胡憲文,蔣玲玲,劉曉芬,吳 云,李 云,張 野
線粒體KATP通道介導遠端缺血預處理對嚴重失血性休克大鼠在體心臟功能的保護作用
胡憲文,蔣玲玲,劉曉芬,吳 云,李 云,張 野
目的觀察遠端缺血預處理(RIPC)對嚴重失血性休克大鼠在體心臟功能的保護作用及其機制。方法32只雄性SD大鼠,體重300~350 g,隨機分成4組:對照組(C組)、失血性休克組(S組)、RIPC組(R組)、RIPC+線粒體KATP通道阻滯劑組(B組),每組8只。采用經大鼠頸動脈60 min內放血占總血容量50%,觀察30 min后經頸靜脈30 min回輸釋放的血液建立嚴重失血性休克和復蘇模型。在放血前雙側后肢以止血帶捆綁阻斷血流5 min,再灌注5 min,反復4個循環形成RIPC。B組在RIPC前15 min經頸靜脈注入線粒體KATP通道阻滯劑(5-羥基葵酸鹽)10 mg/kg。C組所有手術操作同S組,但不放血。持續監測心電圖、平均動脈壓(MAP)到血液回輸后2 h,在放血前、放血后、輸血前、輸血后即刻、輸血后1、2 h用彩色超聲儀測量心輸出量(CO)、左室射血分數(LVEF)、左室短軸縮短率(LVFS)、心肌做功指數(MPI)、左室后壁厚度(LVPWD)。結果在失血和休克階段,與C組比較,S組、B組和R組MAP、CO、LVEF、LVFS均降低(P<0.01),MPI、LVPWD升高(P<0.01);血液回輸后,與C組比較,R組MAP、CO、LVEF、LVFS、MPI、LVPWD差異無統計學意義;與R組比較,S組和B組MAP、CO、LVEF、LVFS明顯降低(P<0.01),MPI、LVPWD明顯升高(P<0.01);S組和B組各心臟功能指標差異無統計學意義。結論RIPC明顯保護嚴重失血性休克大鼠在體心臟功能,其保護作用可能與線粒體KATP通道激活有關。
遠端缺血預處理;失血性休克;心功能;線粒體KATP通道
術中出血是大手術尤其選擇性血管外科手術的常見并發癥,嚴重術中出血會導致失血性休克,使圍術期死亡率增加到5%~8%[1]。盡管液體復蘇是治療失血性休克的主要方法,但失血性休克和復蘇可導致心肌的缺血再灌注損傷,直接影響心臟功能[2]。有報道[3-6]顯示遠端缺血預處理(remote ischemic preconditioning,RIPC)對缺血再灌注心肌具有保護作用,然而RIPC是否能夠減輕嚴重失血性休克與復蘇導致的心肌缺血再灌注損傷,從而維護心臟功能,目前國內外尚無報道。該研究旨在觀察RIPC對在體大鼠失血性休克與復蘇后心臟功能的影響,為臨床應用提供參考依據。
1.1 藥品和儀器
戊巴比妥(Virbac AH Inc,批號:E0149);5-羥基葵酸鹽(美國Sigma公司,批號SLBC7951V);抽血輸血雙向全自動輸液泵(Genie TouchTM,美國);動物呼氣末CO2監測儀(End-Til IL 200,美國Midmark-Cardell公司);動物血壓心電圖監護儀(Series 7010 monitor,美國Marquette公司)。
1.2 實驗動物
健康成年雄性SD大鼠32只,清潔級,6月齡,體重300~350 g,由Harlan實驗中心提供,大鼠自由攝食進水,在室溫(22±1)℃,相對濕度(50±5)%,光照/黑夜周期12 h/12 h環境中適應飼養1周后實驗。術前12 h禁食。
1.3 動物分組
32只大鼠隨機分為4組(每組8只):對照組(C組)、失血性休克組(S組)、RIPC組(R組)、RIPC+線粒體KATP通道阻滯劑組(B組)。經大鼠左頸動脈60 min內放出血占總血容量50%,觀察30 min后經右頸靜脈30 min內回輸放出的血液建立嚴重失血性休克與復蘇模型[7]。C組所有手術操作同S組,但不放血。R組和B組在放血開始前雙側后肢以止血帶捆綁阻斷血流5 min,松開5 min,反復4次,每次捆綁以雙后肢皮膚顏色改變及超聲多普勒在捆綁下方聽不到動脈波動為準[8]。B組在RIPC前15 min經頸靜脈注入線粒體KATP通道阻滯劑(5-羥基葵酸鹽)10 mg/kg[9]。
1.4 失血性休克和復蘇模型制作
