陳安寧
(隴東學院數學與統計學院,甘肅 慶陽 745000)
A.A.斯托利亞爾曾說:“數學教學也就是數學語言的教學。”[1]數學語言是數學知識的重要部分,是數學思想、數學方法和數學思維的載體,也是數學表達和交流的工具,在現代信息社會中數學語言已成為一種具有廣泛應用性的交流工具。我國在新頒發的《全日制義務教育數學課程標準》(實驗稿)中指出:數學教學是數學活動的教學,是師生之間、學生之間交往互動與共同發展的過程。而師生之間的交往很大程度上依賴于語言。數學為其他科學提供了語言、思想和方法,是一切重大技術發展的基礎,是人類的一種文化,它的內容、思想、方法和語言都是人類文化的重要組成部分[2]。在新頒布的《普通高中數學課程標準》(實驗)中也有相應的表述,如數學語言具有精確、簡約、形式化等特點,能否恰當地運用數學語言及自然語言進行表達與交流也是評價學生的重要內容[3]。
眾所周知,教師是通過語言來傳授知識的。這就要求數學教師用科學準確的語言進行教學,并逐步培養學生的語言表達能力。怎樣通過正確的數學語言獲得數學教學的成功,是一個永恒的話題。數學是一門邏輯性很強、專業性突出的學科,數學教師不僅要具有扎實的專業知識和廣博的文化知識背景,還要具有較高的數學文化素養,尤其是具有較強的數學語言表達能力。師范生是未來的教師,其數學素養直接關系到我國數學教育的質量和水平。在師范院校嚴抓教學質量、加強素質教育的今天,如果不加強師范生數學語言表達能力的培養和訓練,畢業后就不能很快適應教學工作。因此,數學教育也要重視數學語言教學,使學生自覺地認識、理解和使用數學語言,幫助學生克服理解和使用數學語言的障礙與困難,教會學生縝密地運用數字、符號、圖形等解決數學問題,創造性地開展探究性學習;學會運用數學語言表達和理解,培養學生準確使用數學語言的良好習慣,以數學語言教學帶動數學教學,培養出具有創新精神和實踐能力的合格人才。
目前,師范生就業壓力大,用人單位要求高,要求畢業生具有過硬的教學基本功,能獨立承擔教學工作。但近年來,筆者在數學課堂教學、指導學生試講及教育實習中發現,師范生對數學語言的運用存在很多問題,不僅嚴重影響了其數學學習效果,還直接影響到其將來數學教學的質量和水平。具體表現為以下幾方面。
數學是一門敘述嚴謹、邏輯性很強的學科,一字之差就可能造成邏輯與本質上的錯誤。如將“”錯讀為“消去 a”,正確的讀法應是“約去 a”;把“x+2y-x=2?2y=2”,錯讀為“約去x”,正確讀法應是“消去x”。在數學中,“約”是對代數式商的形式而言的,“消”是對代數式和的形式而言的;把“(a+b)2”錯讀為“a 加上 b的平方”,即“a+b2”,或錯讀為“a 加上 b 括號的平方”,使人不知該怎樣理解,正確的讀法是“a、b 兩數和的平方”。又如把“2<x<5”錯讀為“x 在 2 和 5 之間”,應該讀成“x 是大于2,而小于5的數”。邏輯連詞“且”與“或”不能恰當使用。
如“同一三角形中,大邊所對的角較大”這個定理,盡管教材上說明可以簡讀作“大邊對大角”,但在口述時應該注意定理的完整性。不少師范生口述時只說“大邊對大角”,致使有的學生對于兩個三角形的問題,也錯誤地套用這一結論。有的師范生為了突出點到直線距離的含義,把“點到直線的距離”說成“點到直線的垂直距離”,使部分學生誤認為點到直線的距離除了垂直,還有非垂直距離。有的學生對數學語言中的“有、只有”表示存在性與唯一性不理解,致使出現語言表達錯誤,如“經過兩點有一條直線,并且只有一條直線”、“只有一組對邊平行的四邊形叫梯形”,使部分學生總認為“有一條直線”和“只”這些字句是多余的等。
師范生運用數學語言時,有的過分依賴于自然語言,而喪失了數學語言的嚴謹性、準確性;有的過分依賴于書面語言,語言表達過于呆板,缺乏應有的藝術感染力。給學生講解定義定理時,為了讓學生學懂,需要做必要的解釋與證明。如給函數下定義后,解釋說:“什么叫函數關系?就是一個量在變,另一個量也跟著變。”學生會忽視“某一變化過程”與“自變量的某一范圍”這兩個很重要的條件,錯把此話當做函數定義來理解,做題時根本無視自變量的取值范圍。又如講判別式時,說“一元二次方程的判別式△<0 時,方程無解”(正確講法是“方程沒有實數根”),學生也就接受了,但給以后學習復數及解有虛數根方程帶來了困難。
