郭月哲
(山西省交通科學研究院,山西太原 030006)
鋼管混凝土拱橋自20世紀90年代引入我國。其以結(jié)構(gòu)受力合理、跨越能力強、外型輕盈等特點正逐漸成為大中跨橋梁設(shè)計中有競爭力的橋型。鋼管混凝土拱橋結(jié)構(gòu)形式多樣、拱肋樣式富于變化,因此其動力特性具有自身特點;目前對鋼管混凝土拱橋還沒有建立起有針對性的抗震設(shè)計規(guī)范,且該橋型尚未經(jīng)歷大震的考驗,對其抗震性能的掌握大多通過數(shù)值模擬分析。振動臺試驗是了解結(jié)構(gòu)抗震性能的有效手段,介于以上可見有必要通過試驗研究掌握鋼管混凝土拱橋的動力特性及抗震性能。
本文以某下承式鋼管混凝土拱橋為原型,通過剛度轉(zhuǎn)換制作了單一材料的試驗模型,實施了以研究其抗震性能的振動臺試驗[1]。通過整理分析,掌握了該橋型受不同地震波、在不同烈度等級作用下地震響應(yīng)的特點及規(guī)律,得出了一些有益的結(jié)論。
本次試驗原型為某下承式鋼管混凝土系桿拱橋。該橋主跨跨徑99 m,矢跨比1/5,拱肋線形為二次拋物線。拱肋為啞鈴形截面,采用雙肢φ800 mm鋼管加中部間距500 mm的鋼板一對構(gòu)成,管壁鋼板12 mm厚,內(nèi)填C40混凝土。拱腳處拱肋下部加勁為矩形斷面。肋間設(shè)一字撐四道,截面為φ600 mm空心鋼管。拱腳間用鋼絞線作為預應(yīng)力系桿,以承擔恒載作用下的拱腳水平推力。每肋下的系桿為12根,每根為9束φ15.2 mm(7φj5)的鋼絞線。吊桿為110φ5高強低松弛鋼絲。吊桿橫梁為鋼筋混凝土工字梁。吊桿間距6 m。為加強橋面系的整體性,在系桿處設(shè)加勁縱梁。橋面板為預制鋼筋混凝土板,濕接縫聯(lián)結(jié)。橋面鋪裝為10 cm厚的C30防水鋼筋混凝土。振動臺試驗在單向電液伺服振動臺上完成。該振動臺臺面尺寸為2 m×2.2 m,最大載荷4.5 t,最大加速度1.0g,最大速度100 cm/s,可輸入規(guī)則波和不規(guī)則波,有效頻率范圍為 0.5 Hz~20 Hz。
為了更詳實反映結(jié)構(gòu)的動力特性及地震響應(yīng)特點,試驗模型幾何相似比例取1/30。考慮到在試驗室該相似比例下試驗模型加工的難易程度及研究掌握結(jié)構(gòu)整體抗震性能的試驗目的等原因,本試驗按照截面換算法,通過剛度相似關(guān)系,將原型拱肋鋼管混凝土截面轉(zhuǎn)化為純鋼截面再予以縮尺。截面剛度轉(zhuǎn)換公式為:

其中,Ea,Eg,E分別為鋼管混凝土中混凝土、鋼管的彈性模量與換算截面的材料彈性模量;Aa,Ag,A分別為鋼管混凝土中混凝土、鋼管的截面面積與換算截面的截面面積;Ia,Ig,I分別為鋼管混凝土中混凝土截面、鋼管截面在組合截面中的截面慣性矩與換算截面的組合截面慣性矩;γa,γg,γ分別為鋼管混凝土中混凝土、鋼管的剪切模量與換算截面的材料剪切模量。
以式(1),式(2)為主要計算依據(jù);式(3)為參考。
縮尺后純鋼試驗模型跨徑3.3m,矢高0.66m,拱肋仍保持二次拋物線線形。其中構(gòu)件截面具體尺寸如圖1所示。試驗模型在機械構(gòu)件加工廠完成,細部尺寸誤差控制在5 mm以內(nèi)。

圖1 模型各細部截面尺寸
由于振動臺最大荷載限制,試驗模型實際配重4 t,處于配重不足狀態(tài)。根據(jù)相似理論及橋梁動力試驗相關(guān)理論,欠配重模型試驗各相似關(guān)系見表1。

表1 模型相似關(guān)系
拱橋模型安裝示意圖見圖2a)。試驗制作輔助支座一對,模型一端通過固定支座與振動臺臺面螺栓剛性連接;另一端架設(shè)于滑動支座上,放于臺面外。試驗用滑動支座見圖2b)。

圖2 模型安裝
1)模型加載。試驗模型配重總計4 t,為了貼近原型實際工況,按照原型上部構(gòu)件(拱肋和橫撐)質(zhì)量與下部構(gòu)件(橫梁、縱梁等)質(zhì)量的比值進行分配。其中試驗模型上部配重2.5 t,下部配重1.5 t。分部位配重情況見圖3。