大鼠麻醉前禁食8 h,自由飲水。腹腔內注射戊巴比妥鈉50 mg/kg麻醉后仰臥位固定在實驗臺上,氣管內插管,保留自主呼吸。取頸正中切口,右頸靜脈置管用于輸血及測中心靜脈壓,左頸動脈插管用于放血及測動脈壓。經頸靜脈給予肝素200 U/kg 10 min后,經頸動脈由抽血輸血雙向全自動輸液泵(Genie TouchTM,美國)在1 h內持續放血,失血量占總血容量50%(總血容量占體重6.12%)[10]。觀察30 min后,經頸靜脈在30 min內回輸放出的血液,建立失血性休克和復蘇模型。所有動物持續監測心電圖、平均動脈壓(mean artery pressure,MAP)到血液回輸后2 h。待清醒拔除所有導管,縫合傷口,肌肉注射青霉素預防感染。采用烤燈照射維持直腸溫約37℃。待大鼠翻正反射恢復且完全清醒后放回籠中飼養。
1.5 心功能測定
在放血前、放血結束即刻、血液回輸前、血液回輸后即刻、回輸后1、2 h,采用Vivid彩色超聲儀測量3個心動周期左心室舒張末期內徑和左心室收縮末期內徑,計算心輸出量(cardiac output,CO)、左室射血分數(left ventricular ejection fraction,LVEF)、左室短軸縮短率(left ventricular fraction shortening,LVFS)、左室收縮末期內徑(left ventricular end-systolic dimension,LVDs)、左室舒張末期內徑(left ventricular end-diastolic dimension,LVDd),LVFS=(LVDd-LVDs)/LVDd。測量3個心動周期等容舒張時間(isovolumic relaxation time,IVRT)、等容收縮時間(isovolumic contraction time,IVCT)和射血時間(ejection time,ET),計算左心室心肌做功指數(myocardial power index,MPI),MPI=(IVCT+IVRT)/ET。測量3個心動周期左室后壁厚度(left ventricular posterior wall dimension,LVPWD)。
1.6 統計學處理
2.1 一般情況
4組大鼠MAP、CO、LVEF、LVFS、 LVPWD、MPI在放血前基礎值差異無統計學意義(P>0.05)。4組大鼠均經受了從放血開始到輸血后1 h的實驗過程,但在輸血后2 h時,C組有8只,R組有8只,S組剩余6只,B組剩余6只。
2.2 統計分析
在不同時間點多組均數比較采用單因素方差分析的F值見表1。
2.3 心功能測定
在失血和休克觀察階段,與C組比較,S組、R組和B組MAP、CO、LVEF、LVFS均降低(P<0.01),MPI、LVPWD升高(P<0.01);S組、R組和B組MAP、CO、LVEF、LVFS、MPI、LVPWD差異無統計學意義(P>0.05)。血液回輸后,與C組比較,S組和B組MAP、CO、LVEF、LVFS均降低(P<0.01),MPI、LVPWD升高(P<0.01),R組和C組MAP、CO、LVEF、LVFS、MPI、LVPWD差異無統計學意義(P>0.05);與R組比較,S組和B組MAP、CO、LVEF、LVFS均降低(P<0.01),MPI、LVPWD升高(P<0.01);S組和B組MAP、CO、LVEF、LVFS、MPI、LVPWD差異無統計學意義(P>0.05)。見表2。

表1 不同時間點多組均數比較單因素方差分析的F值
失血性休克是由于急性大量失血引起有效循環血量不足、急性微循環障礙、組織灌流不足,而導致組織與細胞缺血、缺氧、代謝障礙和器官功能受損為特征的綜合征。雖然液體復蘇是治療休克的主要方法,休克后再灌注會加重組織細胞進一步損害[11]。報道[12]表明失血性休克和復蘇引起的重要器官缺血再灌注損傷的嚴重程度與出血量和休克時間有關。早期實驗[13]證實失血性休克會導致心臟收縮功能減退,近來學者[14]發現嚴重失血性休克后心臟舒張功能亦受損。本實驗中失血性休克模型采用的失血量占總血容量的50%,屬于重度失血性休克,總的休克時間也超過1 h,在回輸血液后,多普勒心臟檢測顯示S組大鼠失血性休克和血液回輸后LVEF和LVFS明顯降低,MPI和LVPWD明顯升高,說明此時大鼠左心室收縮和舒張功能均明顯受損。
研究[3-6]表明遠端肢體缺血預處理對缺血再灌注的心肌起保護作用。本實驗在失血性休克發生前,采用雙后肢止血帶捆綁阻斷血流5 min,松開5 min,反復4次造成RIPC。失血性休克與復蘇后,多普勒心臟檢測顯示R組LVEF和LVFS較S組明顯升高,MPI和LVPWD較S組明顯降低,血液回輸后血流動力學較S組更平穩,表明RIPC保護了心肌,改善了心臟功能,從而提供較穩定的血流動力學。