部分師范生在試講平面幾何或立體幾何時,不能引導學生仔細閱讀題目,進而分析題意,把由文字表達的題意用圖形語言、符號語言表達出來。如證明命題“等腰三角形的三線合一”,部分師范生既不給學生解釋“三線合一”是什么意思,也不引導學生閱讀理解題意,將命題寫成“已知、求證”的形式,一敘述命題就直接進行證明,這種做法既不符合證明要求,也沒有進行語言轉換,即將文字語言轉譯成數學語言。還有將“a-(b+c)”讀作“a 減去括號b 加c 括號”比較別扭、啰嗦,且不利于學生對四則運算意義的后續學習,若改讀成“a 減去b 與c的和”就比較規范,而且沒讀括號,學生聽寫時會根據自己的理解自動添上括號,加深對運算意義的認識等。
有的師范生把解分式方程時用到的“換元法”說成“變量代換法”,在列方程解應用題時把“分析應用題中的等量關系”說成“找一下應用題中的不變量”,由于初中學生尚未學過“變量”概念,無法理解。有的師范生在向學生解釋“為什么零不能做分母”時,說“同學們上了大學就會明白,零做分母無窮大”,像這種一時向學生解釋不清的問題,可暫不解釋,但胡亂解釋就不好了。
師范生在數學語言書寫方面的不規范主要表現在:(1)平時的數學符號書寫,如將“直線 AB”寫成“直線 ab”,將“lg(x+y)”寫成“lgx+y”,把三條直線兩兩垂直寫成“a⊥b⊥c”等。(2)在講課過程中板書不規范或安排不合理,如將一節課所要講的內容或說的話全部寫在黑板上,將講課變成了“寫課”等。
數學語言是知識的載體,是交流思想的工具。數學教學活動中的基本任務是讓學生真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。數學語言表達能力的強弱直接決定了課堂教學效果及教育質量的好壞。數學語言表達的準確性體現著思維的嚴密性,表達的層次連貫性體現著思維的邏輯性,表達的多樣性體現著思維的豐富性,要使師范生學好數學、教好數學,就必須培養數學語言表達能力,提高自身思維能力。只有師范生從思想上重視數學語言,才能在實踐中把培養數學語言表達能力和學習數學知識緊密地結合起來,才能更好地體現數學語言表達的思維性、條理性、邏輯性和準確性,強化教學基本功。因此,師范生要盡早從思想上重視數學語言表達。筆者認為,最好在大學二年級第一學期或第二學期初就開始通過教育見習、課堂試教等形式強化這項工作,學生通過體驗會發現,有時很簡單的內容講不出來、講不清楚,只有通過聽、講,才能暴露自身存在的問題及數學語言表達能力的不足,從而引起足夠重視,提高數學語言表達能力。
加強概念教學,豐富學生數學語言詞匯。學生學習數學語言都是從模仿開始的,教師的一言一行都會對學生起著潛移默化的影響。要提高學生運用數學語言的準確性,首先要求教師語言表達具有準確性、激勵性、啟發性,給學生做出榜樣。教師的示范不僅可以用口頭語言來讓學生“聽”,還可以利用板書、肢體語言這些輔助形式讓學生“看”。在這個過程中,教師必須充分挖掘概念中關鍵詞語的真實涵義,掌握概念所揭示的具體內涵和概念符號,挖掘概念之間的內在聯系,重視相似概念之間不同結構與本質區別,使師范生從整體上理解、掌握概念。即對概念、性質、定理等中的字、詞、句仔細琢磨推敲,講述時做到“咬文嚼字”,一字不漏,確保正確描述數學概念,力求體現用詞的準確性、用語的嚴謹性、用句的邏輯性、做圖的直觀性,從而盡量做到課堂語言“零錯誤”,有的放矢地運用規范數學語言,從而給師范生留下深刻印象,產生潛移默化的作用。
