摘要:以處于粘附狀態(tài)下的壓電粘彈性微梁為研究對(duì)象,通過(guò)引入?yún)?shù)剝離數(shù)表示其粘附特征,分析了壓電電壓、粘彈性參數(shù)和幾何參數(shù)對(duì)處于粘附狀態(tài)下壓電粘彈性微梁剝離數(shù)的影響.結(jié)果表明,壓電電壓能有效提高微梁的剝離數(shù),這給通過(guò)壓電電壓修復(fù)已處于粘附狀態(tài)的壓電微梁提供了理論依據(jù)和參考.同時(shí),微梁的幾何參數(shù)對(duì)微梁的剝離數(shù)也有著重要影響,這對(duì)微梁的設(shè)計(jì)造成了一定的限制.
關(guān)鍵詞:壓電粘彈性微梁;粘附;粘彈性;壓電效應(yīng);幾何參數(shù);剝離系數(shù)
中圖分類號(hào):O345文獻(xiàn)標(biāo)識(shí)碼:A
微梁結(jié)構(gòu)是MEMS中主要的結(jié)構(gòu)之一,其主要用于微型開關(guān)[1],傳感器[2],執(zhí)行器[3]等.由于微結(jié)構(gòu)的尺寸遠(yuǎn)小于宏觀物體的尺寸,其有著顯著的尺寸效應(yīng)和表面效應(yīng),這使得其在制造和工作的過(guò)程中,容易受到周圍環(huán)境的溫度[4]和濕度[5]等因素和結(jié)構(gòu)間的微觀力[6-7]的影響.加上微結(jié)構(gòu)尺寸小,結(jié)構(gòu)本身抵抗這些不利因素影響的能力比較脆弱,這使得MEMS在制造、運(yùn)輸和使用的過(guò)程中容易發(fā)生粘附失效.為了揭示微結(jié)構(gòu)粘附失效的力學(xué)機(jī)理,學(xué)者們從粘附力的產(chǎn)生[8],影響因素[9]以及粘附變形[10]等方面對(duì)其進(jìn)行了大量研究,努力尋求相應(yīng)的解決方法,并取得了豐富的成果.
上述研究主要基于彈性理論.研究表明,一些用于制造MEMS結(jié)構(gòu)的材料本身既具有蠕變現(xiàn)象,又具有明顯的壓電效應(yīng)[11-12],所以研究壓電粘彈性微結(jié)構(gòu)的粘附失效行為,揭示其力學(xué)機(jī)理,并討論剝離修復(fù)粘附狀態(tài)下的微結(jié)構(gòu)的方法和理論有著重要的實(shí)際意義.本文以壓電粘彈性微梁為研究對(duì)象,分析了S型粘附微梁的力學(xué)特性,討論了壓電電壓、粘彈性特性和幾何參數(shù)對(duì)粘附微梁剝離數(shù)的影響,同時(shí)分析了通過(guò)壓電電壓對(duì)粘附微梁進(jìn)行剝離修復(fù)的可能性.
1基本方程
3結(jié)論
本文通過(guò)標(biāo)準(zhǔn)固體材料模型及連續(xù)介質(zhì)理論,提出一個(gè)考慮微梁的壓電效應(yīng)和粘彈性特性下的粘附懸臂微梁的EulerBernoulli梁模型,并分析了壓電效應(yīng),粘彈性特性和微梁的幾何參數(shù)對(duì)微梁剝離數(shù)的影響.結(jié)果表明,作用在微梁上的壓電電壓越大,粘附微梁的剝離數(shù)越大,這給實(shí)際工程中通過(guò)壓電效應(yīng)來(lái)修復(fù)已粘附的壓電微梁提供了理論依據(jù)和參考.此外,材料的粘彈性特性和微梁的幾何參數(shù)對(duì)微梁的剝離數(shù)有著重要的影響,其對(duì)微梁的設(shè)計(jì)造成了一定的限制.
參考文獻(xiàn)
[1]BALMA D, A LAMBERTI A, MARASSO S L, et al. Piezoelectrically actuated MEMS microswitches for high current applications[J]. Microelectronic Engineering, 2011,88(8): 2208-2210.
[2]LIU X, MARTIN M, LI X J, et al. Paperbased piezoresistive MEMS sensors[J]. Lab on a Chip, 2011,11(13): 2189-2196.
[3]NADA Y, MEDHAT M, MARTY F, et al. Mechanical displacement multiplier: 250μm stable travel range MEMS actuator using frictionless simple compliant structures[C]//Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on.Piscataway, N J: IEEE, 2012: 1161-1164.
[4]胡淏, 董景新, 劉云峰. 溫度、預(yù)載電壓對(duì) MEMS 加速度計(jì)輸出的影響[J]. 中國(guó)慣性技術(shù)學(xué)報(bào), 2009, 17(4): 464-468.
[5]唐潔影, 陳龍龍, 宋競(jìng). 振動(dòng)作用對(duì) MEMS 微結(jié)構(gòu)濕汽吸附的影響[J]. 納米技術(shù)與精密工程, 2009,7(2): 173-177.
[6]LI G H, LABORIANTE I, LIU F, et al. Measurement of adhesion forces between polycrystalline silicon surfaces via a MEMS doubleclamped beam test structure[J]. Journal of Micromechanics and Microengineering, 2010, 20(9): 95015-95023.
[7]LUI H, GAO S, NIU S, et al. Analysis on the adhesion of microcomb structure in MEMS[J]. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(3):979-984.
[8]DELRIO F W, DE BORER M P, KNAPP J A, et al. The role of van der Waals forces in adhesion of micromachined surfaces[J]. Nature materials, 2005, 4(8): 629-634.
[9]NINGBO L, PING Y. Effect of temperature on nanoscale adhesion for MEMS[J]. International Journal of Materials and Product Technology, 2008, 31(2): 354-364.
[10]DE BOER M P, MICHALSKE T A. Accurate method for determining adhesion of cantilever beams[J]. Journal of Applied Physics, 1999, 86(2): 817-827.
[11]FANG T H, CHANG W J, LIN C M. Nanoindentation and nanoscratch characteristics of Si and GaAs[J]. Microelectronic Engineering, 2005, 77(3/4): 389-398.
[12]SODERKVIST J, HJORT K. The piezoelectric effect of GaAs used for resonators and resonant sensors[J]. Journal of Micromechanics and Microengineering, 1994, 4(1):28-34.
[13]SCHAPERY R A. A method of viscoelastic stress analysis using elastic solutions[J]. Journal of the Franklin Institute, 1965, 279(4): 268-289.
[14]MASTRANGELO C, HSU C. Mechanical stability and adhesion of microstructures under capillary forces—part II: experiments[J]. Microelectromechanical System, 1993, 2(1): 44-55.