表2 MAP和心功能指標在大鼠失血性休克和復蘇中的變化(±s)
與C組比較:**P<0.01;與R組比較:#P<0.05,##P<0.01
項目放血前放血后輸血前輸血后即刻輸血后1 h輸血后2 h MAP(kPa)C組18.05±0.6717.72±0.6418.00±0.7218.12±0.6817.56±0.3917.65±0.49 R組17.87±0.606.64±0.36**7.77±0.76**17.40±0.8916.79±0.9717.11±0.60 B組17.72±0.876.15±0.59**6.85±0.55**13.28±0.71**##12.21±0.75**##11.43±0.74**##S組17.61±0.596.36±0.61**9.53±0.48**13.72±1.04**##12.28±1.36**##11.55±0.69**##CO(ml/min)C組107.5±1.9105.1±3.3105.7±3.5104.3±3.9105.7±2.2103.3±1.4 R組107.6±3.047.0±6.5**49.4±5.4**106.9±8.6101.5±9.898.0±9.7 B組104.6±5.743.4±5.1**44.1±5.5**68.3±5.1**##62.3±5.6**##58.3±8.3**##S組106.5±3.343.0±5.8**43.4±5.1**69.0±5.2**##60.4±5.1**##52.9±6.2**##LVEF(%)C組71.0±0.970.9±0.671.5±0.771.3±0.670.8±0.570.8±0.4 R組71.1±1.461.2±2.1**61.8±2.0**70.0±1.969.8±1.669.7±1.5 B組70.4±1.360.1±2.2**59.3±3.2**64.7±3.4**##61.1±2.7**##55.8±3.8**##S組69.5±1.661.8±3.1**60.6±2.2**63.8±2.3**##59.3±3.0**##53.0±3.6**##LVFS(%)C組34.1±3.833.2±2.633.5±3.433.4±3.233.5±3.033.4±3.2 R組34.4±3.524.8±2.2**24.2±2.3**33.2±3.032.4±3.232.3±3.1 B組34.7±3.123.6±1.8**23.1±1.7**25.1±1.7**##24.0±2.2**##22.7±2.4**##S組34.5±3.623.1±1.8**22.9±2.0**25.8±2.6**##24.5±2.2**##23.3±2.3**##LVPWD(cm)C組0.203±0.0290.201±0.0320.199±0.0280.200±0.0230.201±0.0320.203±0.029 R組0.211±0.0140.280±0.052**0.270±0.048**0.218±0.0200.215±0.0190.218±0.020 B組0.204±0.0220.271±0.040**0.305±0.045**0.280±0.028**##0.304±0.042**##0.312±0.024**##S組0.205±0.0300.327±0.055**0.325±0.051**0.291±0.040**##0.291±0.047**##0.307±0.023**##MPI C組0.69±0.030.70±0.040.69±0.030.69±0.040.70±0.030.70±0.02 R組0.69±0.031.07±0.06**1.01±0.12**0.74±0.060.72±0.060.70±0.04 B組0.68±0.021.14±0.07**1.16±0.12**1.10±0.08**##1.23±0.07**##1.35±0.07**##S組0.69±0.041.13±0.07**1.11±0.05**1.03±0.10**##1.25±0.10*#1.32±0.10*#