數學語言有3種表達形式,即數學符號語言、圖式語言、數學化的文字語言。數學思想內容的表達常是數學符號語言、圖式語言和文字語言的優勢互補和有機融合[4]。數學語言轉譯是指這3種語言在語義等價基礎上的轉換。不同的數學語言可從不同側面共同說明同一數學對象,它們在本質上是統一的,內容上是一致的,可以相互轉譯。在數學教學和問題解決過程中,要根據具體情況,采用不同的語言形式進行語言的轉譯,使學生了解數學語言的形式與所表達內容的正確聯系,能將自然語言數學化、數學語言符號化和圖式化,并進行數學語言間的相互溝通。數學語言轉譯除有助于激發學生學習興趣外,還能加深其對數學本質的理解,增強辨析能力,轉譯的過程體現了對立統一的思想,有助于不同思路的轉換與問題的化歸。因此,培養師范生的數學語言轉譯能力具有重大的現實意義,而這又與教師的示范與指導分不開。這就要求教師在平時教學過程中,將數學語言轉譯落實到數學概念教學、數學命題教學、數學解題教學等具體教學過程中,有意識地把同一數學問題用多種數學語言來表示,向師范生充分展現這種轉譯的必要性和優越性,使學生在不斷的模仿中逐漸提高這種能力。
一般來說,師范生僅靠課堂上聽教師的講授是難以豐富和完善自己的數學語言的,只有通過閱讀,才能規范自己的數學語言。語言的學習離不開閱讀,加強數學閱讀對提高數學語言水平具有重要意義。縱觀發達國家的數學教學可以發現,數學語言的閱讀教學得到了應有的重視。如法國初中數學教學大綱就指出“教師應該關心學生對數學課文的閱讀和理解”。數學教材的語言較嚴密精練,具有很高的閱讀價值,是師范生獲得知識的主要源泉,也是表達數學事實和師范生學習數學語言的典范。師范生通過閱讀數學課文,靈活轉化閱讀內容,學習其中標準的數學語言,以增強數學語言的理解力,并能有效地促進語言水平的發展,提高其數學語言表達和交流能力。正因如此,現行的教材已意識到這一點的重要性,在許多章節都設置了“閱讀與思考”、“閱讀材料”。這些閱讀材料大量采用數學符號、圖式語言、數學化的自然語言。因此,數學教學要以此為契機,使學生在開拓視野的同時,通過與數學語言“零距離”接觸,運用標準數學語言進行交流,逐漸增強對數學語言的理解力、轉譯能力,逐漸在用數學語言談論時“有話可說”,提高數學語言表達能力。
所謂數學交流,就是人們運用數學思想、數學語言(包括數學概念、符號、公式、解題、應用等)去傳遞信息、表情達意,從而達到互相溝通、加深理解的目的。學生只有具備了數學交流能力,才能順利地閱讀和理解數學文獻,才能用口頭或書面的形式向別人解釋自己的數學學習體會和數學研究結果,才能成功地吸收別人的心得體會而迅速提高自己的數學語言表達能力。數學交流可以幫助學生在自然語言與抽象數學語言之間建立起聯系,幫助學生把實物的、圖形的、符號的、口頭的數學概念聯系起來,深化學生對數學語言的理解和掌握。另外,通過數學交流可以了解學生思維過程,發現其認識差異,并在教師引導下使學生思維過程不斷地調整、理順,思維結果更加合理、準確,從而達到完善學生認識結構,促進學生思維發展,使學生能準確且有條理地使用數學語言的目的。因此,數學教師一方面在課堂上應盡可能多地給學生創造“表達或說數學”的機會,要學游泳就得到水里去,要學語言就得多開口。同時,師范生自己也要創造機會,學練結合,不斷提高數學語言表達能力。另一方面可以利用教育實習、教育見習等綜合實踐活動,通過指導教師嚴格把關、悉心指導,學生虛心求教等方式,多聽、多看、多思、多問,以得到他們的言傳身教;采用教師講評指導與學生自評自議相結合的方法進行訓練,培養師范生數學語言能力,使其具備扎實的教學基本功,既鞏固了專業理論知識,提高了專業素質,又為學生成為合格的數學教師奠定了基礎。
總之,培養師范生數學語言表達能力,除要凸顯學生的主體性外,還要充分發揮數學教師的主導作用,并且要認識到它的艱巨性、復雜性,只有長期努力,才能取得良好的效果。
[1]A.A.斯托利亞爾.數學教育學[M].丁爾升,王慧芬,鐘善基,譯.北京:人民教育出版社,1984.
[2]數學課程標準研制組.全日制義務教育數學課程標準(實驗稿)解讀[M].北京:北京師范大學出版社,2002.
[3]教育部.普通高中數學課程標準(實驗)[M].北京:人民教育出版社,2003.
[4]邵光華,劉明海.數學語言及其教學研究[J].課程·教材·教法,2005(2):35-41.■