResveratrol can inhibit Ang Ⅱstimulated cell proliferation through activation of AMPK.
resveratrol; myocytes, smooth muscle; angiotensin Ⅱ; adenosine monophosphate-activated protein kinase
R541.4
A
0577-7402(2013)04-0269-05
2012-10-03;
2013-01-09)
(責任編輯:張小利)
國家自然科學基金(81000132);重慶市新橋醫院全軍心血管研究所重點實驗室專項經費資助項目(CQZDSYS201202)
郜攀,醫學博士,主治醫師。主要從事冠心病及其發病機制研究
400038 重慶 第三軍醫大學西南醫院老年病科(郜攀、司良毅、徐強、王笑梅)
司良毅,E-mail:doctorsly@126.com