遠端肢體缺血預處理對缺血再灌注后心肌保護作用的機制復雜,有學者[15]認為線粒體KATP通道參與了其中的保護作用。線粒體KATP通道通過3個機制發揮臟器保護作用[16]:①促使線粒體膜去極化,減少再灌注期間Ca2+的攝取和Ca2+濃度;②保存缺血期間ATP,減低電壓依賴性離子通道活性;③減少再灌注期間活性氧的產生。在本研究中,在遠端肢體缺血預處理前給予線粒體KATP通道阻滯劑后,多普勒心臟彩超結果顯示,遠端肢體缺血預處理的心臟保護作用完全被抑制,說明線粒體KATP通道參與了遠端肢體缺血預處理的心臟功能的保護作用。
綜上所述,在失血性休克和復蘇大鼠在體模型中,RIPC減輕心肌缺血再灌注損傷,改善心臟功能,其心肌保護作用可能與其激活線粒體KATP通道有關。
[1] Copeland G P,Jones D,Walters M.POSSUM:a scoring system for surgical audit[J].Br J Surg,1991,78(3):355-60.
[2] Flaherty D C,Hoxha B,Sun J,et al.Pyruvate-fortified fluid resuscitation improves hemodynamic stability while suppressing systemic inflammation and myocardial oxidative stress after hemorrhagic shock[J].Mil Med,2010,175(3):166-72.
[3] Surendra H,Diaz R J,Harvey K,et al.Interaction of δ and κ opioid receptors with adenosine A1 receptors mediates cardioprotection by remote ischemic preconditioning[J].J Mol Cell Cardiol,2013,60:142-50.
[4] Wong G T,Lu Y,Mei B,et al.Cardioprotection from remote preconditioning involves spinal opioid receptor activation[J].Life Sci,2012,91(17-18):860-5.
[5] Hajrasouliha A R,Tavakoli S,Ghasemi M,et al.Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart[J].Eur J Pharmacol,2008,579(1-3):246-52.
[6] Szijártó A,Czigány Z,Turóczi Z,et al.Remote ischemic perconditioning-a simple,low-risk method to decrease ischemic reperfusion injury:models,protocols and mechanistic background[J].A Review J Surg Res,2012,178(2):797-806.
[7] Cammarata G A,Weil M H,Fries M,et al.Buccal capnometry to guide management of massive blood loss[J].J Appl Physiol,2006,100(1):304-6.
[8] Kristiansen S B,Henning O,Kharbanda R K,et al.Remote preconditioning reduces ischemic injury in the explanted heart by a KATPchannel dependent mechanism[J].Am J Physiol Heart Circ Physiol,2005,288(3):H1252-6.
[9] 趙 翚,董海龍,熊利澤,等.線粒體ATP敏感性鉀離子通道參與遠程預處理對大鼠腦保護作用的機制[J].第四軍醫大學學報,2007,28(18):1633-5.
[10]Fang X,Tang W,Sun S,et al.Comparison of buccal microcirculation between septic and hemorrhagic shock[J].Crit Care Med,2006,34(12 Suppl):S447-53.