圖3 模型加載步驟
2)輸入地震波選取。試驗中為了掌握釋放能量方式不同的地震波作用下可能的結(jié)構(gòu)響應(yīng)的區(qū)別,輸入地震波選取了釋放能量集中的EICentro波或較均勻的Taft波作為輸入波形。經(jīng)過相似關(guān)系處理后,試驗加速度控制在6度基本60 gal,7度基本120 gal,8度基本240 gal。其中EICentro波持時5 s;Taft波持時9 s。圍繞基本烈度,同時試驗加載工況中在區(qū)分烈度等級上還做了多遇、基本、罕遇、重要結(jié)構(gòu)罕遇等工況。
3)傳感器測點布置。本次拱橋模型振動臺試驗量測內(nèi)容包括:加速度監(jiān)測、位移量測和應(yīng)變量測。其中加速度監(jiān)測通過在振動臺臺面及滑動支座端設(shè)置加速度計,監(jiān)測輸入地震波波形及峰值大小,圖4為試驗監(jiān)測的8度基本工況下的EICentro波和Taft波,波形完整。

圖4 試驗輸入波形
位移量測是通過在試驗模型各顯著截面布設(shè)縱向和屬相位移計,量測臺面和拱肋各顯著截面的位移變形時程,見圖5。
為了掌握模擬地震波輸入過程中拱肋內(nèi)力的變化規(guī)律,分別在拱腳、拱肋1/4跨和拱頂?shù)裙袄呓孛鎮(zhèn)让嫜剌S向粘貼應(yīng)變片,量測拱肋軸向應(yīng)變。
振動臺試驗開始前對結(jié)構(gòu)進行了錘擊試驗,測定模型拱肋面外及縱橋向自振頻率,見表2。表2中附加了有限元計算結(jié)構(gòu)前兩階振型:拱肋面外側(cè)彎及拱肋和橋面板對稱豎彎對應(yīng)的振動頻率。試驗數(shù)據(jù)顯示結(jié)構(gòu)側(cè)向自振頻率明顯小于縱向振動頻率,符合通常對下承式鋼管混凝土拱橋結(jié)構(gòu)輕盈,側(cè)向剛度小的直觀判斷。

表2 結(jié)構(gòu)振動頻率對比 Hz
構(gòu)件表面準確應(yīng)變的變化能夠很好描述其表面應(yīng)力的變化趨勢。試驗中試通過量測拱肋表面軸向應(yīng)變來掌握和分析拱肋應(yīng)力的變化規(guī)律。如表3所示EI波和Taft波作用下,6度,7度,8度基本烈度工況下拱肋各顯著截面的應(yīng)變最值。同一地震烈度下,拱腳到拱頂?shù)膽?yīng)變最值呈遞減關(guān)系,約為拱頂應(yīng)變的6倍~8倍。反映出拱頂應(yīng)力較小,拱腳軸向應(yīng)力起設(shè)計控制作用。
如圖6所示EI波8度烈度下拱肋拱腳、1/4跨、拱頂應(yīng)變時程曲線。拱肋內(nèi)力顯著截面的應(yīng)變時程曲線波形接近地震波輸入波形。

圖6 EICentro波8度烈度應(yīng)變時程曲線
與拱肋位移響應(yīng)規(guī)律相反,同一烈度同一顯著截面中能量集中釋放的EI波作用下拱肋軸向應(yīng)變峰值大于能量分散釋放的Taft波作用下的峰值。
1)通過分析模型在EI波和Taft波不同烈度作用下結(jié)構(gòu)各顯著截面的應(yīng)變響應(yīng),顯示同一波形作用,不同烈度工況下結(jié)構(gòu)應(yīng)變響應(yīng)提高顯著,增幅接近烈度提高比例;同一烈度下拱頂處應(yīng)變時程曲線整體表現(xiàn)為拉應(yīng)變,約為拱腳應(yīng)變的1/8。符合拱頂主要表現(xiàn)為拉應(yīng)力的受力特征。

表3 試驗各工況應(yīng)變最值
2)同一波形作用下,拱腳、1/4跨處應(yīng)變時程曲線線形與地震波波形一致。
[1]樊 珂,李振寶,閆維明.拱橋多點動力響應(yīng)振動臺模型實驗與理論分析[J].鐵道科學與工程學報,2007(12):19-24.
[2]馬永欣,鄭山鎖.結(jié)構(gòu)實驗[M].北京:科學出版社,2001:230-233.
[3]鐘善桐.鋼管混凝土結(jié)構(gòu)[M].北京:清華大學出版社,2003:303-305.
[4]李 綱.大跨度鋼管混凝土拱橋行波效應(yīng)及減震分析[D].西安:西安建筑科技大學,2008.
[5]楊 葉.多點激勵下鋼管混凝土拱橋的地震反映分析[D].西安:西安建筑科技大學,2008.
[6]郭月哲.下承式鋼管混凝土拱橋抗震性能及減震振動臺試驗研究[D].西安:西安建筑科技大學,2010.
[7]陳寶春.鋼管混凝土拱橋[M].北京:人民交通出版社,2007.