[11]Nandra K K,Takahashi K,Collino M,et al.Acute treatment with bone marrow-derived mononuclear cells attenuates the organ injury/dysfunction induced by hemorrhagic shock in the rat[J].Shock,2012,37(6):592-8.
[12]Horton J W,McDonald G.Heart and brain nucleotide pools during hemorrhage and resuscitation[J].Am J Physiol,1990,259(6Pt2):H1781-8.
[13]Shahani R,Klein L V,Marshall J G,et al.Hemorrhage-induced alpha-adrenergic signaling results in myocardial TNF-alpha expression and contractile dysfunction[J].Am J Physiol Heart Circ Physiol,2001,281(1):H84-92.
[14]Suzuki K,Ogino R,Nishina M,et al.Effects of hypertonic saline and dextran 70 on cardiac functions after burns[J].Am J Physiol Heart Circ Physiol,1995,268(2Pt2):H856-64.
[15]Sato T,Sasaki N,Seharaseyon J,et al.Selective pharmacological agents implicate mitochondrial but not sarcolemmal KATPchannels in ischaemic cardioprotection[J].Circulation,2000,101(20):2418-23.
[16]Ardehali H,O’Rourke B.Mitochondrial KATPchannels in cell survival and death[J].J Mol Cell Cardiol,2005,39(1):7-16.
Remote ischemic preconditioning improves cardiac dysfunction via mitochondrial KATPchannel activation in vivo rat model of severe hemorrhagic shock
Hu Xianwen,Jiang Lingling,Liu Xiaofen,et al
(Dept of Anesthesiology,The Second Affiliated Hospital of Anhui Medical University,Hefei 230601)
ObjectiveTo investigate the effects of remote ischemic preconditioning on cardiac dysfunction in vivo rat model of severe hemorrhagic shock and its potential mechanism.MethodsThirty-two male Sprague-Dawley rats,weighting 300~350 g,were randomized into four groups:control(C)group;shock(S)group;Remote ischemic preconditioning(R)group;Remote ischemic preconditioning with mitochondrial KATPchannel blocker(B)group.Hemorrhagic shock and resuscitation were induced by reduction of 50%of total blood volume over an interval of 1 hour,30 mins after bleeding,reinfusion was initiated with the shed blood over the ensuing 30 mins.RIPC was performed by four cycles of 5 mins of limbs ischemia followed by reperfusion for 5 mins.The mitochondrial KATPchannel blocker(5-hydroxydeconate)was injected into the right atrium fifteen minutes before the initiation of RIPC.The procedure in control group was the same as shock group but not bleeding.Electrocardiogram and mean artery pressure(MAP)were continuously measured to 2 h after reinfusion.Cardiac function was measured by echocardiography at baseline,after bleeding,before reinfusion,after reinfusion and at hourly intervals after reinfusion.ResultsCompared with C group,MAP,CO,LVEF,LVFS were significantly decreased and MPI,LVPWD were significantly increased in R,S and B groups(P<0.01)during hemorrhagic and shock phase.After reinfusion,MAP,CO,LVEF,LVFS,MPI,LVPWD were not different between R group and C group.Compared with R group,MAP,CO,LVEF,LVFS were significantly decreased and MPI,LVPWD were significantly increased in S group than B group(P<0.01).There were no differences of cardiac function indexes between S group than B group.ConclusionRIPC obviously improves cardiac dysfuntion in vivo rat following severe hemorrhagic shock and resuscitation,the result is associated with the activation of mitochondrial KATPchannel.
remote ischemic preconditioning;hemorrhagic shock;cardiac funtion;mitochondrial KATPchannel
R 605.971;R 654.2;R 971.2
A
1000-1492(2014)06-0735-04
2014-01-15接收
國家自然科學基金青年基金(編號:81200089)
安徽醫科大學第二附屬醫院麻醉科,合肥 230601
胡憲文,男,副主任醫師,碩士生導師,責任作者,E-mail:huxianwen001@126.com